
F
f
i

P
U
D
B
G
L

D
U
I
1
L

G
S
U
T
F
1
L

B
U
I
1
L

A
H
A
H
J

D
C
U
D
B
G
L

1

N
i
h
t
d
i

A
p
B
0

Journal of Biomedical Optics 12�6�, 064010 �November/December 2007�

J

unctional optical signal analysis: a software tool
or near-infrared spectroscopy data processing
ncorporating statistical parametric mapping

eck H. Koh
niversity College London
epartment of Medical Physics and Bioengineering
iomedical Optics Research Laboratory
ower Street

ondon WC1E 6BT United Kingdom

aniel E. Glaser
niversity College London

nstitute of Cognitive Neuroscience
7 Queen Square
ondon, WC1N 3AR United Kingdom

uillaume Flandin
tefan Kiebel
niversity College London
he Wellcome Department of Imaging Neuroscience
unctional Imaging Laboratory
2 Queen Square
ondon, WC1N 3BG United Kingdom

rian Butterworth
niversity College London

nstitute of Cognitive Neuroscience
7 Queen Square
ondon, WC1N 3AR United Kingdom

tsushi Maki
itachi Ltd.
dvanced Research Laboratory
atoyama, Saitama 350-0395

apan

avid T. Delpy
lare E. Elwell
niversity College London
epartment of Medical Physics and Bioengineering
iomedical Optics Research Laboratory
ower Street

Abstract. Optical topography �OT� relies on the near infrared spec-
troscopy �NIRS� technique to provide noninvasively a spatial map of
functional brain activity. OT has advantages over conventional fMRI
in terms of its simple approach to measuring the hemodynamic re-
sponse, its ability to distinguish between changes in oxy- and deoxy-
hemoglobin and the range of human participants that can be readily
investigated. We offer a new software tool, functional optical signal
analysis �fOSA�, for analyzing the spatially resolved optical signals
that provides statistical inference capabilities about the distribution of
brain activity in space and time and by experimental condition. It
does this by mapping the signal into a standard functional neuroim-
aging analysis software, statistical parametric mapping �SPM�, and
forms, in effect, a new SPM toolbox specifically designed for NIRS in
an OT configuration. The validity of the program has been tested
using synthetic data, and its applicability is demonstrated with experi-
mental data. © 2007 Society of Photo-Optical Instrumentation Engineers.
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Introduction

ear infrared spectroscopy �NIRS� has been used extensively
n recent years as a noninvasive tool for investigating cerebral
emodynamics and oxygenation.1–4 The technique exploits
he different absorption spectra of oxy-hemoglobin �HbO2�,
eoxy-hemoglobin �HHb�, and cytochrome oxidase �CytOx�
n the near infrared region to measure the chromophore con-

ddress all correspondence to Peck Hui Koh, University College London, De-
artment of Medical Physics and Bioengineering, Malet Place Engineering
uilding, Gower Street, London WC1E 6BT, United Kingdom; Tel: 0207 679
275; Fax: 0207 679 0255; E-mail: pkoha.medphys.ucl.ac.uk
ournal of Biomedical Optics 064010-
centration levels in the cerebral tissue. By making simulta-
neous NIRS measurements at multiple brain sites, optical to-
pography �OT� provides a spatial map of the hemoglobin
concentration changes ��Hb� from specific regions of the ce-
rebral cortex. Over the last decade or so, many studies have
been published describing the use of the OT technique to map
functional brain activation.5,6 In comparison with fMRI, since
the optodes are attached on the head, OT offers the possibility
of studying neuronal response in a wider range of experimen-
tal situations and also a wider range of subjects, especially

1083-3668/2007/12�6�/064010/13/$25.00 © 2007 SPIE
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hose for whom other monitoring options are limited, e.g.,
nfants and elderly adults.7,8 In addition, the instrumentation
oes not interfere with other imaging modalities and hence
llows its superior temporal resolution to be recorded simul-
aneously by and simply alongside these other techniques.9,10

However, interpretation of the �Hb physiological signals
emains a complex task due to the intrinsic physiological
oise and systemic interference signals coupled into the func-
ional response. Inference about these observed responses re-
uires a rigorous statistical approach to analysis of the spa-
ially extended data. While there are various ways of
nalyzing the optical signals that are largely dependent upon
he degree of noise in the data and the form in which the
iffuse light is measured �i.e., the mode of OT measurement�,
here are limited methods available that can simultaneously
est for the temporal and spatial distribution of the hemody-
amic response that can be attributed to functional activation
f the brain. The classical approach to the analysis of func-
ional OT data is to employ a Student’s t-test to compare two
ifferent states of the brain activity �e.g., “rest” versus “task”�.
he rest period is usually defined as a fixed time period before

he stimulus onset. Due to the unique hemodynamic behavior
i.e., different areas under the hemodynamic response curve�
f individuals, it can be difficult to derive a common task
eriod for statistical group testing. In such cases, it has to be
ssumed that the maximum activation period has been ac-
ounted for using the conventional block t-test approach, and
ny remaining temporal information in the hemodynamic re-
ponse is ignored. While a simplistic approach of this kind
elps to provide a quick assessment of the hemodynamic re-
ponse to the task, it often produces an underestimate of sig-
ificance due to the lack of consideration of the spatial coher-
nce of functional OT data. Clearly analysis methods that
epend upon the comparison of rest versus task are highly
usceptible to how these time periods are defined.

In trying to decorrelate the physiological noise �cardiac,
espiratory, and vasomotion-related fluctuations� from the
voked hemodynamic response, various groups have looked
t the possibility of using the technique of blind source sepa-
ation in the form of principal component analysis11 and in-
ependent component analysis12,13 methods to the time-series
nalysis of functional data. However, these methods require
arious assumptions of orthogonality in order to separate out
he signal of interest from the physiological noise, or they
equire prior constraints to be applied in order to derive the
ime course of the hemodynamic response.14 While such ap-
roaches offer the possibility of reducing the effects of physi-
logical noise to a certain degree, they require an estimation
f the eigenstructure based on the prior information about the
egree of noise or visual inspection with the step-by-step re-
oval of eigenvectors to avoid the possibility of reducing the
agnitude of the task-related response. In addition, these
ethods require a clear distinction between the evoked re-

ponse and interference. Barbour et al. looked at the possibil-
ty of separating out the signal of interest in space with prior
nformation about its distinctive frequency response in time.15

revious spectroscopic studies have successfully exploited the
dvantages of using the general linear model �GLM� to ana-
yze the hemodynamic response in rats.16,17 More recently,
LM analysis has been applied to OT data of functional ac-

ivation; however, a simple box-car model was used as the
ournal of Biomedical Optics 064010-
temporal basis function for changes in HbO2 and HHb, and
no attempt was made to look at the spatial coherence of the
OT data.18

