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Abstract. We present a generalized Delta-Eddington phase function
to simplify the radiative transfer equation to integral equations with
respect to both photon fluence rate and flux vector. The photon flu-
ence rate and flux can be solved from the system of integral equations.
By comparing to the Monte Carlo simulation results, the solutions of
the system of integral equations accurately model the photon propa-
gation in biological tissue over a wide range of optical parameters.
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Introduction

he propagation of light through the biological tissue is a
omplicated process involving both absorption and scattering.
he photon propagation model provides insight into the inter-
ction between light and tissues and is essential for tomogra-
hic imaging with visible and near-IR light.1,2 The radiative
ransfer equation �RTE� is considered the golden standard for
iomedical applications.1,2 Analytical solutions for the RTE
re available for few simple geometries, and numerical solu-
ions, such as the discrete ordinate method3,4 and the spherical
armonic method,5 often lead to enormous computational
ost, especially to solve inverse problems such as optical
omography,6 bioluminescence tomography,7–10 and fluores-
ence tomography.11,12 Monte Carlo �MC� is a statistical
imulation method in which the paths of photons are traced as
hey are scattered and absorbed within the medium.13 The MC
ethod is well established to produce accurate estimates for

ight propagation in tissues. However, due to its statistical
ature, the MC method has the disadvantage of requiring a
ong computation time; therefore, it is usually used as a ref-
rence method for other approaches. The popular diffusion
pproximation14,15 �DA� to RTE is widely used in the field of
iophotonics because of its high computational efficiency.
evertheless, DA assumes weakly anisotropic scattering and
orks well only in a highly scattering and weakly absorbing
edium.16 It is also not suitable for modeling light propaga-

ion in the visible spectrum in which biological tissue present
ignificant photon absorption.17

In the RTE, the phase functions describe the scattering
haracteristics of the medium and significantly influence the
recision of the solution and the efficiency of the computa-
ion. Because the exact form of the phase function is currently
nknown, the popular Henyey-Greenstein �HG� function18
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and the Delta-Eddington function19 are usually used to ap-
proximate the true phase functions in biomedical applications.
These two functions can be written in closed forms with a
single free parameter g, called the anisotropic factor, which is
often considered to be independent of the tissue scattering and
absorption. Based on the Delta-Eddington phase function, a
generalized diffusion model was presented to simulate photon
propagation in highly absorbing medium and smaller source-
detector separations.20 The inverse problem of optical param-
eters was presented based on the RTE with the Delta-
Eddington function.21 The HG function was proven to be the
most accurate in terms of the angular dependence of single
scattering events in biological tissues.2,13 However, the RTE
with the HG phase function is difficult to simplify further. In
this paper, we present a generalized Delta-Eddington function
to approximate the real phase function. Based on this new
definition of Delta-Eddington phase function, the RTE can be
reduced to a system of integral equations with respect to both
the photon fluence rate and the flux vector. The solution of the
system of integral equations enables a highly accurate predic-
tion for the photon propagation in biological tissue over a
wide range of optical parameters of biomedical interest.

2 Phase Approximation Model
The biological tissue scatters light strongly in the forward
direction,22 and the scattering phase function can be modeled
by a generalized Delta-Eddington function:19

p�v · v�� =
1

4�
��1 − f��1 + 3hv · v�� + 2f��1 − v · v��� ,

�1�

where f � �−1, +1� is the weight factor measuring the aniso-
tropy of the photon scattering, which we call the anisotropy
weight; and h is a asymmetry factor of the phase function to
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odulate the weakly anisotropic scattering. The phase func-
ion is a linear combination of the weakly anisotropic scatter-
ng and the strongly peaked forward scattering. The original
elta-Eddington phase function rigidly defines the parameters

f and h as g2 and g / �1+g�, respectively.2,19 These parameters
re related to a single free parameter g, where g is the aniso-
ropic factor defined as the mean of the cosine of the scatter-
ng angles. Here, the proposed generalized Delta-Eddington
unction defines that the anisotropy weight and asymmetry
actor are related to the photon absorbing and scattering coef-
cients in the medium. The optical properties of the medium
re characterized by the anisotropy weight and asymmetry
actor along with the absorption and scattering coefficients.

