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The problem of modeling electro-optic&O) systems for 1. Variants of the “classical” approach to modeling
the purpose of ground vehicle countermeasure develop- target acquisition performance that assume a simpli-
ment and system performance evaluation has been arqund  fied target and background. Target size and average
for many years. This special section is devoted to recent contrast are taken as the most important signature
advances ir{1) computational techniques and testing prp- parameters for predicting target detectability. This
cedures to predict the detectability of man-made objects type of model has IR and visual versions. Signal
in the field and in(2) methods to validate and calibrat detection theory(SDT) is also used with this ap-
these techniques and procedures. proach.
Most metrics that are currently used to quantify visual
target distinctness and to predict the probability of detec-
tion of a target in clutter do not relate to properties of the
human visual system. As a result, their predictions do not
correlate with the results of human observer tests. A well-
known example is the mean square efdSE) in inten-
sity. Although this metric has a good physical and theo-
retical basis, it correlates poorly with observer
performance. This is due to the fact that the human vis
system does not analyze an image in a simple point-
point manner. Bottom-up grouping mechanisms appea
drive the formation of emergent perceptual units fro
preattentively extracted stimulus featur@sg., edges or 3. Models that use neural networks and/or fuzzy logic
texture elemenjsWhen searching for known targets, top- to predict target detectability based on the input of a
down priming signals may influence the organization of data set of “feature vectors.” This type of model
search regions. Salient areas may then be selected for|fur-  can be used for both IR and visual images, as well
ther inspection. as images from radar and acoustics.
Only recently has there been a paradigm shift within
the modeling community to transform the methods and Carefully designed and performed psychophysical ex-
results of recent research in the area of neurophysiologperiments are essential to provide data for the quantitative
and human vision research into target acquisition modeleomparison and tuning of a model’'s outcome to the judg-
ing. However, there are still no standard and validatednent of observers performing visual discrimination tasks.
computational perceptual difference metrics availableA validated perceptual difference metric or acquisition
Because of their computational simplicity, MSE-basedmodel eliminates the need for time-consuming visual
measures are still widely used. Attempts to tune thesevaluation and optimization procedures involving human
metrics to the properties of the human visual system
only partly successful. These considerations have recently The NATO RTO Workshop on Search & Target Acqu
led to the development of visual difference metrics thatsition, which was held in Utrecht, The Netherlands, June
are firmly based on principles of the initial stages of the1999, was initiated by the Systems Concepts and Integra-
human visual system. tion Panel SCI-142the former RSG-R on “Camouflage,
Presently, target-acquisition-model strategies can be|diconcealment and Deception Evaluation Techniques.” The
vided into three broad classes: goal of this workshop was to provide a state-of-the-art

2. Models that use the multi-channel and mulii-
resolution idea adopted from human vision research
together with classical psychophysics, i.e., SDT.|It
is assumed that the eye and the visual cortex trans-
form the input scene into a mental image from
which the observer detects a target. This is the
so-called “bottom-up” approach based on firsi-
principles of human vision and psychophysics. This
is a visual model to start with but can be applied to
IR scenes as well since it is in both cases the gye
that looks at a displayed image on a monitor.
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review of computational and psychophysical evaluation|ofin a target scene. These points are defined as the spatial
visual target distinctness. Several of the papers in thisocations of partially invariant features that minimize th
special section were presented in an earlier form at thisletection error probability between the scene with an
workshop. without the target. Then they compute the visual target
Toet, Bijl, and Valeton present the TNO Human Fag-distinctness as a generalization of the Kullback-Leibler
tors SEARCH_2 image dataset. This dataset consists of goint information gain over the optimal interest points of
set of 44 high-resolution digital color images of different the target image. The method is applied to quantify th
complex natural scenes, the ground truth corresponding teisual distinctness of targets in the SEARCH image
each of these scenes, and the results of psychophysicsg¢t. The results show that the computed target distinctngss
experiments on each of these images. Although theorrelates strongly with visual target distinctness as esti
dataset is small and rather limited it should be regarded asated by human observers.
a first attempt to create a freely available database of natu- Krebs, Scribner, and McCarley compare and contrast
ral imagery with corresponding human search and detedsehavioral and matched filter ROC plots to determine
tion performance results that can be used to develop

nget characteristics. Matched filtering may therefore bg

image enhancement methods, and for the development|of

rsrelative number of neural pathways required to process|a
as possible what a military observer will actually see apddetermined recognition distances for target vehicles. The

The issues include prior training, panning effects on eyable, clearly delineatedtargets require only few neural
movements, and contrast and brightness controls. The|lapathways at recognition threshold, corresponding to |a
est advances in these areas and some remaining c¢hamall retinal projection area or, equivalently, a large reg
lenges are discussed. ognition distance, whereas less informatiless visible,
Doll and Home argue that the scope of most curreniobscured, or camouflagetargets require more process-
human visual search and target acquisit{8TA) models | ing power, and therefore a larger retinal projection or a
is restricted because only a limited part of the visual syssmaller recognition distance. The results are compared
tem is taken into account. He emphasizes the importapceith the search times provided with the SEARCHIm-
of complex pattern perception, visual attention, learningages. This comparison indicates that recognition distance
and cognition for STA performance and suggests apthresholds effectively quantify target distinctness, in a
proaches for modeling them. He also provides guidelinesvay that is complementary to search time. Recognition
for testing and validating STA models. Finally, he pre- distance thresholds correspond to the number of neunal
sents and compares alternative approaches to field testipmthways required for recognitioitretinal projection