As the changes in cerebral hemodynamics during func-
tional activation become well-characterized,19,20 it is possible
to fit the �Hb signal to a hemodynamic response function
�HRF� and compute the statistics based on the variance be-
tween the fitted models. There are clearly a number of advan-
tages of applying a GLM approach to the analysis of OT data
over a direct comparison between chromophore changes dur-
ing activation. The comparison of the �Hb time course with
the modeled HRF negates the need for user defined rest and
task periods. The fitted model does not depend on the absolute
magnitude of Hb changes, which for OT data may be suscep-
tible to varying optical path length arising from partial vol-
ume effects21 of light attenuation in multilayered structures
such as the adult head. Conventional statistical t-test methods
treat each optical channel as a spatially independent measure-
ment. Given that brain activity is spatially correlated, this re-
duces the sensitivity of the tests, as it increases the probability
of false positives. It is important to quantify these spatial cor-
relations by estimating the smoothness of the statistical pro-
cess because global systemic changes affect the statistical re-
sults. In this paper, we describe an approach that has been
used in the analysis of fMRI, PET/SPECT, and EEG/MEG
data and show how it can be applied to the analysis of the
functional OT data. The methodology of statistical parametric
mapping �SPM�22 has been referred to as the construction and
assessment of spatially extended statistical processes used to
test hypotheses about functional neuroimaging data. Since the
SPM approach offers the flexibility to model the varying
changes of hemodynamics, it is well-suited to the analysis of
OT data.

While it is common practice for biomedical optics research
groups and companies to develop software for specific
systems,23,24 there are a limited number of packages that allow
analysis of the spatially resolved data collected from a range
of different instruments with varying measurement configura-
tion. The development of such software should be based upon
building programs using robust and validated components that
encapsulate the basic algorithms and provide an interface that
the user feels comfortable with. Ideally, software of this kind
should be released as open source, thus allowing it to be
modified to suit individuals’ needs. Since there are now a
number of different OT systems available, both commercially
and in research laboratories, it was felt necessary to develop a
software package that provides a more widely applicable and
flexible approach to the analysis of multichannel NIRS data as
well as incorporating a robust statistical approach that takes
into consideration both the temporal and spatial correlations
of the OT data.

This paper describes the development of an analytical soft-
ware, functional optical signal analysis �fOSA�, which as well
as providing a range of processing tools incorporates the SPM
method for the analysis of OT data. It is designed to serve as
a platform for the user to perform real-time analysis of OT
data from different optical imaging systems using algorithms
that incorporate both standard MATLAB libraries �The Math
Works, Inc.� as well as those developed by the user. It is an
open-source program and together with its documentation is
available online.25 The software offers a range of processing
November/December 2007 � Vol. 12�6�2
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rocedures and statistical analysis methods. Specific features
f this software include the following:

• It enables direct application of the SPM package for the
nalysis of spatially correlated data to functional activation
ata from optical systems.

• It analyzes data from a number of different types of
ptical imaging systems with varying source detector
eometries.

• It displays and exports the preliminary results at any
tage, thereby enabling its use as a “first-pass” assessment
uring the performance of an experimental study, allowing the
ser to determine the suitability of the chosen protocols.

• It provides a flexible processing sequence and allows
dditional plug-in options for user-defined processing
rocedures.

In this paper, we first describe the flexible structure of the
rogram and the various processing procedures available in
OSA. We then compare the two statistical analysis methods
hat are currently incorporated in fOSA. While the SPM pack-
ge is made up of several different compartments, this paper
ocuses on the methodology and considerations of applying
PM to optical data as well as providing a description of the
rocesses necessary to analyze the OT data sequences. In
unctional studies, it is necessary to be able to compare with
tatistical reliability the signal change across brain regions
nd across time periods and among experimental conditions.
e describe the application of the software using a synthetic

ata set and published data from a finger-tapping motor task.26

Methods
ach of the fOSA features will be described in the following
ections. In summary, deriving functional activation-related
emodynamic changes from optical data involves a number of
rocedures that generally include the conversion of optical
ttenuation changes into chromophore concentration changes,
ltering and detrending any observable noise to a known fre-
uency spectrum, and comparing the significant differences
etween different activation states using some standard statis-
ical tests.26–28 Since these operations are likely to be linear,
OSA offers a choice of flexibility when it performs these
rocedures. While it allows other programs to be implemented
nder the fOSA environment, the processed results can also
e exported to a format accessible by most software to allow
he data to be analyzed separately. The fOSA software was
nitially developed for the analysis of optical data from the
ontinuous-wave �cw� Hitachi systems �ETG-100 and ETG-
000�, and hence the presentation of the results in this paper is
pecific to the Hitachi OT configuration. The software has
owever also been used for the analysis of optical data from
ther cw OT systems, as discussed in Sec. 3.3.

.1 Optical Signal Conversion
he first preprocessing stage involves the conversion of the
easured light attenuation into relevant hemoglobin concen-

ration levels. While it is possible to perform the conversion at
later stage,23,26,27 fOSA requires the conversion of the abso-

ute light intensities from the cw measurement at any two
istinctive wavelengths to �HbO2 and �HHb concentrations
efore proceeding on to other signal processing. This enables
he user to inspect the hemoglobin data as a “first-pass” check
ournal of Biomedical Optics 064010-
on signal size, optode positioning and contact stability, etc.
The conversion algorithm used in fOSA follows the modified
Beer-Lambert law,29 which considers the light scattering be-
tween each light source-detector pair to be homogenous both
spatially and temporally throughout the study period. While
the detailed algorithms for the conversion can be found
elsewhere,21,27 in summary the derivation of �HbO2 and
�HHb concentrations �in micromolar of hemoglobin per liter
of tissue� for each time sample can be simplified in matrix
form if a minimum of two-wavelength measurement is made:

��HbO2

�HHb
� = ����1.oxy� ���1.deoxy�

���2.oxy� ���2.deoxy�
�−1��A��1�

�A��2�
� . d . DPF,

where � is the extinction absorption coefficient. The total he-
moglobin concentration, �HbT is the summation of the two
chromophore concentrations. The additional distance the light
travels as a result of the highly diffuse nature of the biological
tissues results in the actual optical path length being longer
than the geometric optode distance �d�.29 It has previously
been shown, both from the modeling of light transport in the
adult head using diffusion theory and from experimental mea-
surement, that to a first approximation, the actual path length
can be regarded as a multiple of the geometry optode spacing
and differential path-length factor �DPF�, which is
wavelength30 and age dependent.31 The software allows the
use of an optical path-length multiplier to be optional, and its
value is defined by the user. In Sec. 3.3, we describe the use
of fOSA to process a set of data from an in-house optical
imaging system with a complex optode configuration having
distributed source detector spacings.

