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Classification of atherosclerotic rabbit aorta samples
by mid-infrared spectroscopy using multivariate
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Abstract. Atherosclerotic and normal rabbit aorta samples show a
marked difference in chemical composition governed by the water,
lipid, and protein content. The strongly overlapping infrared absorp-
tion features of the different constituents, and the complexity of the
tissue matrix, render tissue classification by direct evaluation of mo-
lecular spectroscopic characteristics obtained from IR reflectance or
attenuated total reflectance �ATR� measurements virtually impossible.
We apply multivariate analysis and classification techniques based on
partial least squares regression �PLS� and linear discriminant analysis
to IR spectroscopic data obtained by IR-ATR measurements and re-
flectance IR microscopy with high predictive accuracy during blind
testing. Training data are collected from atherosclerotic and normal
rabbit aorta samples. These results demonstrate the potential of IR
spectroscopy combined with multivariate classification strategies for
the in-vitro identification of normal and atherosclerotic aorta tissue.
The prospect for future in-vivo measurement concepts is also
discussed. © 2007 Society of Photo-Optical Instrumentation Engineers.
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1 Introduction

Histochemical analysis is the classical method for studying
atherosclerotic lesions and their pathophysiological progres-
sion. However, this method usually requires trained personnel
for the sample preparation, which includes slicing artery wall
tissue and staining for optical microscopy, rendering this pro-
cedure complex, time consuming, and limited to in-vitro
conditions.

Optical spectroscopy is a powerful characterization tool
sensitive to the variation of molecular components in the
sample, and has been applied for rapid classification of cell
and tissue samples.1–13 Recent studies have shown that the
vulnerability of atherosclerotic plaque largely depends on its
chemical composition and ultrastructure. Different spectro-
scopic techniques, including fluorescence spectroscopy, Ra-
man techniques, and near-infrared �NIR� spectroscopy, have
been used to characterize normal tissues and plaques in hu-
man artery samples. Fluorescence spectroscopy has been used
to study normal and atherosclerotic tissues based on endog-
enous or exogenous tissue chromophores,14–27 successfully
classifying normal and plaque artery tissues in vitro. In a more
recent study, Marcu et al. demonstrated a catheter-based time-
resolved fluorescence spectroscopic technique for in-vivo dif-
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ferentiating and demarking macrophage content versus col-
lagen content in a rabbit atherosclerotic model.28 Christov et
al. have shown a catheter-based fluorescence emission analy-
sis technique applied to the detection of Russell’s viper
venom-induced atherosclerotic plaque disruption in rabbit
models during in-vitro and in-vivo studies.29 The same fluo-
rescence technique was also utilized for in-vivo analyzing of
quantitative changes in collagen and elastin during arterial
remodeling in rabbit models.30 However, fluorescence tech-
niques provide limited discriminatory information at a mo-
lecular level due to broad and frequently overlapping absorp-
tion and emission spectra obtained from tissue chromophores.
Fourier-transform �FT� Raman with near-infrared �NIR� exci-
tation has extensively been applied for qualitative and quan-
titative studies on the chemical composition of atherosclerotic
plaques, and appears to be among the most promising tech-
niques at present for the identification of vulnerable
plaques.31–42 Recently, van de Poll et al. applied Raman spec-
troscopy to studying the effects of diet and lipid-lowering
therapy on plaque development in apoloprotein �APO�
E*3-Leiden transgenic mice.43 Furthermore, in-vivo Raman
spectroscopy techniques have gained importance for intravas-
cular detection. The group of Boschman et al.44 has utilized an
in-vivo fiber optic probe for obtaining high-quality Raman
spectra characterizing the artery wall in lambs and sheep. Fur-
1083-3668/2007/12�2�/024006/11/$25.00 © 2007 SPIE
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ther progress on in-vivo detection was achieved by Motz et al.
demonstrating a fiber optic probe-based Raman system ap-
plied to real-time in-vivo collection of Raman spectra in the
human atherosclerosis system.45–47