for the purpose of model validation. area. Search time corresponds to the duration required
Itti, Gold, and Koch present a bottom-up model of vj- for recognition. Together, recognition distance thresholds
sual attention based on the architecture of the primatand search time describe the total amount of information

in the visual field. Competition among neurons in this EVAluation and for estimation of target detectability.
map gives rise to a single winning location that corre-CAMEVA computes the dissimilarity between the statis-
sponds to the most salient object, which constitutes theical distributions of a set of features on a target and g
next target. If this location is subsequently inhibited, thecorresponding set on its local background, using digitized
system automatically shifts to the next most salient logaimagery as input. The selected features depend on the
tion, endowing the search process with internal dynamicsdetection system that is modeled. In the case of the up-
Application of the model to the SEARCE2 image set| aided human eye typical features are contrast, texture,
shows that the model finds the targets faster than humashape, and edge content. CAMEVA predicts the target de-
observers in 75% of the studied cases. It is argued thakectability as a function of range from the dissimilarity
this may be a result of the lack of top-down flow of in- measure and the limitations of the senédsual) system.
formation that may bias attentional shifts in human ob-CAMEVA is a man-in-the-loop model, since it requires
servers. human operator interaction to delineate the target and its
Garcia et al. present a new computational method| tdocal background. This paper presents validation experF}-

quantify the visual distinctness of a target relative to jtsments and the results of the application of the model t
background. First they compute the optimal interest pointthe SEARCH 2 dataset.
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Meitzler, Sohn, Singh, and Elgarhi discuss their re- Moorhead et al. present a synthetic scene simulatid
search in the modeling area of predicting the probabiljtysystem(CAMEO-SIM) that generates high-fidelity imag-
of detection. Their approach is to use the SEARCH| ery within the 0.4—14um spectral band. The system con-
dataset to build and test a prediction model based on [theists of a scene design tool, an image generator, whi
fuzzy logic approach. The authors have achieved a D.thcorporates both radiosity and ray-tracing processes, a
correlation to experimental results by using half the datean experimental trials tool. The scene design tool allow
set for training the model and half the data set for testingthe user to develop a three-dimensional representation

Wilson combines contrast, size, and clutter metrics
predict human observer performance on the SEARZH
dataset. To calculate the contrast metric, a new imag
generated from a gray-scale version of the original im
by replacing the target with an “expected backgroun
using the local background surrounding the target.
contrast metric is then obtained from the difference of t
new image and the original image. The ratio of the co
trast and clutter metrics is shown to correlate with hum
performance.

Witus, Gerhart, and Ellis introduce a contrast metf
that accounts for the 3-D structure of target vehicle. Fi
it computes the contrast for the frofdr reay, side, and
top surfaces. Then it computes the overall target contr
as a weighted sum of the contrasts of the component ¢
faces. The metric is applied to the ground target vehic
in the SEARCH 2 dataset. The metric values are con
pared to experimental observer results. When the effe
of false alarms are discounted, the metric accounts
89% of the variance in the probability of detection arn
95% of the variance in search time.

Nyberg and Bohman applied a number of texture d
scriptors and similarity metrics to quantify the distinc
ness of the targets in the SEARCE images relative to
their local background. Using only one or two textu
features they achieved a high correlation with human ¢
server performance. The best results were obtained
edge concentration and shape of the local Wiener sp
trum as texture descriptors, in combination with mean g
variance based distance measures.

Aviram and Rotman address the effects of image
wavelength on the agreement level between various
age metrics and human detection performance for targ
embedded in natural scenes. The metrics studied were
signed to agree with human perceptual cues. The met
were applied to natural scenes registered in the 3-tbe

tathe scenario of interest from a fixed viewpoint. Targets g
interest can be placed anywhere within this 3-D represe
igtion and may be either static or moving. Different illu-
genination conditions and effects of the atmosphere can [
"modeled together with directional reflectance effects. Th
haiser has complete control over the level of fidelity of the
isfinal image. The output from the rendering tool is a se
n-quence of radiance maps that may be used by sensor m
arels or for experimental trials in which observers carry ou
target acquisition tasks. A range of verification and vali
icdation tests is also discussed.
rst Krapels et al. argue that the performance of infrare

adiulence for long-range imaging paths. The effects of a
surnospheric turbulence blur should therefore be represent
esn target acquisition models. They show that the effects ¢
n-turbulence blur on detection and recognition tasks can
ctgood approximation be modeled as a linear shift invariar
foprocess.
d Watkins et al. report the results of visual search an
target detection experiments for binocular viewing o
esingle line of sight images versus stereoscopic display
t- wide baseline stereo images. The results indicate that s
reo vision effectively reduces false alarm detection by
e factor of two. Guidelines for optimum stereo display are
bobtained that can be used to improve target detection.
vith  We are pleased with the manuscripts submitted for th
especial section and the interest in the subject of targ
ndacquisition modeling. We would like to thank all the au-
thors and the reviewers for their contributions. We hop
ryyou will enjoy these papers and find them useful in you
mstudies related to target acquisition.
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target acquisition systems is limited by atmospheric tur-

experiments to test human search and discrimination per-
formance for natural texture patterns in natural bagk-
grounds. In the first experiments the subjects judged th{
relative visual target distinctness in a paired comparigor
paradigm. In the second experiment the observer{ #
searched a natural scene for suspected target locatiprf
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