2.2 fOSA Data Processing Procedures
In principle, the three possible forms of noise that can cause
interference on the optical signals include the instrumentation
noise, experimental noise, and physiological noise. The char-
acteristics of the system noise are often well-behaved and can
be removed easily, and the experimental noise can often be
minimized with a properly designed task paradigm. However,
very often the physiological noise �e.g., spontaneous vasomo-
tion� overlaps very closely in frequency with the expected
activation-related brain response.32,33 The major emphasis of
the filtering and curve fitting procedures in the data process-
ing is to reduce non-task-related effects and to correct for any
observable noise from the physiological measurements. Since
the software is designed to include basic data correction tech-
niques that then allow a real-time assessment of the activation
signals, fOSA incorporates three different types of digital fil-
ters with distinctive roll-off and passband characteristics.
While the elliptic filter gives a steep roll-off, the Chebyshev
filter produces a gradual roll-off with fewer ripples in the
passband, and the Butterworth filter produces a “maximally
flat” passband with optimum roll-off. fOSA enables the re-
moval of noise from the known frequency spectrum using
either the low-, high-, and/or band-pass digital filters, resam-
pling the data points and/or smoothing of the data by means
of moving average. To view the range of frequencies in the
physiological signal, its power spectral density can be plotted
in the frequency domain using a Fast Fourier Transform
�FFT�. The FFT function in fOSA is defined using Welch’s
November/December 2007 � Vol. 12�6�3
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veraged periodogram method by dividing the whole time
ourse into five Hanning windows �i.e., the window duration
s set as one-fifth of the signal duration�. With no overlap and
o zero padding needed, the sampling frequency �of the in-
trument� is set by the user.

Inappropriate detrending can introduce artificial peaks in
he lower power spectrum that could be misinterpreted as
hysiological oscillations.34 The fitting procedure imple-
ented in fOSA uses a predefined rest period to obtain a

urve that best fits its time course and then subtracts it from
he remainder of the data points, where the level of the re-
idual depends on the selective fitting order. Another effective
ay to cancel out the low-frequency noise is to perform a
lock averaging over the specific trials. The direct effect of
his is to remove any uncorrelated high-frequency noise.
lock averaging has very little effect on the removal of slow
ariations and the overall mean. These effects are usually con-
idered when the data is detrended from the baseline.

fOSA offers the possibility to view the processed signals
fter each procedure. Since all the operations are linear, the
equence of the processing does not affect the overall results.
epending on the optode configuration, the results can be
isplayed in the form of topographic images �with linear in-
erpolation between the measurement channels� or spatially
onfigured hemoglobin time courses �HbO2, HHb, or both�. It
s also possible to focus on a specific measurement channel
or more detailed analysis. An option to visualize the topo-
raphic Hb maps either at a particular time slice or in the
layback mode is available where the whole time series of
opographic images is displayed in a movie format. There are

variety of display options to interpret the statistical results
p-values and t-values�, which can be viewed in the form of a
opographic map or in a numerical table. To allow the user to
arry out further analysis using other software, fOSA provides
n option that allows the results to be exported as spread-
heets. Alternatively, fOSA offers the flexibility to process a
atch of optical signals with the same experimental protocols,
y applying the same processes to the group data.

A classical statistical test approach used to compare the
ifference in signal means between periods of rest and acti-
ation is to use a t-statistic that derives its probability of like-
ihood based on the standard deviation of the mean differ-
nces. Two different t-statistical approaches have been
ncorporated into fOSA: a Student’s t-test method typically
sed in the analysis of functional OT data26,28 and the imple-
entation of the SPM-OT method that uses the SPM ap-

roach to make inferences about the spatial coherence of the
unctional OT data. The former approach provides a quick
ssessment of the significantly active brain area, as each mea-
urement channel is treated independently from its neighbor
nd the epoch design means that the task and rest periods are
pecified. Given the sluggish temporal nature of the hemody-
amic response,35 fOSA considers the temporal variation of
he response function and provides the user with the option to
pecify the task and rest periods for statistical comparison.

hile more complex analysis involving multiple levels of
omparisons that are required in some studies can be con-
ucted outside the fOSA environment, the current software
rovides a single-factorial comparison by allowing the choice
f one of the following options:

• one-sample t-test in which the mean differences between
ournal of Biomedical Optics 064010-
the task and rest periods are statistically tested;
• two-sample t-test in which the averaged task period is

compared against the averaged rest period; and
• paired t-test in which each trial is considered separately

and a comparison is made between different trials per
condition.

The open-source software means that it is also possible to
modify the existing scripts and customize a user-specified sta-
tistical test.

2.3 Statistical Parametric Mapping of OT Data
During functional activation, the neurovascular responses ob-
served from the multiple brain regions are often spatially and
temporally correlated in some way.20 In the conventional sta-
tistical test approaches used in most optical imaging studies,
each measurement point is treated as independent of its near-
est neighbors, assuming that the regional activated areas are
localized and independent of systemic influences. These tests
also require prior knowledge about the hemodynamic re-
sponse in order to specify the most relevant periods during
which to compare the changes in the HbO2 and HHb and
cannot easily account for the intersubject variability in the
time course of the hemodynamic response. While it is pos-
sible to determine the time course of the hemodynamic re-
sponse, modeling of spatial corrections is also required given
that OT measurement channels are not spatially independent.
SPM offers the flexibility to analyze sequential functional
neuroimaging data by modeling the hemodynamic response
and correcting for the spatial smoothness of the functional
data.36 The methodology uses the mass univariate approach
where a statistic value is calculated for every voxel and the
resulting statistics are then assembled into a map, i.e., an
SPM. A detailed description of SPM theory and its algorithms
is given elsewhere.37 This paper focuses on the specific SPM
procedures necessary for the analysis of OT data. The statis-
tical approach adapted by SPM involves two basic steps.
First, statistics reflecting evidence against a null hypothesis of
no effect at each voxel are computed, where the effect is
specified by a so-called contrast vector.38 An image resulting
from these statistics is produced. This image can be three-
dimensional �3-D—fMRI, PET�, or two-dimensional �2-D—
M/EEG, OT�. Second, this image is assessed, using p-values,
by performing voxel-wise tests, to determine whether there is
activation. While there are various approaches to control the
family-wise error rate39 of this mass-testing of many voxels,
the random field theory �RFT� has been shown to be appro-
priate for the analysis of functional neuroimaging data.40 The
Gaussian random field treats the statistical images as sampled
versions of continuous, spatially resolved data. P-values, ad-
justed for multiple comparisons, are computed by estimating
the probability that some peak in an image surpasses some
user-specified threshold, given the null hypothesis of no acti-
vation. For typical, smooth images, it has been observed that
the RFT provides much more sensitive tests than the Bonfer-
roni correction. This is because the RFT is explicitly informed
about image smoothness �i.e., spatial correlations�, while the
Bonferroni correction is not. It might be asked whether the
RFT is applicable to OT data. To the best of our knowledge,
OT data fulfill all the assumptions needed for the RFT. The
results of the RFT are asymptotically valid �for higher and
November/December 2007 � Vol. 12�6�4
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igher thresholds� for any type of correlation structure, as
ong as the local correlation is strong. �We arrive at this con-
lusion through personal communication with Tom Nichols
nd Stefan Kiebel; see also below.� This holds for OT data.
imilar discussions about its applicability exist in the M/EEG
eld, where we observe that no definitive review has yet been
ritten on the applicability of RFT to M/EEG data. �M/EEG