In addition, a variety of IR spectroscopic techniques in-
cluding diffuse reflectance NIR spectroscopy,48–51 conven-
tional transmission Fourier transform infrared �FT-IR�
spectroscopy,52 attenuated total reflectance �ATR�
spectroscopy,53 and FT-IR microscopy54 have been used for
characterizing and identifying atherosclerotic plaques. A vari-
ety of spectroscopic mapping/imaging techniques, such as
fluorescence,55 Raman,56,57 reflectance NIR,58 transmission
FT-IR microscopy,59 and ATR FT-IR techniques60 have also
been used to characterize atherosclerotic plaques. Among
these imaging techniques, micro-ATR FT-IR imaging,60 as re-
cently demonstrated by Colley et al., provides the inherent
advantage of superior sensitivity and significantly faster data
acquisition compared to Raman imaging techniques, and si-
multaneously higher resolution than other FT-IR-based imag-
ing techniques. In this study, the cross section of atheroscle-
rotic rabbit arteries is analyzed at a spatial resolution of
3 to 4 �m, thereby revealing the distribution heterogeneity of
cholesterol esters in plaque. Consequently, among the optical
techniques for studying atherosclerotic plaque, IR-ATR tech-
niques are of particular interest due to their surface sensitivity
and rapid data acquisition, which renders them ideal for thick
and strongly absorbing materials such as tissue. In addition,
ATR techniques are suitable for miniaturization, providing the
potential to obtain spectroscopic signals and diagnostic infor-
mation in vivo, if coupled with fiber optic signal delivery
systems.

In our study, reflectance IR microscopy and IR-ATR spec-
troscopy have been applied for the investigation of normal
and atherosclerotic rabbit aorta samples, in preparation for the
development of an IR-ATR-based catheter system61–63 for fu-
ture in-vivo applications. All data presented in this study were
obtained from intact aorta samples, and all spectra were gen-
erated from the inner surface of intima. Atherosclerotic and
normal rabbit aorta samples show a significant difference in
chemical composition governed by the water, lipid, and pro-
tein content. However, initial reflectance IR studies on hy-
drated rabbit aorta samples revealed that the difference be-
tween plaque and normal aorta tissue is very subtle due to
averaging of the spectra within the measured area, as deter-
mined by the ATR element. Therefore, tissue classification by
direct evaluation of the spectroscopic differences is virtually
impossible for such IR-ATR catheter technology. Hence, in-
stead of evaluating a few individual spectroscopic features for
identification of rabbit aorta samples, multivariate data analy-
sis strategies were adopted and applied to the spectral range of
the data �900 to 4000 cm1�. Principle components analysis
�PCA� was combined with Raman spectroscopy in a study by
Deinum et al. to identify three classes of human coronary
artery.36 Discriminant analysis using Mahalanobis distance
was applied to PCA scores extracted from Raman spectra of
human artery tissue, enabling classification into three
categories.37 Cacheux et al. and Weinmann et al. coupled par-
tial least square �PLS� regression with Raman spectroscopy
for quantifying the cholesterol and cholesterol ester concen-
tration in human and rabbit aorta tissue,38,39 suitable for iden-

tifying lipid-rich plaques prone to disruption.
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In the present study, we have successfully applied PLS
discriminate analysis �PLS-DA� and linear discriminant
analysis, along with Mahalanobis distance calculations, to
data obtained by reflectance IR microscopy for the classifica-
tion of lesion and nonlesion rabbit aorta tissue, demonstrating
100% predictive accuracy of the developed multivariate clas-
sification models during blind testing. Training data were col-
lected from atherosclerotic and normal rabbit aorta samples.
The spectra collected using the presently developed ATR
FT-IR catheters63 in our research group inherently present an
average across a certain tissue area, defined by the contact
area of the ATR element with the lesion or the aorta wall
surface. However, the results in this study demonstrate that
IR-ATR spectroscopy combined with multivariate classifica-
tion techniques has the potential to identify normal and ath-
erosclerotic aorta, which provides a sound basis for the devel-
opment of in-vivo IR-ATR diagnostic devices.