Based on the generalized Delta-Eddington phase function
Eq. �1��, the RTE

v · �L�r,v� + ��a + �s�L�r,v� = �s�
S2

L�r,v��p�v,v�� dv�

+
1

4�
Q�r�, r � � , �2�

an be simplified as

v · �L�r,v� + �̃trL�r,v� =
�̃s

4�
���r� + 3hv · J�r��

+
1

4�
Q�r�, r � � , �3�

here � is the region of interest, L�r ,v� is the photon radi-
nce �in watts mm−2 sr−1�, Q�r� is the isotropic source �in
atts mm−3�, �s is the scattering coefficient �in mm−1�, and

a is the absorption coefficient �in mm−1�, �̃s= �1− f��s, and
˜ tr=�a+ �̃s. The photon fluence rate ��r� and photon flux
ector J�r� are, respectively, defined by

��r� =�
S2

L�r,v� dv and J�r� =�
S2

vL�r,v� dv . �4�

quation �3� is a linear, first-order differential equation for the
hoton propagation in a heterogeneous medium, and the radi-
nce L�r ,v� can be formulated as23

L�r,v� =
1

4�
�

0

R

��̃s���r − �v� − 3hv · J�r − �v��

+ Q�r − �v�� exp 	−�
0

�

�̃tr�r − tv� dt
 d�

+ L�r − Rv,v� exp 	−�
0

R

�̃tr�r − tv� dt
 , �5�

here R is a scalar so that r−Rv���, representing the dis-
ance from point r to the boundary �� along the direction v.
ntegrating Eq. �5� over all the solid angles, we have
ournal of Biomedical Optics 024016-
��r� =
1

4�
�

S2
�

0

R

��̃s���r − �v� − 3hv · J�r − �v��

+ Q�r − �v�� exp 	−�
0

�

�̃tr�r − tv�dt
d� dv

+�
S2

L�r − Rv,v� exp 	−�
0

R

�̃tr�r − tv� dt
 dv .

�6�

Multiplying both sides of Eq. �5� by the unit vector v, and
integrating Eq. �5� over all the solid angles, we obtain an
equation for the flux vector:

J�r� =
1

4�
�

S2
�

0

R

��̃s���r − �v� − 3hv · J�r − �v�� + Q�r

− �v��exp�−�
0

�

�̃tr�r − tv� dt�v d� dv +�
S2

L�r

− Rv,v� exp �−�
0

R

�̃tr�r − tv� dt�v dv . �7�

In an optical imaging experiment, if no external photon enters
the object �, L�r−Rv ,v� in Eqs. �6� and �7� would vanish for
the matched refractive indices on the boundary. However, the
refractive index nissue in the biological tissues is higher than
the refractive index nair of the surrounding air, and photons
will be internally reflected at the boundary. In this case, L�r
−Rv ,v� describes the reflected radiance from a fraction of
photons reflected on the boundary ��, and can be expressed
as

L�r − Rv,v� = rdL�r − Rv,v��, v� = v − 2�v · n�n,

v · n � 0, �8�

where n is the outward unit normal at r−Rv on ��, and the
internal reflection coefficient rd can be calculated14,16 by rd
=−1.4399�−2+0.7099�−1+0.6681+0.0636�, �=�issue /�air.
From the first-order approximation of the radiance L�r
−Rv ,v��, the reflected radiance L�r−Rv ,v� on the boundary
can be approximated by

L�r − Rv,v� 
rd

4�
���r − Rv� + 3�v − 2�v · n�n� · J�r

− Rv��, r − Rv � �� . �9�

Substituting Eq. �9� into Eqs. �6� and �7� and performing a
variable transformation from the polar coordinates r−�v to
the Cartesian coordinates r�, we obtain a system of integral
equations with respect to the photon fluence rate and flux
vector:
March/April 2008 � Vol. 13�2�2
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�
��r� =