s similar to OT data in that it is a spatial mixture of the
xpressions of underlying brain sources.�

.4 SPM Modeling and Inference
n the following, we will go through some basic techniques
hat SPM uses to model spatiotemporal data, by which we

ean that both temporal and spatial correlations are modeled.
he main point is that the assumptions that the SPM proce-
ures involved hold not only for fMRI, PET, and MEG/EEG
ut also for OT data.

SPM involves the construction of a statistical model and
aking inferences about these parameter estimates based on

he spatiotemporal neuroimaging data and the predicted
odel. In order to capture the sluggish nature of the neurovas-

ular response, SPM treats each scan as a dependent observa-
ion of the others and models the time-continuous data for
ach voxel. Here, each of the brain activation voxels is ex-
ressed as a combination of different basis functions that best
epresent the functional response using the general linear
odel �GLM�. In simpler terms, the GLM expresses the ob-

erved response Y as a combination of the explanatory vari-
bles X plus a well-behaved error term � �i.e., Y =X�+��.22

ranslating the model into matrix form, each row in Y is
reated as a scan of time-series data. The design matrix X is
here the experimental knowledge about the expected signal

s quantified. The matrix contains the regressors �e.g., de-
igned effects or confounds�, where each row represents each
bservation and each column corresponds to some experimen-
al effects, including effects that are of no interest and pertain
o confounding effects �e.g., physiological effects� to our
nalysis that are modeled explicitly. The associated parameter
in each column of X indicates the effect of interest �e.g., the

ffect of a particular cognitive condition or the regression
oefficient of the hemodynamic response�. The convolution
odel for the hemodynamic response takes a stimulus func-

ion encoding the supposed neuronal responses convolved
ith a defined canonical hemodynamic response function

HRF� to form a regressor that enters into a design matrix.20

PM also allows the modeling of latency and dispersion de-
ivatives as additional regressors to its canonical HRF in order
o treat the variability of hemodynamic responses due to dif-
erent sorts of events. Other forms of explanatory data �e.g.,
lood pressure and/or heart rate measurements� can be defined
s additional regressors in the design matrix. Unmodeled ef-
ects are then treated as residual errors. Often, the number of
arameters �column� is less than the number of observations
row�; hence, some method of estimating parameters to find
he best fit for the observed response is needed. In SPM, the
arameter estimation is achieved using a mixture of restricted
aximum likelihood �ReML� and ordinary least squares

OLS� methods. In estimating the error covariance matrix,
PM assumes that the pattern of serial correlations is the same
ver all voxels �of interest� but that its amplitude is different
ournal of Biomedical Optics 064010-
at each voxel. To incorporate nonspherical error distributions,
SPM uses the ReML procedure to estimate the model coeffi-
cients and error variance iteratively.41 In essence, the ReML
method deals with linear combinations of the observed values
whose expectations are zero. The relationship between experi-
mental manipulations and observed data may consist of mul-
tiple effects, all of which are contained within the design ma-
trix. To test for a specific effect, a contrast is defined to focus
on a particular characteristic of the data. SPM allows the
specification of different contrast vectors to the same design
matrix to test for multiple effects without having the need to
refit the model �i.e., univariate linear combinations of the pa-
rameter estimates�.

Regional changes in error variance and spatial correlation
in the data can induce profound nonsphericity in the error
terms �as opposed to the assumption of identically and inde-
pendently distributed error terms�. This nonsphericity would
require large numbers of parameters to be estimated for each
voxel using conventional multivariate techniques. However,
using SPM, the parameterization is minimized to just two
parameters for each voxel—error variance and smoothness
estimators. This is made possible because SPM uses the RFT
to resolve the multiple comparison problem, which then im-
plicitly imposes constraints on the nonsphericity implied by
the spatially extended data. SPM improves the sensitivity of
the statistical test by considering the fact that neighboring
voxels are not independent by virtue of spatial correlations in
the original data and employs the RFT approach to adjust the
p-significance. RFT correction often expresses its search vol-
ume as a function of smoothness �or resolution elements that
define the block of correlated pixels�. It relies on the expected
Euler characteristic �EC� that leads directly to the expected
number of clusters above the threshold, and we want to derive
this statistic height threshold once the smoothness has been
estimated. A relatively straightforward equation on the ex-
pected EC to derive this threshold is given by Worsley that
depends on the �-threshold and number of resels contained in
the volume of voxels under analysis.42 In practice, the correc-
tion will need to take into consideration the search volume.
Restricting the search region to a small volume �i.e., defining
the region of interest� within the statistical map is likely to
reduce the height threshold for given family-wise error rates.
The smoothness is in turn calculated using the residual values
from the statistical analysis. Kiebel et al. have shown that it is
possible to estimate the smoothness based on the residual
components in the GLM with sufficient degrees of freedom
��20� and the size of the spatial filter kernel.43 Using the
same analogy, the voxel-based inference can be extended
to a larger framework involving cluster-level and set-level
inference.