2 Materials, Methods, and Multivariate Data
Analysis

2.1 Tissue Samples
Five New Zealand White male rabbits were used to obtain the
training sample set for building the classification models in
this study: four were approximately 13 weeks old; one was
approximately 6 months old. The six months old and one of
the 13-weeks-old rabbits were fed a normal diet of rabbit
chow. The remaining three rabbits were fed rabbit chow
supplemented with 1% �w/w� cholesterol �Harlan Teklad, In-
dianapolis, Indiana� daily for eight weeks to induce athero-
sclerotic lesions.64 One additional normal-fed and one addi-
tional cholesterol-fed rabbit �approximately 13 weeks old�
were used to obtain the first set of test samples �12 in total�
for validation of the established classification models. Two
more normal-diet and two more cholesterol-fed rabbits �ap-
proximately 13 weeks old� were used to obtain the second set
of test samples �56 in total� to further validate the classifica-
tion models. Their weight and blood cholesterol levels were
monitored every other week. For harvesting the aorta tissue,
the rabbit was anesthetized and given an overdose of sodium
pentobarbital. After euthanasia, the aorta tissue was excised
and stored in 0.9% sodium chloride �NaCl� solution. Normal
and atherosclerotic aortas �or aorta areas� were identified by
visual inspection. Aortas from the rabbits on a normal diet
appeared inconspicuous without evident lesions. One
cholesterol-diet rabbit revealed lesion streak scattering along
the inner wall of the aorta; two cholesterol-diet rabbits were
characterized by atherosclerotic aortas, where the aorta inner
wall was entirely covered by lesions. Tissue samples were cut
into segments with a diameter of 4 mm using a biopsy device
�Bio-punch, Health Link, Jacksonville, Florida� for spectro-
scopic measurement.

2.2 Reflectance Infrared Microscopy
Reflectance spectra �single beam�, which were collected with
an FT-IR spectrometer �Thermo Nicolet, Nexus 470, Thermo
Electron Corporation, Somerset, New Jersey� coupled to an
IR microscope �Spectra-Tech IR Plan, Vermont Optechs In-
corporated, Charlotte, Vermont� were used as training data to

build multivariate models for classifying lesion and nonlesion
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aorta tissue. The biopsy sample �diam 4 mm� was placed on a
glass slide, and the slide was positioned on the microscope
stage. Spectra were collected at 4 cm−1 resolution from
650 to 4000 cm−1, averaging 32 interferometer scans per
measurement from a 100�100-�m spot. All lesion aorta
samples were obtained from one of three cholesterol-diet rab-
bits; nonlesion aorta samples were prepared from the
13 months old normal-diet rabbit. A total of 14 biopsies from
each kind of sample �lesion and nonlesion� were taken, and
five IR reflectance spectra were recorded for each biopsy. The
five measurements of each biopsy are denominated a through
e in the remainder of this study. The first spectrum of each a
through e set was measured three minutes after removal of the
sample from the saline. The remaining spectra �b through e�
were measured at 2-min intervals thereafter. By standardizing
the data collection in this way, the effects of loss of water to
evaporation were presumed to be reproducible from sample to
sample for each spectrum a through e. Since the maximum
penetration depth for MIR radiation into tissue is approxi-
mately 10 �m �or less in the presence of water�, it can also be
presumed that the reflectance signals obtained were generated
entirely or at least predominantly from the intima.6

Two sets of test samples were independently investigated
following the same procedure described before. The obtained
data were then classified utilizing the multivariate classifica-
tion models developed in the first phase of this study.

2.3 Infrared Attenuated Total Reflectance
Spectroscopy

IR-ATR spectra were collected with a 45-deg single reflection
diamond ATR accessory �Golden Gate, Specac Limited, Or-
rington, United Kingdom� in the same FT-IR spectrometer. In
total, 29 dehydrated biopsy samples with a diameter of 4 mm
were investigated, comprising ten lesion samples from the
atherosclerotic aorta of the second cholesterol-diet rabbit, and
ten nonlesion samples from the aorta of the 6 months old
rabbit. The remaining nine samples were taken from nonle-
sion regions from the normal aorta regions of the third
cholesterol-diet rabbit. Prior to the measurement, each biopsy
sample was prepared by rinsing with deionized �DI� water,
drying with lens paper, and then exposure to air for approxi-
mately 10 min. The dehydrated tissue samples were centered

Fig. 1 �a� Red—average a spectrum of lesion samples; black—averag
samples; black—average e spectrum of nonlesion samples �Color onl
on the top of the circular diamond ATR element. To ensure
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sufficient contact between the tissue sample and the diamond,
a constant pressure was applied via a built-in adjustable
plunger. Spectra were collected at 4-cm−1 resolution from
400 to 4000 cm−1, averaging 16 spectra per measurement.