1

4�
�

�

��̃s���r�� − 3hv · J�r��� + Q�r���G�r,r�� dr�

+
rd

4�
�

��

���r�� + 3v� · J�r���G�r,r���v · n� dr�

J�r� =
1

4�
�

�

��̃s���r�� − 3hv · J�r��� + Q�r���G�r,r��v dr�

+
rd

4�
�

��

���r�� + 3v� · J�r���G�r,r���v · n�v dr�,

�10�
here

v =
r − r�

�r − r��
, v� = v − 2�v · n�n, and G�r,r��

=
1

�r − r��2
exp 	−�

0

�r−r��
�̃tr�r − tv� dt
 .

or simplicity, we call Eq. �10� the PA equation because it is
erived from an approximate phase function. The PA equation
s a well-posed system of integral equations of the second
ind, and it enables an accurate prediction to the photon flu-
nce rate and flux over a wide range of optical coefficients.
he photon fluence rate presents the distribution of photon
ensity in the spatial domain, while the photon flux describes
he axial photon energy transfer and is directly related to ex-
erimental measurement data on the boundary. The exiting
hoton flux 	�r� at r on the surface of object can be linked
ith the photon flux,2

ig. 1 Cylindrical phantom with a spherical light source discretized
y tetrahedral elements.
ournal of Biomedical Optics 024016-
	�r� = J�r� · n/�1 − rd�, for 0 � rd � 1, r � �� ,

�11�

where �̃s, �̃t, and h �or, equivalently, �a, �s, f , and h� in the
PA equation represent the optical parameters of the medium.
When the absorption coefficient �a and scattering coefficient
�s in the medium are unknown, we can directly determine the
optical parameters �̃s, �̃t, and h using optical tomography
techniques based on the PA equation.6 If the absorption coef-
ficient �a, the scattering coefficient �s, and conventional an-
isotropic factor g in the tissue are known, based on a simple
homogenous numerical phantom �such as a spherical or cylin-
drical object� with a known light source setting, the exiting
photon flux on the boundary of the phantom can be generated
using MC simulation with a appropriate phase function, such
as the HG phase function. Then, an optimization procedure
can be performed to determine the anisotropy weight f and
asymmetry factor h by matching the exiting photon flux on
the phantom boundary obtained from the PA equation to the
MC-simulated counterpart. These exiting photon fluxes dis-
tribute on the boundary of the phantom and reflect the varia-
tion with different distances from the light source. Hence, the
anisotropy weight f and asymmetry factor h are independent
of the phantom geometry.

3 Numerical Experiments
To perform the numerical computation based on Eq. �10�, the
region of interest � can be discretized into finite elements
with N vertex nodes, and the photon fluence rate ��r� and
flux J�r� are approximated in terms of nodal-based basis
functions24 
 j�r��j=1,2 , . . . ,N�,

Table 1 Optical parameters used in the numerical experiments.

�a�mm−1� �s�mm−1� �s�1−g�/�a g � f h

0.35 12.50 3.57 0.9 1.37 0.938 0.90

0.20 14.50 7.25 0.9 1.37 0.950 0.90

0.008 8.0 100 0.9 1.37 0.973 0.98
March/April 2008 � Vol. 13�2�3
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���r� = �
j=1

N

��r j�
 j�r�

J�r� = �
j=1

N

J�r j�
 j�r�

. �12�

ubstituting Eq. �12� into Eq. �10�, we obtain a system of
inear equations with respect to the photon fluence rate and
ux:

���� = M1��� + H1�J� + �Q1�
�J� = M2��� + H2�J� + �Q2�

, �13�

here M1 ,M2 ,H1 ,H2, �Q1�, and �Q2� represent the corre-
ponding discrete integral kernels and source vector in Eq.
10�.

