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Abstract. This paper describes a novel physically-based approach for estimating leaf area 
index (LAI) and leaf chlorophyll content (Cab) at regional scales that relies on radiance data 
acquirable from a suite of aircraft and operational satellite sensors. The REGularized canopy 
reFLECtance (REGFLEC) modeling tool integrates leaf optics (PROSPECT), canopy 
reflectance (ACRM), and atmospheric radiative transfer (6SV1) model components, 
facilitating the direct use of at-sensor radiances in green, red and near-infrared wavelengths. 
REGFLEC adopts a multi-step LUT-based inversion approach and incorporates image-based 
techniques to reduce the confounding effects of land cover specific vegetation parameters and 
soil reflectance. REGFLEC was applied to agricultural and natural vegetation areas using 10 
m and 20 m resolution SPOT imagery, and variable environmental and plant development 
conditions allowed for model validation over a wide range in LAI (0 – 6) and Cab (20 – 75 μg 
cm-2). Validation against in-situ measurements yielded relative root-mean-square deviations 
on the order of 13% (0.4) for LAI and between 11 – 19% (4.9 – 9.1 μg cm-2) for Cab. 
REGFLEC demonstrated good utility in detecting spatial and temporal variations in LAI and 
Cab without requiring site-specific data for calibration. The physical approach presented here 
can quite easily be applied to other regions and has the potential of being more universally 
applicable than traditional empirical approaches for retrieving LAI and Cab. 

Keywords: Leaf chlorophyll, LAI, radiative transfer, SPOT, Look-up table inversion, 
Regularization. 

1 INTRODUCTION 
Accurate spatially and temporally distributed information about key biophysical and 
biochemical variables describing land surface vegetation canopies is of critical value for 
many ecological, agronomic, and meteorological applications. Leaf area index (LAI), defined 
as the single sided leaf area per unit horizontal ground area, serves as the key vegetation 
biophysical determinant for variations in land surface fluxes of energy, water and carbon [1-
4]. Leaf chlorophyll content (Cab), defined as total chlorophyll (chlorophyll a + chlorophyll b) 
content on a leaf area basis (μg cm-2), is an important indicator of the plant physiological 
condition. Chlorophylls absorb photosynthetically active radiation and thus function as vital 
pigments for photosynthesis. Not surprisingly Cab is related to leaf nitrogen and 
photosynthetic capacity of the vegetation [5,6] and it can be used to detect vegetation stress 
[7-9] and leaf nitrogen deficiency [10-13]. Ref. 14 demonstrated utility in using chlorophyll 
content for monitoring vegetation productivity, and accurate maps of leaf chlorophyll content 
would also be valuable in the context of climate change to aid the establishment of reliable 
regional and global carbon budgets. 
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Remote sensing is a cost-effective means for monitoring the terrestrial biosphere and 
vegetation dynamics at a range of spatial and temporal scales. The success of the remote 
sensing approach depends on the nature and quality of the radiometric data and on our ability 
to relate the satellite signal (at-sensor radiance) to characteristics of the land surface 
vegetation. A critical step is the conversion of at-sensor radiances to surface reflectances by 
removing the atmospheric effect of gaseous absorption, molecular scattering and aerosols. 
Accurate atmospheric correction of satellite data is particularly important for physically-based 
retrieval algorithms that require accurate quantitative reflectance observations as input [15]. 
While the empirical-statistical approach that links vegetation indices (VI) and vegetation 
variables using experimental data is less affected by e.g. radiometric calibration accuracy and 
atmospheric factors, relationships derived using this approach tend to be specific to the study 
region and the atmospheric and experimental conditions at the time of the satellite acquisition. 
Nevertheless, the empirical approach has been widely adopted for retrieving vegetation 
variables [16-19] due to its simplicity and low computational demand. However empirical 
relationships typically lack generality; there is no unique relationship between a sought 
vegetation variable and a VI of choice but rather a family of relationships, each a function of 
canopy characteristics, soil background effects and external conditions (i.e. atmospheric state, 
view-sun geometry) [20-23]. 

Radiative transfer models based on physical laws that describe the transfer and interaction 
of radiation within the atmospheric column and canopy provide an explicit connection 
between the vegetation biophysical variables and the radiance signal received at the satellite 
sensor. Physical insight into radiative transfer mechanisms is needed to develop more flexible 
retrieval schemes that correct for the confounding influence of internal and external factors 
and assure applicability in diverse geographic locations with widely varying environmental 
conditions and species compositions. The physical approach has become a promising 
alternative given the high radiometric quality of current satellite sensors [24], advances in 
atmospheric radiative transfer modeling [25,26], and enhanced capabilities for describing 
atmospheric scattering and absorption characteristics in space and time [27,28]. 

The physically-based retrieval of canopy variables requires the inversion of a CR model. 
In this process, satellite reflectance observations are matched with simulated reflectance 
spectra to identify the combination of soil and vegetation variables providing the best 
reflectance fit. Commonly used inversion strategies include iterative numerical optimization 
methods [29,30], look-up table approaches [31-33] and artificial neural network methods [34-
36]. Irrespective of the strategy, the inversion process is ill-posed by nature due to 
measurements and model uncertainties (i.e. different combinations of model parameters may 
correspond to almost identical spectra) [31]. The use of a priori knowledge (e.g. canopy type 
and architecture, model parameter ranges) has been suggested as an efficient way to solve ill-
posed inverse problems [31,37,38], but this ‘regularization’ technique typically relies on the 
existence of experimental data collected at the site of interest. Using multiple MODIS images, 
Ref. 23 demonstrated how the temporal evolution of LAI derived from EVI – LAI 
relationships could be used to constrain the inverse retrieval of canopy characteristics. Ref. 39 
suggested that adjacent pixels belonging to the same crop field contain supplementary 
spectral information, and he demonstrated that confounding effects between LAI and leaf 
inclination angle were reduced when incorporating the radiometric information from 
neighboring pixels during model inversion. Ref. 40 took this a step further and reported good 
LAI and Cab retrieval accuracies using an image-based regularization strategy that assumed 
spatial and temporal invariance of dry matter content, vegetation clumping and leaf angle 
distribution within well-defined land cover classes. 