2.4 Multivariate Data Analysis
PLS�Toolbox�3.5 �Eigenvector Incorporated, Wenatchee,
Washington� was used to generate the classification models.
Principal components regression �PCR�, partial least squares
�PLS�, partial least squares linear discriminant analysis �PLS-
DA�, and Mahalanobis distance were applied on the first �a�
and last �e� spectra of each dataset obtained with IR reflec-
tance microscopy, and on hydrated and dehydrated tissue data
obtained with the IR-ATR method. The obtained spectra for
each particular set of experiments were always mean centered
prior to multivariate analysis. Cross-validation �leaving one
sample out� was performed to determine the optimal number
of principal components �PC� or latent variables �LV�.

3 Results and Discussion
3.1 Reflectance Infrared Microscopy

3.1.1 Average spectra of classification data
Average spectra of the first �a� and last �e� measurements of
the training set aorta samples are shown in Fig. 1. From these
plots, it is clearly evident that the spectral differences between
lesion and nonlesion tissue samples are very subtle. The ex-
perimental results obtained in this study convincingly demon-
strate that sophisticated multivariate data analysis and classi-
fication techniques are essential to robust and reliable sample
classification for diagnostic purposes.

3.1.2 Multivariate classification results using a data
In the following multivariate classification, lesion samples
were assigned class 1, and nonlesion samples class 2. IR re-
flectance spectra were preprocessed by meancentering prior to
further analysis.65

PLS-DA is a discrimination method developed from PLS
regression models.66 Based on the root mean square error for
cross validation �RMSECV� results for PLS-DA shown in
Fig. 2�a�, four latent variables �LVs� are selected as optimal
numbers to minimize error during classification and predic-

ectrum of nonlesion samples. �b� Red—average e spectrum of lesion
y�.
e a sp
tion. In general, four or six LVs were tested to build the sta-
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tistical models. The corresponding classification and predic-
tion results are shown in Figs. 2�b� and 2�c�. Ideally, lesion
samples have a value of 0.5, and nonlesion samples have a
value of −0.5. However, the predicted values frequently devi-
ate from the ideal hit values due to the variations of the
samples within the same class.

In all plots shown next, points 1 to 14 represent lesion
training samples �class 1�; 15 to 28 nonlesion training samples
�class 2�; and 29 to 40 samples from the first test set. The
establishment of the model using the training samples �1 to
28� by Wang preceded the measurement of the unknown
samples �by Chapman� by six months owing to tissue avail-
ability schedules. For the 12 samples from the first test set,
only the raw single beam IR spectra were provided for evalu-
ation without any indication of the number of lesion versus
nonlesion cases among the 12 samples. The identity of the test
samples was shared only after the classification had been
made.

Threshold values were calculated using the observed dis-
tribution of the predicted values and the Bayesian theorem for
discriminating the two different classes. As shown in Fig.
2�c�, blue bars are a histogram of the predicted values for
class 1 samples; green bars are a histogram of the predicted
values for class 2 samples. The threshold is the cross point of

Fig. 2 �a� RMSECV versus LV number using a data of training set
�blue�—lesion samples; class 2 �green�—nonlesion samples. The mini
�b� Classification and prediction results for PLS-DA model 6 LVs us
training samples; black dots—blind samples; red line—threshold �−0
samples. Threshold is −0.0507 �Color online only�.
two normally fitted histograms.
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The Bayesian statistics also provide the probability that a
sample is a member of a certain class given the predicted
value. The prediction probability results for both four LV and
six LV PLS-DA models based on all investigated samples are
shown in Table 1. Given a sample, its probability belonging to
class 1 is calculated using Eq. �1�.

probability�class 1� =
P�y,1�

�P�y,1� + P�y,2��
, �1�

where y is the predicted value from the PLS-DA model for the
sample in question, P�y ,1� is the probability of this sample
being a member of class 1 given the value of y, and P�y ,2� is
the probability of this sample being a member of class 2 given
the value of y. Consequently, a sample with a predicted value
at the threshold has a 50% probability belonging to either
class.