2.5 SPM-OT Analysis
The fact that both the fMRI and OT methods measure the
temporal neurovascular changes induced by the increased
oxygen demand of the neuronal activities and hence share a
similar variation of the hemodynamic response makes it pos-
sible to utilize some of the existing functions in SPM de-
signed for the analysis of fMRI data and apply them to the
treatment of the optical signals. In addition to implementing
the signal-processing features in fOSA, a conversion program
November/December 2007 � Vol. 12�6�5
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amed SPM-OT has been incorporated into fOSA that allows
he OT data processed in fOSA to be analyzed in SPM like
ther neuroimaging modalities.44 The approach used by
PM-OT to analyze the OT data is simple:

1. Configure the brain activity signals ��HbO2, �HHb,
nd/or �HbT� as topographic images such that each channel
s represented by a pixel in the SPM map.

2. Perform spatial analysis and statistical inference on the
lanar images, knowing that this is what is being measured
sing the OT technique.

3. Provide an option to interpret the statistics in three-
imensional �3-D� space, given the coordinate information
bout these pixels.

The third option produces images where the two-
imensional �2-D� measurement patches are embedded into a
-D head space. This is important for co-registration of the
T analysis with other modalities like fMRI or EEG. Similar
PM approaches to analyze 2-D data embedded into 3-D
pace have been described for fMRI.45,46 However, this is not
he approach we take in this paper. We simply analyze the OT
ata on a 2-D patch, which can then post hoc be co-registered
o brain space.

.5.1 Spatial preprocessing of OT data
series of 2-D brain maps are generated for each time bin,

here each measurement point is represented by a pixel cor-
esponding to the HbO2 and/or HHb parameter of the OT
ata. Figure 1 shows one possible statistical map based on the
tandard configuration of the 24-channel Hitachi OT system
Fig. 2�. To improve on the sensitivity and facilitate intersub-
ect comparisons, an interpolation process using nearest
eighbors is used to produce a finer grid. As the interoptode

ig. 1 Schematic diagram of the 3�3 configuration of optodes from
he Hitachi ETG-100 with 10 sources and 8 detectors. We derive a
otal of 50 pixels, which includes 18 interpolated pixels �in red and
lue� and 24+8 measurement points �in yellow�. The surrounding
ixels are padded with NaN �not-a-number� values so that SPM can
erform a masking operation before the estimation procedure. �Color
nline only.�

ig. 2 Experimental arrangement of the optode positions over the C3
left� and C4 �right� motor areas for the finger tapping task.
ournal of Biomedical Optics 064010-
spacing �IOS� is often larger than the spatial resolution af-
forded by the measurement system �the Hitachi OT system
has a fixed IOS of 30 mm�, it is more appropriate to break
down each channel into smaller pixels to better identify any
focal change in the hemodynamics. It is important to consider
the spatial information that could be revealed using the exist-
ing OT technique and a smoothed map of the brain activity to
facilitate the RFT correction for multiple comparisons. The
position of each optode can be measured using an electromag-
netic tracking device that provides the 3-D coordinates of the
optode pixels �in red and blue, as shown in Fig. 1�. The same
interpolation technique can be applied to derive the 3-D posi-
tions of the channels �in yellow�, where each point is assumed
to be at the center between each source-detector pair.47 To
mask out any irrelevant pixels �outside the two squares as
shown in Fig. 1�, a “not-a-number” �NaN� value is assigned
on the configured grid. This allows SPM to identify regions
that are not spatially correlated during the analysis. In consid-
ering the typical neurovascular response, SPM-OT provides
an option to resample the optical data to a level similar to that
of the repetition time �TR� used in fMRI. Each SPM brain
map is tagged sequentially, and it is vital that the images are
generated in a correct sequence, as each of these maps is
being selected based on its header information during the
specification of the design matrix.

2.5.2 Modeling of the spatiotemporal OT data
Previous fMRI-OT studies have shown some similarities be-
tween the BOLD and HbO2 signals,9,10 and given the better
signal-to-noise ratio typically seen in HbO2 signals during
functional activation, the signal has often been used as an
indicator of regional cerebral blood flow.48 As the NIRS mea-
surement is able to provide a higher sampling rate than fMRI,
in principle, it allows a wider range of the oscillatory spec-
trum to be captured. Specifying these measurable physiologi-
cal oscillations in the design matrix enables a better modeling
of the temporal hemodynamic response in SPM. During func-
tional activation, the hemodynamic response of the HbO sig-

Fig. 3 A combination of the three gamma functions �canonical HRF
and temporal and dispersion derivatives� characterize the sluggish na-
ture of the hemodynamic response function used to model the BOLD
signal in SPM-fMRI analysis.
2
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al resembles that of a gamma function with a time to peak
ypically between 5 to 8 s and a slight undershoot before and
fter the bulk response.49,50 A similar response function has
een observed during functional activation in the fMRI-
OLD signal that is used in SPM as a temporal basis function

or the modeling of the brain response.20 Figure 3 shows the
epresentation of the canonical hemodynamic response func-
ion �HRF� in SPM. To accommodate the sluggish feature of
he HRF and the variability between different voxels due to
ifferent events, SPM allows a combination of different basis
unctions to model the observed response from the OT data
ith the inclusion of temporal and dispersion derivatives to
ive additional weightings to the canonical HRF.51 An advan-
age of using the OT technique to map the neurovascular re-
ponse is that it is able to monitor both the �HbO2 and
HHb signals simultaneously. Hence in the analysis of OT
ata, SPM-OT offers the possibility to model the two chro-
ophores �and possibly �HbT� in the GLM. By assuming

hat the two responses take the form of a gamma function but
n different directions during functional activation, SPM-OT
ffers an alternative route to infer about the functional OT
ata. Using the same SPM procedures in the model specifica-
ion, Fig. 4�b� shows the inverse canonical HRF prescribed in
PM-OT to model the �HHb signal in an experimental data
et. A positive t-statistic from the SPM analysis will hence
ndicate that the particular pixel location is significantly deac-
ivated. However, it should be noted that while this option
ffers an alternative to compare each of the chromophores
etween different conditions, an inference between the two
hromophores will not be possible since the response func-
ions in these signals are thought to be different, with each
unction having different time latencies and amplitude
hanges.35 These differences would require explicit �nonlin-

ig. 4 �a� Design matrix for the deoxy-hemoglobin model for the
-ftap �left finger-tapping, first three columns� and r-ftap �right finger
apping, next three columns� tasks, and a constant error term for the
esign matrix. Each row represents a time slice of the topographic
rain map. �b� The inverted canonical HRF �blue� plus temporal
green� and dispersion �red� derivatives model for the deoxy-
emoglobin over the five repeated blocks for the l-ftap task �corre-
ponding to the first three columns in the design matrix�. �Color online
nly.�
ournal of Biomedical Optics 064010-
ear� models that are not available with the linear methods in
SPM.