Recently Ref. 10 developed the REGularized canopy reFLECtance (REGFLEC) tool that 
combines atmospheric radiative transfer, canopy reflectance and leaf optics modules for direct 
image-based retrievals of LAI and Cab from at-sensor radiance observations. REGFLEC 
requires radiometric information from only 3 spectral bands (green, red and near-infrared) 
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available on most airborne and satellite-based sensor systems. Since REGFLEC is entirely 
image-based, it doesn’t rely on ground-based data for model calibration, and being 
physically-based it allows for variations in sensor characteristics, atmospheric absorption and 
scattering conditions, soil background conditions, surface BRDF and species composition. In 
principle the tool has utility in diverse geographic locations and at a range of spatial scales. 
Ref. 10 reported robust REGFLEC retrievals of LAI and Cab at the field scale with relative 
root-mean-square-deviations on the order of 10 – 17 %. 

The focus of this study is on the regional-scale applicability of REGFLEC. Important 
modifications to the retrieval technique are incorporated to make it more suitable for regional-
scale applications. These involve: 1) the use of an ancillary land cover map to define classes 
with spatially uniform canopy characteristics (i.e. leaf structure, Markov clumping, leaf 
inclination angle, brown pigment concentration of senescent leaf material), which is needed to 
constrain the retrieval of LAI and Cab; 2) the use of a soil texture map to assist the regional 
extrapolation of soil brightness retrieval; 3) Refined techniques for correcting for 
confounding influences of soil background effects and canopy fraction of senescent leaf 
material on LAI and Cab retrievals; and 4) A novel look-up-table based inversion approach for 
faster and more reliable parameter retrievals. 

Many studies have focused on finding vegetation indices (VI) that maximize the 
sensitivity to the variable of interest while minimizing the sensitivity to other internal and 
external variables [20,41-43]. However, the translation of spectral reflectance data into a VI 
tends to reduce the sensitivity to the variable of interest. For instance, the widely used 
Normalized Difference Vegetation Index (NDVI), which combines reflectance in the near-
infrared and red wavebands, approaches a saturation level at intermediate values of LAI 
whereas near-infrared reflectances remain sensitive to LAI in densely vegetated areas [23,44]. 
Likewise, VIs that combine reflectances from the near-infrared and peak leaf chlorophyll 
sensitive green (540 – 560 nm) or red-edge (700 – 730 nm) parts of the spectrum [45] are 
typically not correlated with leaf chlorophyll content due to a high variability of near-infrared 
reflectances relative to chlorophyll sensitive reflectance data [5]. In REGFLEC, reflectances 
from the near-infrared waveband are incorporated as direct predictors of LAI and the 
mapping of leaf chlorophyll is facilitated using reflectances from the green waveband. 

The atmospheric radiative transfer (6SV1) and canopy reflectance (ACRM-PROSPECT) 
model components of REGFLEC will be briefly described in the next section followed by a 
detailed description of REGFLEC soil background correction (section 3.1), land-cover 
specific parameter retrieval (section 3.2) and pixel-wise LAI and Cab retrieval (section 3.3) 
modules. REGFLEC is applied to study regions in Maryland and Oklahoma using 10 and 20 
m resolution SPOT satellite data, respectively. Estimates of LAI and Cab are validated using 
ground data collected within fields of corn, wheat, soybean, cotton, alfalfa, grass and peanuts. 

2 RADIATIVE TRANSFER MODELS 
The atmospheric radiative transfer (6SV1) and canopy reflectance (ACRM) models were 
described in detail in Ref. 10 and only a brief overview will be given here. 

2.1 6SV1 
The vector version of the 6S (Second Simulation of the Satellite Signal in the Solar Spectrum) 
atmospheric radiative transfer model [46,47] converts at-sensor radiance to directional surface 
reflectance. 6SV1 is an advanced radiative transfer code designed to simulate the reflection of 
solar radiation by a coupled atmosphere-surface system for a wide range of atmospheric, 
spectral and geometrical conditions. For the present application, input parameters include sun 
zenith (θs), view zenith (θv), and relative azimuth (θraz) angles, total ozone content (O3), 
aerosol optical depth at 550 nm (τ550), total precipitable water (TPW), and type of aerosol 
model (τtype). The type of aerosol model (Continental, Urban, Maritime and Desert) 
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determines the aerosol volume and size distributions, and an option is implemented to allow 
mixing of aerosol models. The ground BRDF, required to determine the directional effect of 
the target, is computed in 6SV1 following the Markov chain canopy reflectance model, 
ACRM [48,49] (section 2.2). The consideration of directional effects is believed to be 
important due to significant non-Lambertian scattering properties of vegetation surfaces [50] 
and the directional influence of many model parameters on the canopy reflectance [51]. 

2.2 ACRM 
The turbid medium Markov chain canopy reflectance model, ACRM [48,49] incorporates 
Markov properties of stand geometry and has demonstrated utility in a range of managed and 
natural vegetation canopies [23,35,40,52]. The model operates in the spectral domain 400-
2500 nm and calculates directional canopy reflectance at a spectral resolution of 1 nm. The 
ACRM used here is a modified version that incorporates the mean leaf inclination angle (θl) 
and canopy fraction of senescent leaf material (fB) (see Ref. 10 for complete details). 
Additional canopy input parameters include total leaf area index (LAI), Markov clumping 
parameter (SZ) and hot spot parameter (SL). The model accounts for non-lambertian soil 
reflectance and soil reflectance spectra are here approximated as a function of a single soil 
parameter (s1) [10].  

In ACRM, the spectra of leaf reflectance and transmittance are computed using the most 
recent version of the leaf optics model PROSPECT [53,54]. In this five-variable PROSPECT 
model, leaf scattering is described by the leaf mesophyll structure parameter N (the effective 
number of elementary layers inside a leaf) and a tabulated wavelength-dependent refractive 
index of the leaf surface wax. The calculation of leaf absorption depends on the chlorophyll a 
and b content (Cab), the equivalent water thickness (Cw), the dry matter content (Cm), and leaf 
brown pigment (Cbp). The setting of Cw is not important since leaf water has no effect on the 
reflectance in the visible and near-infrared wavebands [23]. The effect of Cm is predominantly 

Fig. 1. a) PROSPECT simulations of leaf reflectance spectra for 
(no green pigments presents) leaf material. The brown pigm
controls the color (i.e. yellow – brown) of the senescent leaf m
spectra was simulated using Cab = 50 μg cm-2 and N = 1.
variations in the canopy fraction of senescent leaf mater
reflectance spectra for a hypothetical canopy (LAI=4, Cab=50, 
Cbp=3, s1=0.25, θs=25, θv=15, θraz=140). The gray sections de
the green, red and near-infrared band of the SPOT sensor (section 

green and senescent 
ent concentration (Cbp) 

aterial. The green 
4. b) The effect of 
ial (fB) on canopy 
N=1.4, Sz=1, θl=55, 

note the bandwidths of 
5.1). 
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Fig. 2. Schematic diagram of the regional-scale version of the coupled 6SV1 – 
ACRM – PROSPECT regularized parameter retrieval tool (REGFLEC). 
Parameter descriptions are given in the text. 

in wavelengths longer than 1200 nm [23,55], and is set to fixed values of 50 and 150 g m-2 for 
cropland [56] and forest [57], respectively. 