In the model using four LVs, sample 10 cannot be unam-
biguously classified, but its probability of belonging to class 1
is �50% �see Table 1�. Using this model, only test sample 30
was incorrectly classified. If six LVs were applied to establish
the model, all samples could be correctly classified or
predicted.

Linear discrimination analysis �LDA� used before is a

es. RMSECV—root mean square error for cross-validation. Class 1
eoretically indicates the optimum number of LVs to build the model.
ata. Red triangles—lesion training samples; green stars—nonlesion

. �c� Histograms for PLS-DA 6 LVs model using a data of training set
sampl
mum th
ing a d
.0507�
method to maximize the among-class difference relative to the

March/April 2007 � Vol. 12�2�4



31 1 0.9999 0.0001 1 0

Wang et al.: Classification of atherosclerotic rabbit aorta samples…

Journal of Biomedical Optics 024006-
within-class difference. The Mahalanobis distance67,68 is a
specific linear discriminant analysis method particularly suit-
able for classification, which was performed here by first
compressing the spectral data to six latent variables and cor-
responding scores of a 6-D vector using PLS. Following this,
the mean score vector Smn and the mean-centered scores Smc
for each class �lesion or nonlesion� were calculated, and the
covariance matrix �6�6� M of Smc for each class was com-
puted. For the prediction of a blind sample, its score would be
calculated from the measured spectrum and latent variables,
and mean centered by Smn of one class. The distance D j

2 of the
mean-centered unknown score t j from Smn of this class was
computed and normalized by M following Eq. �2�.

Dj
2 = �tj�M−1�tj��, �2�

where M =Smn� Smn /m−1, with m indicating the number of
training samples in one class.

The distance of an unknown sample to the classes deter-
mines which class the unknown belongs to. The class that has
less distance to the unknown will incorporate the unknown
sample. From Fig. 3 it is evident that the Mahalanobis dis-
tance method has provided 100% successful classification and
prediction of all samples in the first test set, similar to
PLS-DA.

3.1.3 Multivariate classification results using e data
Based on the RMSECV results �not shown�, six LVs have
been determined as the optimal number for the PLS-DA clas-
sification model. The corresponding classification results are
shown in Fig. 4�a�. All training samples could be clearly clas-
sified with this method, and only test sample 40 could not be
classified with sufficient certainty. Most probably, it would be
incorrectly classified as a nonlesion sample.

The corresponding histograms and the prediction probabil-
ity results for the PLS-DA model using six LVs and e data are

Table 1 �Continued.�

Sample
Revealed

class

Prediction probability

Four LVs Six LVs

Class 1 Class 2 Class 1 Class 2

32 2 0.0001 0.9999 0 1

33 1 1 0 1 0

34 1 1 0 1 0

35 1 0.9767 0.0233 1 0

36 2 0.0044 0.9956 0 1

37 1 0.7582 0.2418 0.9999 0.0001

38 2 0.0006 0.9994 0 1

39 1 0.9957 0.0043 1 0

40 1 0.9992 0.0008 1 0
Table 1 Prediction probability results for PLS-DA models using a
data. 1 to 28: training sample set; 1 to 14: lesion sample set; 15 to 28:
nonlesion sample set; and 29 to 40: first set of test samples.