Unlike in the SPM analysis of fMRI data where a global
normalization is recommended to threshold the BOLD re-
sponse from the extracerebral volume, this procedure is not
necessary for the analysis of OT data. SPM estimates the size
of the experimental effects from the residuals with the com-
bination of the maximum number of explanatory regressors
using restricted maximum likelihood �ReML� for each voxel,
in which one or more hypotheses can be specified. The asso-
ciated parameter estimates are the coefficients that determine
the mixture of basis functions that best model the HRF for the
voxel in question. A classical univariate test statistic can then
be formed to examine each voxel, and the resulting statistical
parameters are assembled into an SPM image. Here a within-
subject effect is specified in the first-level analysis, and the
intersubject comparison is carried forward to the second-level
analysis. A precheck on the variance between optode positions
is often necessary in the event of a group analysis.

2.5.3 Statistical inference on OT data
In order to make statistical inference about the volume of
statistical values, the RFT has been applied to solve the prob-
lem of multiple comparisons, by defining the height threshold
for a smooth statistical map that gives the required family-
wise error rate. Two assumptions are being made in using
RFT to analyze the functional data: the error fields are a rea-
sonable lattice approximation to an underlying random field,
and the random fields are multivariate Gaussian distributions
with a continuously differentiable autocorrelation function.52

In order to satisfy this requirement, the OT data have been
sufficiently smoothed during the preprocessing.

OT measurements are 3-D: channels �space�, time, and
type of measurements �oxy- and deoxy-hemoglobin�. To de-
rive appropriate statistics, one has to model the correlations
within and among the data dimensions. A similar problem has
been addressed in the M/EEG literature, and we follow the
arguments by Kiebel and Friston.53 In our scheme, time is
modeled by using the GLM. The channel data is modeled by
using results from the Gaussian RFT.42 This leaves us with the
problem of how to model the third dimension, �HbO2, and
�HHb measurements. Note that between-dimension correla-
tions are subsumed by assuming a factorization of correlation
matrix �over all three dimensions�. In the SPM framework,
there are two ways of doing this: modeling it as a third di-
mension using Gaussian RFT, or modeling it as a factor with
two levels in the design matrix of the GLM. Given that there
are only two measurements of interest, we do not choose to
model space and oxy/deoxy as a 2-D random field. Also, be-
cause SPM is a mass-univariate framework, this would ex-
clude all inferences about a combination of �HbO2 and
�HHb measurements. It is conceivable �although not used in
the present paper� that such inferences are of interest to the
community. Therefore, we model the two types of measure-
ment as a factor with two levels. In the SPM framework, it is
straightforward to model different variances and covariance
between the two measurements by using the appropriate co-
variance components. A typical model for both oxy- and
deoxy-hemoglobin uses a two-block design matrix, where
each block models the time series of each type of measure-
November/December 2007 � Vol. 12�6�7
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ent. The noise variance and serial correlations are modeled
y two covariance components for each measurement type.
ote that the assumption of different variances is necessary
ecause we assume that the two measurement types have dif-
erent noise characteristics. The crucial covariance component
s between measurement types, which in its simplest case
ould be composed of an identity matrix modeling the cova-

iance over time. Note that this within-session model is nec-
ssary only if one is interested in making within-subject in-
erences. For group inferences, it is sufficient to fit a general
inear model to each measurement type and model the cova-
iances between measurements, at the second level, in a ran-
om effects model.

The statistical results from the SPM analysis are plotted as
lanar statistical maps in SPM. The advantage of having the
esults displayed in SPM is that it thresholds the significantly
ctive pixels after adjusting the p-significance. fOSA provides
he facility to import and display the statistics from SPM and
o facilitate more complex analysis. SPM-OT provides an op-
ion to display the 2-D statistical results in 3-D space, given
he positions of the optodes placement. The channel and op-
ode positions are registered as vertices points, and the faces
n the vertices are based on the SPM results.

Results
he programs in fOSA were validated using both simulated
ata and experimental data from the Hitachi ETG-100 OT
ystem. A set of synthetic data containing realistic functional
ctivation-related changes in HbO2 and HHb was generated
nd used to test the conversion and processing algorithms in
OSA. The applicability of fOSA was then demonstrated with

published experimental data set acquired from a finger-
apping task with optodes placed over the motor cortex area.26

.1 Comparison Using Simulated Data
and Results

alidating algorithms on experimental in vivo data is difficult
ince there is an uncertainty over the true chromophore con-
entration changes; therefore, a set of simulated data was used
o validate the software.54 The artificial data set consists of a
ime series of Hb values generated using known values for the
issue absorption and scattering coefficients together with a
iffusion theory model to calculate the expected light
ttenuation.55 To generate the time series data, we have taken
easured in vitro spectra of the HbO2 and HHb and com-

ined these in time varying concentration levels to simulate
he different experimental conditions.56 Figure 5�a� �top�
hows the simulated data together with an imposed linear drift
nd a known range of simulated noise frequencies between
.1 and 1 Hz. The duration for both the task and rest periods
ere set at 20 s. Figure 5�a� �bottom� shows the simulated
Hb concentration varying between 0 and −5 �mol and
bO2 concentration varying between 0 and 10 �mol.
The results showed good agreement between the simulated

ata set and the fOSA results. There was a small offset be-
ween the two data sets that could be due to the wavelength-
ependent effects of scattering and that is not currently taken
nto account in the fOSA application of the modified Beer-
ambert law �although this could be added by the user if
esired�. By applying a fifth-order Butterworth low-pass filter
ournal of Biomedical Optics 064010-
at 0.08 Hz and a linear curve fitting, we were able to effec-
tively eliminate the simulated noise in this example. Figure
5�b� illustrates the comparison between the simulated and pro-
cessed data after the averaging process. The slight difference
in waveform shape is due to the effect of the filtering. Al-
though not shown here, both signals share the same wave
forms if the comparison is made with a similarly filtered ver-
sion of the simulated signal. This test validated the correct-
ness of the algorithms used to convert the light intensity sig-
nals as well as some of the basic signal processing routines.

3.2 Comparison Using Experimental Data
and Results

The application of the fOSA software was tested using pub-
lished experimental data.26 In this study, left �l-ftap� and right
�r-ftap� finger-tapping tasks were conducted in two separate
trials. The �HbO2 and �HHb were measured using a 24-
channel OT system �ETG-100, Hitachi Medical Corporation,
Japan�.57 Figure 2 shows the 3�3 optode configuration used
in the study, where the optodes were placed close to the sen-
sorimotor cortex �C3 and C4 areas�. In summary, the subject
was guided to perform the finger-tapping tasks at a regular
pace of 3 Hz, over a task period of 30 s and a rest period of
30 s. Each trial was repeated five times.