Brown pigments appear when leaves senesce and represent light absorption by non-
chlorophyll pigments. Cbp may vary between 0 (no light absorption) and ~ 5 (max. light 
absorption). In this model setup, green and senescent leaf material is assumed to be 
dissociated and green leaves assigned a fixed Cbp value of 0. The leaf mesophyll structure and 
leaf chlorophyll content of senescent leaf material is fixed to 2.5 and 0 μg cm-2, respectively. 
Fig. 1a illustrates PROSPECT simulations of leaf reflectance spectra for green and senescent 
(no green pigments presents) leaf material. Evidently the value used for Cbp that controls the 
color (i.e. yellow – brown) of the senescent leaf material has a significant impact on the leaf 
reflectance spectra. Canopy reflectance spectra representative of intermixed green and 
senescent leaf material are simulated by weighing PROSPECT leaf reflectance and 
transmittance spectra for green (Cbp = 0) and senescent leaf material (Cbp = 2 - 5) with the 
canopy fraction of senescent leaves (fB). The effect of variations in fB on canopy reflectance 
spectra is shown for a hypothetical canopy in Fig. 1b, which demonstrates a significant effect 
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in the near-infrared region and on the green (~550 nm) and red (~650 nm) band reflectance 
difference. 

3 REGFLEC 
The regional scale version of the REGularized canopy reFLECtance (REGFLEC) modeling 
tool (Fig. 2) adopts the general principles put forward in Ref. 10 but includes important 
modifications required for regional applicability of the scheme. REGFLEC integrates the 
atmospheric radiative transfer (section 2.1) and leaf optics and canopy reflectance (section 
2.2) models and adopts a look-up table based inversion technique for the retrieval of key 
biophysical properties (LAI and Cab). Input parameters to the model include remotely sensed 
at-sensor radiance observations in green, red, and near-infrared wavelengths, atmospheric 
state parameters to describe atmospheric scattering and absorption characteristics, and solar 
and sensor view angle geometries (Fig. 2).  

The REGFLEC retrieval scheme is here described as a 5-step procedure as displayed in 
Fig. 2. The two first steps follow strictly the procedure described in Ref. 10. As a brief 
summary, the first step in REGFLEC involves the conversion of at-sensor radiances in green, 
red and near-infrared wavebands to directional surface reflectance using the 6SV1 radiative 
transfer model (section 2.1). In step 2, model generated curves of LAI as a function of near-
infrared reflectance (ρnir), Normalized Difference Vegetation Index (NDVI), and Green 
Normalized Difference Vegetation Index (GNDVI), in addition to curves of leaf chlorophyll 
content as a function of green reflectance (ρgreen) are stored in Look-up tables (LUTs) for later 
access. The LUTs are generated by running ACRM (section 2.2) in forward mode using a 
wide parameter distribution space [10]. The three remaining steps involve important 
modifications and are explained in detail in three separate sections below. 

3.1 Initial soil background correction (step 3) 
The correction for background effects is separated from the estimation of canopy parameters 
to constrain the retrieval process and to minimize the possibly confounding influence of the 
background reflectance signal. 

Single band (e.g. LAI – ρnir) and vegetation index (e.g. LAI – NDVI) relationships differ 
distinctly in their response to variations in soil reflectance (i.e. s1 parameter) [10]. The strong 
sensitivity of LAI – ρnir relationships to variations in s1, even for fairly dense vegetation, is a 
result of high canopy penetration capabilities of ρnir, whereas the significantly reduced 
sensitivity of LAI – NDVI and LAI – GNDVI relationships to soil background effects is due 
to the VI normalization. At low vegetation coverage, a mismatch in LAI estimated using 
observations of ρnir (LAI – ρnir), NDVI (LAI – NDVI), and GNDVI (LAI – GNDVI), 
respectively, is most likely due to erroneous soil reflectance (s1) values, as these relationships 
are only minimally influenced by canopy characteristics (when the vegetation amount is low).  

This phenomena is exploited in REGFLEC by 1) accessing pre-computed spectral 
reflectance relationships (LUT database) using default vegetation parameters settings [10], 2) 
generating maps of LAI as a function of observed ρnir, NDVI and GNDVI over a wide range 
in s1 (0.05 – 0.5), and 3) on a pixel-wise basis, retaining the s1 value that produces the best 
agreement between the three separate LAI estimates (i.e. LAI=f(ρnir) ~ LAI=f(NDVI) ~ 
LAI=f(GNDVI)). As the technique is only meaningful for low vegetation coverage, s1 
retrievals are only retained for pixels where the derived LAI is less than 0.5.  

The extrapolation of the s1 retrievals to vegetated pixels (i.e. LAI > 0.5) is based on the 
assumption that soil texture (i.e. % sand, silt, clay, humus content) is the key determinant for 
spatial variations in soil reflectance. Thus valid retrievals of s1 are averaged for each soil type 
within the region, as determined from an ancillary soil texture map (Fig. 2), and the soil type 
specific values extrapolated to the unfilled vegetated pixels using the soil texture map. The 
soil brightness of individual pixels is also affected by soil moisture conditions. A wet soil is 
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much darker than a dry soil and the value of s1 will decrease with
moisture content. In an attempt to incorporate this factor into th
average of s1 retrieved for each soil type and subsequent extra
sub-regions (2 km × 2 km quadrants) where spatial variations i
within a given soil texture class are expected to be less pronounce

 an increase in the soil 
e extrapolation procedure, the 
polations is computed within 

n soil moisture conditions 
d. 