Sample
Revealed

class

Prediction probability

Four LVs Six LVs

Class 1 Class 2 Class 1 Class 2

1 1 0.9848 0.0152 1 0

2 1 0.9921 0.0079 1 0

3 1 0.9274 0.0726 1 0

4 1 0.9995 0.0005 1 0

5 1 0.9489 0.0511 1 0

6 1 0.8146 0.1854 1 0

7 1 0.9959 0.0041 1 0

8 1 1 0 1 0

9 1 0.9989 0.0011 1 0

10 1 0.5937 0.4063 1 0

11 1 0.9682 0.0318 1 0

12 1 0.9267 0.0733 1 0

13 1 0.9967 0.0033 1 0

14 1 0.9778 0.0222 1 0

15 2 0.2024 0.7976 0 1

16 2 0.0017 0.9983 0 1

17 2 0.0001 0.9999 0 1

18 2 0.0413 0.9587 0 1

19 2 0.1192 0.8808 0.0001 0.9999

20 2 0.0146 0.9854 0 1

21 2 0.0001 0.9999 0.005 0.995

22 2 0.0185 0.9815 0 1

23 2 0.3082 0.6918 0 1

24 2 0.0011 0.9989 0 1

25 2 0.0218 0.9782 0.0001 0.9999

26 2 0.0069 0.9931 0 1

27 2 0.324 0.676 0.0002 0.9998

28 2 0.0241 0.9759 0 1

29 2 0.0991 0.9009 0.0002 0.9998

30 2 1 0 0.0126 0.9874
shown in Fig. 4�b� and Table 2.
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The Mahalanobis distance method was also applied to
classify e data. The classification results are shown in Fig. 5.
Again, test sample 40 could not be correctly classified.
Sample 30 could be classified more clearly using the Mahal-
anobis distance in contrast to using PLS-DA.

Using the PLS-DA models developed before, classification
of the second set of test samples was attempted, however,
with reduced hit quality using both a and e data. Yet 74% of
the samples were classified correctly using a data, and 60% of
the samples were classified correctly using e data. The sensi-
tivity and specificity of the PLS-DA model for the test
samples were calculated using the method introduced by Bal-
chum et al.,69 and are summarized in Table 3. The lower clas-
sification rate is attributed to the limited diversity of the train-
ing sample set for developing the predictive models.
Consequently, it is essential for introducing significantly more
spectra for covering the variation among animals by using
spectral imaging techniques, enabling the collection of large
sets of model data in a reasonable period of time.

The possible reason that using a data provides �marginally�
more accurate predictive results in contrast to using e data
may result from the fact that the sample had significantly

Fig. 3 �a� Classification results of 28 training samples using the Mah
nonlesion training samples; red triangles—lesion training samples; diag
the Mahalanobis distance method and a data of blind samples. Diago

Fig. 4 �a� Classification and prediction results for PLS-DA 6 LVs m
stars—nonlesion training samples �class 2�; black dots—blind sample

using e data. Threshold is −0.1042 �Color online only�.
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changed during ambient exposure and the experimental pro-
cedure. It has to be considered that the e dataset has been
recorded as the fifth consecutive measurement starting after
11 min of an entire measurement series. Hence, due to water
evaporation the sample was significantly drier compared to
the beginning of the measurement series. In turn, this indi-
cates that classification during hydrated conditions, which
more closely resemble the in-situ environment, is more
accurate.

Alternatively, the application of principal components re-
gression �PCR� techniques was investigated for the a and e
data series of the first test set to discriminate between lesion
and nonlesion classes. 1 was the preset value for all lesion
samples, and 0 was for all nonlesion samples.70 All spectra
were again mean centered prior to PCR. The predicted lesion
value ideally centers at 0.5, and the nonlesion at −0.5. How-
ever, PCR-based classification failed in accurately classifying
a data. Figure 6 shows the PCR results using e data. A total of
nine PCs were selected for the model, and all training samples
could be accurately classified. Test sample 40 was incorrectly
classified as nonlesion, similar to PLS-DA and the Mahalano-
bis distance method. In addition, test sample 35 could not be

is distance method and a data of training set samples. Green stars—
ne—discriminant line. �b� Prediction results of 12 blind samples using
e—discriminant line �Color online only�.

sing e data. red triangles—lesion training samples �class 1�; green
line—threshold �−0.1042�. �b� Histogram for PLS—DA 6 LVs model
alanob
onal li
nal lin
odel u
s; red
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clearly predicted with the horizontal zero line as the discrimi-
nator, as the prediction value was only slightly above zero.

In contrast to PCR, the PLS-DA method not only considers
the changes in the spectra, but instantaneously also considers
the changes in concentration of the various constituents �or
class difference in our case�. Due to uncertainties introduced
by the sample preparation process and ambient effects during
the measurements, the among-group difference is not always
larger than the within-group difference. Hence, PCR appeared
to be the least able to provide satisfactory classification
results.

The sensitivity and specificity of the investigated multi-
variate methods for test samples of the first test set without
any a priori knowledge are summarized and compared in
Table 3.