Fig. 5 �a� Simulated HbO2 �magenta� and HHb �green� signals com-
pared with the HbO2 �red� and HHb �blue� results from fOSA after
conversion and detrending. �b� The HbO2 �red� and HHb �blue� re-
sults from fOSA after filtering compared to the original simulated sig-
nals. The major differences are due to the effects of filtering and dis-
appear if the comparison is made to a filtered version of the original
signal. �Color online only.�
November/December 2007 � Vol. 12�6�8
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Figures 6�a�, 6�c�, and 6�e� show the time course results
or the l-ftap task over channel 16, and Figs. 6�b�, 6�d�, and
�f� show the time course results for the r-ftap task over chan-
el 9. By applying the algorithms employed in the fOSA soft-
are, the two-wavelength light intensities were converted to

elative �HbO2 and �HHb concentrations. Figures 6�a� and
�b� show the �Hb concentrations after smoothing the data
ith a moving average with a window span of 10 samples and

he data were downsampled to 1 Hz. Figures 6�c� and 6�d�
how the concentration changes after modeling out the slow
rift using a linear fit. Last, the data were averaged over the
ve repeated blocks to eliminate any existing high frequency
omponents, as shown in Figs. 6�e� and 6�f�.

The results of the analysis on the experimental time course
ata processed using fOSA can be compared to those obtained
sing the analysis methods described by Sato et al.26 in the
tudy from which the data set was taken. In general, the he-
odynamic response was observed in both analyses, i.e., an

ncrease in �HbO2 with a slight decrease in �HHb after the
timulus onset, with the increase in �HbO2 maintained
hroughout the activation period. However, there is a slight
ariation in the time course that could be due to the process-
ng procedures used. First, intensity conversion and block av-
raging were the only preprocessing steps done in the original
xperimental study by Sato. fOSA performed additional pre-
rocessing steps: linear detrending and moving average to re-
ove the slow drift and high-frequency components. Second,
ato et al. used a “peak search” technique to select a 25-s

ig. 6 Data from the study reported �Ref. 26� �data from subject 3�.
hannels 9 and 16 have been selected for illustration for the r-ftap
nd l-ftap tasks, respectively. �a� and �b� show the �HbO2 �red� and
HHb �blue� time course for the l-ftap and r-ftap tasks, respectively,
fter smoothing the data using the “moving average” technique. �c�
nd �d� show the time course results after linear fit for the tasks, and
e� and �f� show the averaged signals over the five repeated blocks for
ach task.
ournal of Biomedical Optics 064010-
maximum absolute mean change �i.e., maximum averaged
area under the curve within a 35-s window�. In their analysis,
a paired t-test �p	0.1� between the predefined rest and se-
lected activation periods was conducted over the five repeated
blocks to determine the significance for each task.

Since the experimental data was measured using the 24-
channel Hitachi ETG-100 system, the optodes configuration
as shown in Fig. 1 was used to generate the spatial map for
the SPM analysis. As the two tasks were conducted in sepa-
rate trials, SPM-OT first combined the data sequences as one
continuous vector for �HbO2 and �HHb concentration data.
Note that SPM provides a flexible approach to estimate the
experimental data; it is able to accommodate different data
length with varying stimulus onset periods in its model. A
canonical HRF �presented in SPM� plus its latency and dis-
persion derivatives were used as the basis functions for the
�HbO2 response model. To illustrate the flexibility of the
software and validate the activation response, a second similar
but inverted canonical HRF plus its two derivatives were used
for the �HHb response model. Figure 4�a� shows the speci-
fication of the design matrix. The x axis corresponds to the six
regressors for the two tasks plus a constant error term, and the
y axis represents the 700 topographic images generated by
SPM-OT. A t-statistic was computed for each of the l-ftap
�Figs. 7�a� and 7�c�� and r-ftap �Figs. 7�b� and 7�d�� tasks. The
reported t-results were p-corrected using family-wise error
correction ��0.05� and analyzed at the “pixel” level. Statistical
results from the analysis showed a significant effect over the

Fig. 7 �a� and �b� show the SPM t-results for the l-ftap task for the
�HbO2 and �HHb signals, respectively. �c� and �d� show the SPM
t-results for the r-ftap task for the �HbO2 and �HHb signals, respec-
tively. Darker pixels correspond to higher significant t-values. A posi-
tive t-score for the HbO2 signal=significant increase in the HbO2 sig-
nal, and a positive t-score for the HHb signal=significant decrease in
the HHb signal.
November/December 2007 � Vol. 12�6�9
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ight cortex at toxyHb-ch16=19.02 �pcorr
0.001� and

deoxyHb-ch16=12.79 �pcorr
0.001� when the subject per-
ormed the l-ftap task and at toxyHb-ch8-9=17.26 �pcorr

0.001� and tdeoxyHb-ch8-9=5.68 �pcorr
0.001� on the left
ortex when performing the r-ftap task. These results showed
ood agreement in terms of laterality with the published
esults26 and previous OT studies.27 To illustrate the signifi-
ant activated regions on the left sensorimotor area by esti-
ating the optode placement �not measured in the study�, Fig.
shows the possibility of extracting the 2-D t-results from

PM and superimposing them onto a SPM brain map.

.3 Application with Other OT Systems
OSA has been designed to process and analyze data from
oth fixed and flexible array systems and is not restricted to
se with the ETG 100 Hitachi system. To date, the software
as so far been used to process OT data from two other cw
ystems—the ETG 4000 �Hitachi Medical Systems; 24 chan-
els, wavelengths 695 nm and 815 nm�28 and an in-house cw
T system �84 channels, wavelengths 775 nm and
50 nm�.58 Figure 9 shows the optode array design of the
n-house system. Eight sources and eight detectors are posi-
ioned to provide five different optode spacings �14.3 mm,
7.8 mm, 22 mm, 29 mm, and 34 mm� with 42 channels in
ach array. This distribution of optode spacing is designed to
rovide some depth discrimination in the measured signals.59

oftware extensions to read data from other OT formats, in-
luding the OXYMON 24-channel OT system �Artinis Ltd;
ttp://www.artinis.com� and Hamamatsu OT system
Hamamatsu Photonics KK� are under constant development.