 This extrapolation approach provides a first crude estimate of spatially distributed soil 
reflectance values (i.e. s1) for the vegetated areas. In the 5th stage of REGFLEC (Fig. 2), a 
pixel-wise refinement of s1 is implemented (section 3.3).  

3.2 Land cover specific parameter retrievals (step 4) 
A schematic diagram of the land cover specific parameter retrieval procedure is given in Fig. 
3. Leaf structure (N), Markov clumping parameter (Sz), leaf inclination angle (θl), and brown 
pigment concentration (Cbp) are here denoted as land cover specific parameters (i.e. assumed 
to remain constant within a given land cover class). This assumption is believed to constrain 
the inverse retrieval of LAI and Cab from the directional spectral reflectance signal as it 
allows the radiometric information of pixels belonging to the same land cover class to be 
simultaneously incorporated in the inversion [10,39]. 

Fig. 3. Schematic diagram of the procedure adopted for retrieving canop
parameters (i.e. N, Sz, Cbp, θl) assumed constant within a giv
The basis idea is to use satellite observations of near-infrare
and GNDVI to calculate three separate LAI values for each pix
computed LUT database) and then to find the set of pa
combinations illustrated here) that produces the lowest absolut
these LAI estimates. See section 3.2 for a detailed description.

y 
en land cover class. 
d reflectance, NDVI 

el (using the pre-
rameters (5 sample 
e difference between 
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The retrieval procedure follows the general principle described in section 3.1 in that 
observations of ρnir, NDVI and GNDVI are used to calculate separate LAI maps for a wide 
parameter distribution space (for a large number of class-specific parameter combinations) 
using relationships from the LUT database (Fig. 3). The selection of optimal values for N, Sz, 
θl and Cbp is guided by minimizing the LAI difference (ΔLAI) calculated for each pixel 
according to the relationship 

iiiii LLLLLAI 3121 −+−=Δ ,   (1) 

where L1i, L2i and L3i are LAI values estimated as a function of ρnir, NDVI and GNDVI, 
respectively using LUT relationships for each parameter combination (i) of N (1.0,1.2 .. 2.0), 
Sz (0.5,0.6 .. 1.0), θl (40,55,70), and Cbp (2,3 .. 5). 

ΔLAI is only calculated for pixels with intermediate to high vegetation coverage, as 
determined by an NDVI threshold of 0.65 (Fig. 3). This maximizes the sensitivity of the 
reflectance signal to the land cover specific leaf and canopy variables whereas the influence 
of the potentially confounding background reflectance signal is reduced. As the consideration 
of pixel-wise variability in soil reflectance (i.e. s1) is less imperative at this stage in the 
modeling process, soil-type averaged s1 values (see section 3.1) are used as input for 
accessing the appropriate LUT relationships. 

Fig. 3 illustrates the variation of LAI - ρnir, LAI – NDVI and LAI – GNDVI relationships 
for 5 sample parameter combinations. Note that the leaf chlorophyll value (Cab), required for 
the Cab dependent NDVI and GNDVI relationships, is generated for each land cover specific 
parameter combination using Cab - ρgreen relationships from the LUT database (Fig. 3). 
Evidently the choice of parameter setting has a significant impact on the relationships. 
Calculated LAI values (for the sample pixel value) are seen to vary from 2 to > 9 and the 
divergence (ΔLAI) between the three independent LAI estimates varies considerably.  

In principle, the optimal parameter combination (i.e. N, Sz, θl, Cbp) will produce the closest 
match between the three LAI estimates for each pixel. However due to the ill-posed nature of 
model inversion [10] different parameter settings may yield identical reflectance spectra and 
more than one parameter combination may result in matching LAI values. Additional 
constraints are therefore introduced by creating so-called penalty maps for each parameter 
combination (Fig. 3). Penalties are assigned on a pixel-wise basis if 1) the upper (9.0) or 
lower (0.01) LAI bound is reached by any of the three LAI estimates, 2) Cab values generated 
by Cab – ρgreen relationships encounter out of range conditions (i.e. 10 > Cab > 90 μg cm-2), and 
3) neighboring pixels (i.e. 3 x 3 pixel box) encounter out of range LAI or Cab values at a given 
canopy fraction of senescent material (fB). While fB is allowed to vary between pixels within a 
given land cover class, this latter condition assumes that fB values are fairly similar among 
neighboring pixels.   

For each parameter combination, the ΔLAI and penalty maps are added together and then 
averaged spatially to produce a single indicator value. The parameter combination that results 
in the lowest indicator value is then retained and assumed to apply for the specific land cover 
class. In this process a land cover averaged fB is also output along with the standard deviation 
of fB within that class. 

3.3 Pixel-wise retrievals of LAI and Cab (step 5) 
With the land cover-specific determination of N, Sz, θl, and Cbp completed, LAI and Cab can 
be estimated for all pixels within each land cover class using relationships from the LUT 
database. Since N, Sz, θl, and Cbp are now fixed, the LAI - ρnir LUT is reduced to a multi-
dimensional array of only 2 dependent variables (fB and s1) while the Cab - ρgreen,  LAI – 
NDVI, and LAI – GNDVI LUTs are reduced to 3 dimensional arrays (Cab or LAI, fB  and s1 
being the dependent variables). 
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Fig. 4. Geographic location of the USDA-ARS Beltsvill
Research Center (BARC) (a) and Fort Cobb (F
yellow dots indicate LAI and leaf chlorophyll in-situ sam

e Agricultural 
C) (b) study areas. The 

pling sites. 

The approach adopted here aims at correcting for th
in s1 and fB may have on the LAI and Cab retrievals. This is
fB and s1 to provide a match between LAI values generate
NDVI and GNDVI, respectively. The allowed range of fB va
cover-specific average and standard deviation fB (section 3.
with ± 0.05 from the initial values (section 3.1). The optimal
each pixel and the corresponding LAI - ρnir/LAI - NDVI and C
for mapping LAI and Cab over the modeling domain. For th

e confounding influence that variation 
 facilitated by iteratively adjusting 
d as a function of observed ρnir, 
riation is determined by the land 
2) whereas s1 is allowed to vary 
 set of fB and s1 is determined for 

ab - ρgreen relationships are used 
e output LAI map, LAI - ρnir 

relationships are preferred over LAI – NDVI relationships at intermediate to high vegetation 
densities as the NDVI signal begins to saturate at intermediate densities whereas ρnir remains 
responsive to changing leaf biomass up to LAI ~ 6 [10]. In contrast, LAI – NDVI 
relationships are preferred for low vegetation coverage due to reduced sensitivity to 
background effects (compared to ρnir).   