3.2 Infrared Attenuated Total Reflectance
Spectroscopy

The average spectra for lesion samples and for nonlesion
samples using single reflection ATR spectroscopy are shown
in Fig. 7. Spectral differences are most evident in the region
2700 to 3000 cm−1. However, spectra collected from indi-
vidual dehydrated nonlesion samples also show relatively
strong absorptions in the spectral region of
2700 to 3000 cm−1 and at approximately 1650 cm−1. These
characteristics appear smoothed out in the average spectra,
and the classification of these samples might render difficult if
these spectral features are used as only identifiers. Therefore,
chemometric analysis is essential for obtaining reliable tissue
classification models.

PLS-DA was applied on IR-ATR data after preprocessing
of the spectra by mean centering. Lesion samples were as-
signed class 1, and nonlesion samples class 2. Five LVs were
selected for building of PLS-DA classification model. The
corresponding classification results are shown in Fig. 8�a�.
The prediction probability calculated using the Bayesian theo-

Table 2 �Continued.�

Sample

Prediction probability

Revealed Six LVs

class Class 1 Class 2

32 2 0 1

33 1 1 0

34 1 1 0

35 1 0.9999 0.0001

36 2 0 1

37 1 1 0

38 2 0 1

39 1 1 0

40 1 0.3682 0.6318
Table 2 Prediction probability results for PLS-DA models using e
data. 1 to 28: training sample set; 1 to 14: lesion sample set; 15 to 28:
nonlesion sample set; and 29 to 40: first set of test samples.

Sample

Prediction probability

Revealed Six LVs

class Class 1 Class 2

1 1 1 0

2 1 1 0

3 1 1 0

4 1 1 0

5 1 1 0

6 1 1 0

7 1 1 0

8 1 1 0

9 1 1 0

10 1 1 0

11 1 1 0

12 1 1 0

13 1 1 0

14 1 1 0

15 2 0 1

16 2 0 1

17 2 0 1

18 2 0 1

19 2 0 1

20 2 0 1

21 2 0 1

22 2 0 1

23 2 0 1

24 2 0 1

25 2 0 1

26 2 0 1

27 2 0 1

28 2 0 1

29 2 0 1

30 2 0.1634 0.8366
rem is 1 for all tissue samples. Alternatively, the Mahalanobis
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distance was applied on dehydrated tissue data collected using
IR-ATR. The classification results based on the five latent
variables derived from the PLS-DA are shown in Fig. 8�b�.

Alternatively to building a model using all samples in the
dataset as training samples, the data were separated into a
training set and a validation set. The validation set was used
to test the robustness of model established with the training
set. This operation was performed five times, each time with a
different set of five or six samples selected as validation data
�two lesion, and three or four nonlesion samples�. The remain-
ing 23 or 24 samples were used as training data. Eventually,
each sample was selected into the validation dataset once, and
tested once. Five LVs were applied for all five calibration
models, similar to the model using all data. All five models
turned out sufficiently robust and predicted the corresponding
validation samples with 100% hit quality. Alternatively, PCR
was tested also on the IR-ATR samples; however, it failed to
accurately classify the samples, as previously discussed.

4 Conclusion
PLS-DA �or PLS� and Mahalanobis distance linear discrimi-
nant analysis methods are applied to mid-infrared mi-
crospecular reflectance data and mid-infrared ATR data of le-
sion and nonlesion biopsy samples of rabbit aorta. Both

Fig. 5 �a� Classification results of 28 training samples using the Mahala
red triangles—lesion training samples; diagonal line—discriminant li
model for e data �Color online only�.

Table 3 Sensitivity and specificity of the investig
test samples.

Sensitivity,

PLS-DA�6LV�
and M distance

a e

Training samples 100 100

First set of testing
samples

100 85.7

Second set of testing
samples

60.7 12.4
Journal of Biomedical Optics 024006-
methods achieve 100% hit quality with outstanding sensitivity
and specificity during tests on small sets of samples. More
diverse test sets reveal that larger training datasets, such as
those provided by IR imaging techniques, are required for
accurate classification, although up to 89% correct classifica-
tion results are obtained. Consequently, the overall results re-
veal a promising prospect for successful classification of le-
sion versus nonlesion tissue samples. The fundamentals of the
approach presented in this study are currently being expanded
and tested with an IR-ATR catheter system for future in-vivo
diagnostics during plaque ablation.63
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