Discussion
ptical imaging has been used extensively in the past few
ears to map functional brain activity occurring in the cortex.
he advantages of optical imaging include its relatively high

emporal resolution and ability to distinguish between
hanges in both HbO2 and HHb. Given its noninvasive and
ortable nature, it is particularly well suited to investigating
ubject and patient groups such as neonates, young infants,
nd children who may not be able to tolerate other scanning
echniques. As optical imaging is increasingly used to address

ig. 8 The SPM t-results superimposed onto a canonical brain map
howing the effects on the left cortex from the r-ftap task.
ournal of Biomedical Optics 064010-1
more complex cerebral processes �e.g., neurodevelopment and
cognitive behavior�, a robust and accurate analysis tool is es-
sential to interpret the observed hemodynamic responses. The
fOSA software presented in this paper is one such tool.

The accuracy and validity of the algorithms used in fOSA
have been assessed using a set of simulated data with known
changes, and the application of fOSA has been illustrated us-
ing a previously published experimental data set. The slight
difference between the simulated data and fOSA results is due
to the effects of temporal filtering. The validation test has
shown the ability of fOSA to process various forms of time-
continuous OT data with different experimental conditions. A
single experimental data set has been used to compare results
from the analysis using fOSA and a method described by Sato
et al.26 The slight temporal variation in the resulting hemody-
namic response can be attributed to the processing procedures
used in both the analysis and the selection procedure for the
most significantly active channel. We have shown from the
l-ftap task that the most significant channel is close to channel
16 when using the SPM-OT technique, compared with chan-
nel 18, which was chosen in the original study. The spatial
difference between these two channels is estimated to be
21 mm. While this paper is not intended to compare the dif-
ferent statistical test methods but to provide an alternative
approach to the analysis of functional OT data, it is question-
able if it is appropriate to selectively obtain the maximum
area under the curve during activation for this finger-tapping
study. This approach could mean that different activation pe-
riods would have been used for the group analysis due to
intersubject variations in the hemodynamic response. In addi-
tion, for changes in the hemodynamics associated with more
subtle cognitive processing tasks, this peak search approach
may not be suitable.

This problem of data selection for analysis of OT data is
one reason why alternative methods need to be investigated.
In addition to data selection issues, one also needs to consider
spatial correlation between neighboring channels and the in-
corporation of other physiological measurements into the
analysis to reduce the likelihood of false positives. We have
shown in this paper the possibility of using SPM-OT to model
both the �HbO2 and the �HHb for each measurement chan-
nel while considering the varying temporal responses by in-
cluding the latency and dispersion derivatives in the GLM.
The advantage of having two different parameters to compute
the statistical difference in a single measurement, as we have
shown in this paper, allows one to pinpoint particular cerebral

Fig. 9 Array design of the distributed sources and detectors for the
UCL in-house optical imaging system.
November/December 2007 � Vol. 12�6�0



�
s
�
a
t
F
t
f

t
n
t

t
t
s

m
s
m

o

m

t
s

t
o

o

w

p
u
w
n
l
t
i
t

a
v
p
e
R
p
o

t
a
s
t
h
O
h
d

Koh et al.: Functional optical signal analysis: a software tool…

J

cortical� area from the location of the optical channels that
hows a functional activation �i.e., positive t-values on both
HbO2 and �HHb voxels�. In addition, the use of RFT to

djust single-voxel p-values of voxels to family-wise con-
rolled p-values means that fewer false positives are observed.
rom the statistical t-results using SPM-OT, several observa-

ions could be made on the analysis of the experimental data
rom the finger-tapping task:

1. The positive t-results demonstrated the contralateral ac-
ivation on both l-ftap and r-ftap tasks, thus suggesting sig-
ificant increase in HbO2 and decrease in HHb during the
asks, which was in agreement with previous studies.26,27

2. While the highest-significance pixel was found to be on
he same channel on both HbO2 and HHb maps for the l-ftap
ask, there seemed to be a variability for the r-ftap task, more
o on the HbO2 signal.

3. The higher t-results as shown on both HbO2 and HHb
aps when performing the l-ftap task would suggest that the

ubject had a more pronounced hemodynamic response to this
otor task when the right hand was used.
The fOSA software has been developed to meet the needs

f OT analysis, which include providing:
1. a systematic but flexible approach to the analysis of

ultichannel OT data;
2. an interface with validated and standard MATLAB

ools to preprocess the OT data and provide a real-time as-
essment of the measured signals;

3. a platform on which to run other MATLAB-based func-
ions and conduct further analysis of the fOSA data using
ther software;

4. robust statistical technique using SPM for the analysis
f functional OT data; and

5. analysis of data acquired from different cw OT systems
ith flexible optodes configurations.

As the source codes of the data processing software sup-
lied with the Hitachi ETG systems cannot be modified by the
ser, fOSA helps to complement this particular system soft-
are with the inclusion of flexible processing tools. Through
umerous tests, the software has been in extensive use in our
aboratory and that of our collaborators. The software is due
o be released as an open-source program with online support-
ng documentation, with emphasis on its general application
o a range of OT systems with distributed optode geometries.

fOSA also provides a platform to access the SPM software
nd statistically analyze the functional OT data. Unlike con-
entional voxel-wise t-test methods, the mass-univariate ap-
roach used in SPM ensures that each cortical pixel is mod-
led taking into account local spatial correlations using the
FT. This procedure enables valid statistical inference. In this
aper, we propose a way to model OT data in the same way as
ther neuroimaging data, using SPM.

Given the OT data’s distinctive advantage over the fMRI
echnique in being able to simultaneously measure �HbO2
nd �HHb concentrations, it has been shown that the two
ignals can be modeled using different basis functions with
he existing canonical HRF functions. This new technique will
opefully serve as a useful tool to make inferences about the
T signal, selecting channels with significant increase in oxy-
emoglobin and significant decrease in deoxy-hemoglobin
uring functional activation. There are also improvements to
ournal of Biomedical Optics 064010-1
be made in the analytical approach to the NIRS data and in
presentation of the SPM results. A feasible approach to im-
proving the SPM-OT will be to incorporate functional and
anatomical constraints �from other imaging modalities� as pri-
ors to the SPM-OT analysis. To reduce the ambiguous source
localization problem, SPM uses the informed basis function
approach to employ spatial priors and reduce the solution
space.60 This can be done in a similar fashion for OT data.
Another ongoing development in our group is the use of real-
time estimation of the distributed hemodynamic response.
This will allow informed decisions to be made about the suit-
ability of the chosen protocols, placement of optodes, and
other considerations at the beginning of a study.

5 Conclusion
The fOSA package represents an improvement on currently
available OT data processing software both in terms of the
flexible and adaptable approach to preprocessing and the in-
corporation of the SPM approach to multichannel OT data.
fOSA is open source and designed for use with a wide range
of optical topography systems.
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