4 FIELD EXPERIMENTS 
Satellite and ground-based data were collected in 2007 at the USDA-ARS Beltsville 
Agricultural Research Center (BARC), Maryland (39.02° N, 76.85° W) during two intensive 
weeklong field campaigns and at Fort Cobb (FC), Oklahoma (35.10° N, 98.44° W) during the 
Cloud and Land Surface Interaction Campaign (CLASIC).  

The BARC study area (Fig. 4a) includes the city of Beltsville and is characterized by a 
mix of forest (primarily deciduous broad-leaf species such as maple, oak and beech) and 
small fields of non-irrigated farmland (primarily corn, soybean and winter wheat). The region 
has a flat topography and sandy to loamy soils. It is located in the humid subtropical climate 
zone with usually hot and humid summers and an annual rainfall of around 1000 mm. The 
2007 growing season was characterized by precipitation totals well below average from 
around mid-June, and at the time of the first satellite acquisition (DOY 208) many fields were 
characterized by a high degree of plant stress. At this time winter wheat fields were harvested 
with stubble, soybeans were maturing and corn fields were in an advanced stage of leaf 
maturity with beginning leaf senescence in many parts. The second satellite acquisition 
occurred a month later (DOY 239) where the landscape was dominated with generally mature 
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fields of soybean, corn fields in an advanced stage of leaf senescence and patches of dense 
green grass for forage. 

The Fort Cobb (FC) study area (Fig. 4b) is located in the Southern Great Plains at an 
elevation of ~ 380 m and is home to significant irrigated wheat farm operations. Secondary 
crops include corn, peanuts, soybean and cotton. The area lies in a temperate, sub-humid 
climate and receives about 800 mm of rain annually. While summers are generally very hot 
and see moderate amounts of rainfall, the 2007 CLASIC experiment (April – August) was 
impacted by an extreme weather pattern that caused a record monthly June rainfall, in excess 
of 300 mm. Mature winter wheat fields dominated the landscape during the first image 
acquisition (DOY 112). At the time of the second acquisition (DOY 221) weather conditions 
had finally improved exposing a landscape with fields of corn in a wide range of plant 
development stages and generally mature fields of cotton, soybean and grass for forage. 

4.1 Biophysical measurements 
Measurements of LAI and leaf chlorophyll were collected within 5 days of each satellite 
acquisition. The data were collected in plots of ~ 15 m x 15 m and ~ 25 m x 25 m, 
respectively to provide representative values for comparison with the satellite data. The center 
in each plot was geolocated using handheld Global Positioning System (GPS) units (accuracy 
≈ 4 m). LAI was measured non-destructively using a LAI-2000 instrument (LiCor, USA). The 
LAI measurements were made shortly after sunrise, shortly before sunset or during overcast 
conditions using a 90 degree mask to prevent interference caused by the operator’s presence. 
For the row crops (i.e. corn, cotton), four readings were made along diagonal transects 
between the rows as suggested in the LAI-2000 manual for row crops, and repeated once (8 
below canopy readings in total). We have found that this measurement protocol results in LAI 
values that are in good agreement with the ‘true’ LAI (i.e. from destructive leaf sampling). 

Fig. 5. Species-specific calibration curves used to convert non-dimensional 
SPAD values to absolute leaf chlorophyll units (μg cm-2). The relationships are 
based on a spectrophotometrical analysis of leaf samples using DMSO as 
extraction solvent (see section 4.1). The exponential model fits are provided for 
wheat, corn, sorghum and potato cultivars. The correlation of determination (r2) 
and root-mean-square deviation (rmsd) is listed for each fit. 
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The LAI of each plot was calculated as the average of 6 - 10 spatially representative 
measurements (6-10 x 8 readings). 

Leaf chlorophyll content was measured non-destructively with a portable SPAD-502 
Chlorophyll meter (Spectrum Technologies, Inc.). This instrument measures leaf 
transmittance at two wavelengths: red (650 nm) where light absorbance by chlorophyll is 
efficient and near-infrared (940 nm) where absorbance by chlorophyll is insignificant. The 
SPAD-502 meter calculates a non-dimensional SPAD value (0 – 99) with a claimed accuracy 
of ±1 SPAD unit. Six separate measurements with the SPAD meter were made on each leaf to 
assess the variability in chlorophyll content across the leaf. In each of the field plots, the 
average of ~50 x 6 SPAD readings were acquired. During the measurements the sensor head 
was shaded to avoid direct sunlight from reaching the instrument. In stands with a mix of 
green and senescent leaves, only the green leaves were measured.  

In order to convert the unitless SPAD values into absolute measures of leaf chlorophyll, a 
relationship between leaf chlorophyll content and SPAD values must be determined. The 
relationships adopted here are based on a spectrophotometrical analysis of leaf samples 
collected during the 2008 growing season in Bushland, Texas. The analysis was done using 
the same SPAD meter that was used during the BARC and Fort Cobb field experiments. Leaf 
samples were collected from several fields of corn, wheat, cotton, potato and sorghum and 
transported in a cooler to the lab where the samples were processed immediately. For each 
leaf sample the mean of 10 SPAD readings was recorded. Two discs (1 cm in diameter) from 
each leaf sample were then incubated with 4 ml DMSO (Dimethyl sulfoxide) (99.7%) and 
placed in a dark chamber at room temperature for 48 hours (at this time the tissue had 
certainly become colorless). The absorbance at 648.2 and 664.9 nm was measured with a 
SPEC-20 spectrophotometer and total leaf chlorophyll (μg ml-1) calculated using the 
equations listed in Ref. 58. Conversion to the preferred units of μg cm-2 was accomplished by 
multiplying by the ratio of solvent volume (ml) to the total one-sided area of the leaf disks 
(cm2).  