Extensive numerical experiments were conducted to vali-
ate the accuracy of the PA equation by MC simulation. The
xperiments are based on a cylindrical phantom of 20 mm
iameter and 20 mm height. We set up a spherical source of
.0 mm radius with a power of 10 nw at position of
−4.0,0.0,10.0� in the phantom. The phantom was then dis-
retized into 25,335 tetrahedral elements and 4833 nodes, as

ig. 2 Comparison between the MC simulation and the PA and DA m
=0.938, and �=1.37. The detectors are sorted by the increasing ord

ig. 3 Comparison between the MC simulation and the PA and DA m
=0.950, and �=1.37. The detectors are sorted by the increasing ord
ournal of Biomedical Optics 024016-
shown in Fig. 1. A total of 1226 virtual detectors were allo-
cated over the surface of the phantom to record the exiting
photons. A wide range of optical parameters were respectively
assigned to the phantom to mimic both high-absorption and
low-absorption media. A reduced scattering albedo �RSA� de-
fined by �s�1−g� /�a was used to measure the ratio of photon
scatting to absorption. The relative refractive index � of the
boundary was set at 1.37. An HG phase function with an
anisotropic coefficient of 0.9 was assumed for the MC simu-
lation. The MC simulation and the computational scheme of
linear Eq. �13� were respectively performed to compute the
photon fluence rate and exiting photon flux at detectors for
three sets of optical parameters in Table 1. These results
showed that the solutions of the PA equation were in excellent
agreement with the results obtained from the MC simulation
with a relative error below 3.8%. Here the relative error is
defined as �detectors �	MC−	PA � /�detectors	MC. Figures 2�a� to
4�a� present a comparison between the PA and MC data for
RSAs 3.57, 7.25, and 100, respectively. In contrast, we also
performed the numerical experiments with the same phantom
setting to compute the photon fluence rates based on the DA
model. As a result, the relative errors between the photon
fluence rate obtained from the DA model and from the MC

with the optical parameters �a=0.35 mm−1, �s=12.5 mm−1, h=0.9,
e MC simulation photon fluence rates.

with the optical parameters �a=0.20 mm−1, �s=14.5 mm−1, h=0.9,
e MC simulation photon fluence rates.
odels
er of th
odels
er of th
March/April 2008 � Vol. 13�2�4
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imulation were as high as 31.2 and 14.6% for an RSAs of
.57 and 7.25, respectively, as shown in Figs. 2�b� and 3�b�.
s we had expected, the DA model had a satisfactory perfor-
ance with relative errors of 3.8% for an RSA of 100, as

hown in Fig. 4�b�. The numerical experiments demonstrated
hat the solution obtained from the PA equation is more accu-
ate than the results from the DA model as compared to the

C data over a broad range of optical parameters of biomedi-
al interest. The computational time of the PA equation was
bout 45 min for both fluence rate and flux in our numerical
xperiments, while that of the MC simulation with the photon
umber of 107 was about 80 min, and that of the DA model in
he same setting about 3 min. The running time is measured
nder a 2.8-GHz Intel Xeon CPU with 4 G bytes of memory.

Discussion and Conclusions
he phase function in the RTE describes the scattering char-
cteristics of the medium and is strictly related to the scatter-
ng and absorption coefficients of the medium. The general-
zed Delta-Eddington phase function is characterized by
nisotropy weight and asymmetry factor and shows that the
nisotropy weight and asymmetry factor are related to the
hoton absorbing and scattering in the medium. The proposed
oncept improves the popular interpretations of the Delta-
ddington and HG phase functions, which are independent of
bsorbing and scattering in a medium. Based on the general-
zed Delta-Eddington phase function, the RTE can be signifi-
antly reduced to a system of integral equations, which en-
bles the simultaneous computation of both the photon
uence rate and flux vector. MC simulation experiments dem-
nstrated that the solution of the system of integral equations
s highly accurate to model photon propagation over a wide
ange of optical parameters. The system of integral equations
s suitable to model the photon propagation in heterogeneous

edia and can be applied to optical molecular imaging for a
mall animal with complex anatomical structures.
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