The resultant calibration curves are depicted in Fig. 5. An exponential model provided the 
best fit to the data, consistent with other studies that have reported deviations from linearity in 
the high and low SPAD range [59-61]. The correlation between SPAD and Cab values are 
excellent for the wheat, corn, sorghum and potato samples with coefficient of variations (R2) 
ranging from 0.94 – 0.99 and root-mean-square (RMS) deviations less than 4.4 μg cm-2. 
Given the narrow range in SPAD values obtained in cotton, a relationship was not fitted to the 
cotton data. A larger scatter is evident for the cotton dataset, which may be related to the fact 
that cotton leaves have many veins. Sorghum appears to be characterized by a steeper 
exponential rise in leaf chlorophyll versus SPAD values. In general, however, the relationship 
between leaf chlorophyll and SPAD value was reasonably well defined, especially for low to  
intermediate SPAD values. An exponential fit to the entire dataset (corn, wheat, sorghum, 
potato, cotton) yielded an R2 of 0.93 and a RMS deviation of 4.9 μg cm-2 (Fig. 5). These 
results indicate in accordance with other studies [59] showing that the determination of leaf 
chlorophyll per unit area appears to be relatively independent of species. 

5 MODEL INPUT DATA 

5.1 At-sensor radiance data 
Radiance data in the green (500–590 nm), red (610-680 nm) and near-infrared (780-890 nm) 
wavebands were acquired by SPOT-5 High Resolution Geometric (HRG-2) and SPOT-4 
High Resolution Visible and InfraRed (HRVIR) imaging instruments over the BARC and FC 
study areas, respectively. The SPOT-5 radiances at the BARC study area were obtained at 10 
m resolution at approximately 12:15 p.m. local time for 30 km x 30 km image swaths. The  
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SPOT-4 20 m resolution radiances were acquired at ~ 12.30 p m. for 60 km x 60 km image 
swaths. 

Dates and image specifications for the acquired Level 1A and 2A products are listed in 
Table 1. The level 2A products are rectified to a standard cartographic projection (UTM 
WGS84) using cubic convolution resampling and the location accuracy is ~ 30 m for the 
HRG and ~ 350 m for the HRVIR imaging instruments (www.spot.com). However, 
convolution resampling averages neighboring pixels to provide a smoother appearance, 
thereby losing the original radiometric signal of the image pixels. To preserve the information 
content of the individual pixels, image-to-image rectification was applied to the level 1A 
product (no geometric corrections performed) using the geolocated Level 2A product as 
reference and a nearest neighbor resampling technique. The native geolocation accuracy was 
improved using road networks and ground collected GPS data at road intersections. 

The sensitivity to the received radiance signal is not spectrally uniform within the SPOT 
wavebands. Peak sensitivities are centered close to 545 nm, 650 nm and 835 nm for the green, 
red and near-infrared bands, respectively. However significant discrepancies may occur if 
only a center wavelength is input to REGFLEC (wavelength information is required for the 
6S radiative transfer and ACRM forward LUT runs). This is especially the case for the green 
waveband (~ 500 – 590 nm) as the center region of this band is located in the canopy 
reflectance peak of green vegetation whereas reflectances decrease on either side of this peak 
(see Fig. 1b). Thus the use of only a center wavelength for the ACRM forward runs will cause 
modeled green reflectances (i.e. 545 nm) to overestimate satellite observed band-averaged 
(i.e. 500 – 590 nm) reflectances. To address this issue, 5 nm resolution spectral sensitivities 
(www.spot.com) were used to weight the spectral response of each band. While this 
procedure seems less critical for the red and near-infrared wavebands that see a near-linear 
change in the spectral reflectances (Fig. 1b), the incorporation of the spectral sensitivities is 
still important as model predictions of key vegetation parameters like leaf chlorophyll change 
as a result of subtle differences in canopy reflectance [11]. 

BARC – MD Fort Cobb – OK External 
parameter July 27th August 27th April 22nd August 9th  

AERO MYD AERO MOD AERO MYD AERO MOD τ550 0.31 0.30 0.19 0.15 - 0.01 0.10 0.05 
AERO AIRS AERO AIRS AERO AIRS AERO AIRS 

TPW  [ g cm-2] 
3.42 3.71 2.56 2.55 - 1.19 3.01 3.21 

AIRS AIRS AIRS AIRS 
O3      [cm-atm] 

0.378 0.319 0.307 0.321 
C U M D C U M D C U M D C U M D 

τtype    [%] 
50 50 0 0 50 50 0 0 100 0 0 0 100 0 0 0 

θs       [°] 23.35 30.80 26.90 23.60 
θv       [°] 19.35 24.23 10.30 16.10 
θraz     [°]          144.09          132.35          134.10          142.00 

Table 1.  Atmospheric state characteristics and view-sun angle geometries for satellite acquisitions at 
Maryland (BARC) and Oklahoma (Fort Cobb) study sites during 2007. 

AERO: AERONET data from Goddard space flight center (MD) and Oklahoma State University (OK) 
AIRS: Aqua Atmospheric infrared sounder data (45 km resolution) 
MOD/MYD: Terra or Aqua MODIS data (10 km resolution) 
C,U,M,D: Continental, Urban, Maritime, Desert 
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5.2 Atmospheric state data 
Table 1 lists the values used for the atmospheric parameters required as input to the 6S 
radiative transfer model (section 2.1). The level 2.0 AErosol RObotic NETwork (AERONET) 
aerosol optical depth (τ550) and total precipitable water (TPW) data from nearby NASA GSFC 
(BARC study area) and Oklahoma State University (Fort Cobb study area) sites were used 
[62] except for the April 22nd acquisition at Fort Cobb due to data unavailability. On this day 
τ550 was taken from the 10 km resolution Terra MODIS aerosol product (MOD04). MODIS 
aerosol data were also retrieved for the other acquisition dates and the generally good 
agreement with the sun photometer data (Table 1) suggests that MODIS derived τ550 values 
may be a good alternative when sun photometer data are unavailable. TPW data from the 
Atmospheric Infrared Sounder (AIRS) level 2 standard retrieval product were used on April 
22nd. AIRS is a sounding instrument on board the Aqua satellite and derived atmospheric state 
parameters are reported at a spatial resolution of 45 km x 45 km and represent midday 
conditions (~ 11.30 a.m. to 2 p.m). The AIRS TPW product has been validated with an 
uncertainty estimate of 5-20 % (http://disc.sci.gsfc.nasa.gov/AIRS/documen-tation.shtml), 
and the retrievals for the other acquisition dates (Table 1) demonstrate a good agreement with 
the sun photometer measurements. Values of total ozone content (O3) at the approximate time 
of the SPOT acquisitions were also obtained from the AIRS standard retrieval product. 

5.3 Land cover and soil map 
A key assumption in REGFLEC is that canopy characteristics (i.e. N, Sz, θl, Cbp) are uniform 
within a given land cover class (section 3.2). A land cover map is thus needed to divide the 
region into a set of classes that satisfy this criterion. Actual knowledge of the specific land 
cover types (e.g. grassland, corn, wheat, soybean, deciduous forest) is not a prerequisite 
(specific land cover type information is not used in REGFLEC) but may improve the 
separation of the image into an appropriate set of classes.  

For the BARC study area, field and forest boundaries were digitized manually using the 
10 m resolution SPOT imagery as base map and land cover types assigned based on a 
rigorous windshield survey (classification accuracy ~ 100 %). Less ground truth data on land 
cover type were available for the Fort Cobb study area; therefore, an unsupervised isodata 
classification was applied to the spectral datasets from the two SPOT acquisitions. The 
isodata classification is based on a number of input threshold parameters such as the 
minimum and maximum number of classes to define [63]. The classification was initially run 
with a large number of classes (i.e. 30) that subsequently were regrouped manually into a 
smaller set of classes (i.e. 9) using the available ground truth data. An overall classification 
accuracy of 79 % resulted from comparing the classification result with the ground truth data 
using a confusion matrix approach. 

In both study regions, care was taken to mask out urban areas and water bodies as these 
are likely to be identified as low vegetation density areas and thus may corrupt the initial 
estimation of the background reflectance signal (see section 3.1). A 2-pixel buffer zone was 
applied to vector maps of road transportation networks to mask out road contaminated pixels. 

The extrapolation of soil parameter (s1) retrievals for low vegetation density pixels to the 
entire region is accommodated by using a soil texture map (section 3.1). In this study, 
spatially distributed near-surface soil type data were derived from the State Soil Geographic 
Database (STATSGO) [64] 1-km multi-layered soil texture dataset for the continental U.S. 
(CONUS). The dataset consists of 9 soil classes (sand – clay) and contains 11 soil layers. 
Data from the top layer was used here. While this dataset provides soil type information at a 
coarse (1 km) resolution it is readily available for the U.S. and may be implemented as an 
integral component of REGFLEC to facilitate model implementation across the U.S. The 
dataset is assumed appropriate for capturing overall spatial trends in soil type (i.e. soil 
brightness/color) for the initial soil background correction (section 3.1). 

Journal of Applied Remote Sensing, Vol. 3, 033529 (2009)                                                                                                                                    Page 13



6 RESULTS AND DISCUSSION 

Fig. 6 REGFLEC derived maps of 10 m resolution leaf chlorophyll and LAI for 
a subset of the BARC study region at the July (a) and August (b) SPOT-5 
acquisitions. Pixels with no retrievals have been filled with grey-scale near-infrared 
reflectance values and these pixels represent urban areas, water bodies, road 
networks or forested areas (b). 
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6.1 BARC study region 
Fig. 6 shows REGFLEC retrievals of LAI and Cab using 10 m resolution SPOT radiance data 
over a subset of the BARC study region. Urban areas, water bodies and road networks have 
been masked out in both images. The July 27th image (Fig. 6a) includes LAI and Cab retrieval 
results for forested areas, while these have been omitted in the August 27th image (Fig. 6b). 
This is because the upper bound in leaf chlorophyll (i.e. 80 - 90 μg cm-2) is reached for the 
majority of the forested pixels, which may reflect limitations in model applicability to forest 
canopies. While the homogeneous canopy reflectance model (ACRM) employed here has 
been applied to forest canopies [35,65], it does not explicitly account for the complex transfer 
of radiation within forest canopies and effects such as shading. The larger extinction of 
radiation in a deep forest canopy will decrease the spectral reflectances of a forest canopy 
compared to a homogeneous canopy with similar green leaf biomass levels. As a 
compensating effect, a homogeneous canopy reflectance model may underestimate LAI and 
overestimate leaf chlorophyll [23,66]. Ref. 43 also observed a tendency of the PROSPECT 
leaf optics model to overestimate Cab for a wide range of broad leaf tree species and found it 
necessary to recalibrate the PROSPECT specific absorption coefficients. The LAI forest 
retrievals, however, appear reasonable reaching maximum values on the order of 6 (Fig. 6a). 
This may be attributed to the high dry matter content (150 g m-2) adopted for forested areas in 
REGFLEC (a value of 50 g m-2 is used for cropland) as an increase in Cm will increase LAI 
thereby counteracting the LAI compensating effect [23]. 

Drought conditions throughout much of July imposed varying degrees of plant stress 
within intermediate to high vegetation density fields of soybean and corn and accelerating 
leaf senescence in many places. Cab and LAI show significant spatial heterogeneity within the 
depicted soybean field (zoomed views), varying from ~10 – 70 μg cm-2 and ~0.5 – 4.5, 
respectively (Fig. 6a). Photographs of the field reveal significant heterogeneity in Cab and 
LAI, and the model successfully detects the observed shift in Cab (i.e. leaf color) and leaf 
biomass along Northwesterly and Southwesterly transects (Fig. 6a). 

Model estimates of leaf chlorophyll and LAI are on the order of 45 μg cm-2 and 4.0, 
respectively for the forage grass field highlighted in the August 27th retrieval, and the more 
uniform spatial distribution agrees well with observations (photo) (Fig. 6b). The corn field 
also highlighted in Fig. 6b showed a strong east-west gradient in crop development, with 

Fig. 7. Validation of LAI (a) and leaf chlorophyll (b) estimates for the BARC 
study region. The number of samples (n), and overall relative and absolute root-
mean-square deviation (rmsd) and bias between estimates and measurements are 
listed. The thick line is the 1:1 line. 

Journal of Applied Remote Sensing, Vol. 3, 033529 (2009)                                                                                                                                    Page 15



advanced senescence in the eastern part of the field.  REGLEC maps of Cab, canopy fraction 
of senescent leaf material (fB) and LAI capture this gradient. Cab, for example, is seen to 
change from ~45 μg cm-2 to ~20 μg cm-2 as the field conditions change from mostly green to 
partially senescent corn, with corresponding changes in REGLEC estimates of fB.   

For the purpose of validation, model estimates were averaged within a 2 x 2 pixel block 
around the center of each measurement plot to account for geolocation error and any 
mismatch between the point of measurement and the pixel dimensions. The ground-based Cab 
validation dataset was constructed using species-specific SPAD – Cab relationships if 
available; otherwise, the overall exponential fit was used (Fig. 5). A comparison between 
measurements collected within 5 days of the SPOT acquisitions with model estimates yields 
RMS deviations of 12.7 % and 11.4 % (of the mean observed value) for LAI and Cab, 
respectively (Fig. 7a and b). The model successfully reproduces observed magnitudes and 
variances in leaf chlorophyll and LAI for a range of agricultural crops and over a wide range 
in leaf chlorophyll levels and vegetation density. Importantly, REGFLEC accurately retrieves 
LAI at high values (>3) without suffering saturation effects common to NDVI-based 
retrievals. This can be attributed in part to the use of LAI - ρnir relationships (section 3.3), as 
the near-infrared band remains responsive to changing leaf biomass in densely vegetated 
areas [23,44]. The Cab validation plot excludes data points with a measured LAI less than 0.8, 
as the sensitivity of the green reflectance signal to leaf chlorophyll variations is very low for 
sparse vegetation canopies (see next section). 

6.2 Fort Cobb study region 
Fig. 8 displays REGFLEC maps of Cab and LAI at the time of the two SPOT-4 (20 m 
resolution) acquisitions for a subset of the FC study region. REGFLEC was not run for urban 
areas, water bodies or road networks, which have been filled with a scaled near-infrared 
reflectance image in Fig. 8. At the time of the April overpass, the region is characterized by 
an equal mix of bare and intermediate to high vegetation density fields (Fig. 8a). The 
vegetated fields are dominated by irrigated wheat operations that typically employ an 
automated center pivot watering system (see for example the zoomed Cab view in Fig. 8a). 
Interestingly, in this case Cab tends to be lower outside (~35 μg cm-2) than inside (~45 μg cm-

2) the pivot even though high density wheat (LAI ~5) occupy the entire square (Fig. 8a), 
which may indicate enhanced risk of stress conditions in the non-irrigated part of the wheat 
field. 

The overall leaf chlorophyll content for the wheat fields is 41 μg cm-2 (std.dev = 10 μg 
cm-2), whereas sparsely vegetated (0.3 < LAI < 1.0) and bare soil (LAI < 0.3) areas are 
characterized by average Cab values of 26 μg cm-2 (std.dev = 14 μg cm-2) and 24 μg cm-2 
(std.dev = 14 μg cm-2), respectively (Fig. 8a). The Cab results for the sparsely vegetated areas 
are questionable as reduced green reflectance sensitivity to leaf chlorophyll variations 
combined with increased sensitivity to soil background effects makes it extremely difficult to 
extract the leaf chlorophyll signal from the surface reflectance spectra [10,11]. The fact that 
the green reflectance signal is more responsive to leaf chlorophyll variations at low values of 
Cab (see Fig. 2g in Ref. 10) may explain the tendency towards low Cab levels for sparsely 
vegetated areas (Fig. 8a and b).  

At the time of the second acquisition (Fig. 8b), vegetated fields represent primarily 
irrigated corn in a wide range of plant development stages, as well as irrigated cotton, peanuts 
and grass. The winter wheat fields have been harvested and are now tilled or untilled soil or 
sparsely vegetated. While the predominantly green and mature stands of corn and cotton (dark 
green pivots in Fig. 8b) have leaf chlorophyll values on the order of 55 – 70 µg cm-2, the 
senescing corn field displayed in Fig. 8b (zoomed view) is characterized by significantly 
reduced leaf chlorophyll levels. LAI (green + dead material) is estimated closely to 2.5, the 
canopy fraction of senescent material is ~0.25, and bulk (i.e. Cab×[1-fB]) leaf chlorophyll 
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Fig. 8. REGFLEC derived maps of 20 m resolution leaf chlorophyll and LAI for a 
subset of the Fort Cobb study region at the April (a) and August (b) SPOT-4 
acquisitions. Pixels with no retrievals have been filled with grey-scale near-
infrared reflectance values and these pixels represent urban areas, water bodies or 
road networks. 

values are on the order of 25 μg cm-2. This sensitivity demonstrates the potential of 
REGFLEC maps for general stress detection and crop management applications.  

Also highlighted in Fig. 8b is a grass crop grown under center pivot irrigation, with the 
remaining portion of the zoomed image in bare soil (visible in the far background in the 
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Fig. 9. Validation of LAI (a) and leaf chlorophyll (b) estimates for the Fort Cobb 
study region. The number of samples (n), and overall relative and absolute root-
mean-square deviation (rmsd) and bias between estimates and measurements are 
listed. The thick line is the 1:1 line. 

photo). The photo suggests a dense and homogeneous grass stand within the pivot circle, 
which is consistent with REGFLEC estimates of LAI (~ 4.3±0.4) and Cab (~ 40±2 μg cm-2).  

As with the BARC region, REGFLEC estimates of LAI and Cab over Fort Cobb were 
validated using the average value of a 2 x 2 pixel block around the center of each 
measurement plot.  The RMSD (13.8 and 18.8% for LAI and Cab, respectively) and bias (-3.2 
and -4.1%) in the Fort Cobb retrievals was larger than those found for BARC, with the largest 
Cab errors associated with the grass validation sites. While the bias increases (-8.3 %) the 
relative RMS deviation in Cab is reduced to 13.8 % (7.0 μg cm-2) if the two grass validation 
sites are removed from the statistic analysis. This may reflect, in part, inaccuracy in the 
conversion of SPAD measurements into actual chlorophyll units; as a spectrophotometrical 
analysis of leaf samples from grass species wasn’t performed there is no assurance that the 
established overall exponential fit between leaf chlorophyll content and SPAD values (Fig. 5) 
also applies to these fields. Improper separation of vegetation types may provide another 
explanation; mixing of land cover types with highly different leaf structural and canopy 
characteristics will introduce greater uncertainties in the retrieval of land cover specific 
parameters (section 3.2), which may result in biased leaf chlorophyll estimates. The Cab 
retrieval results were excellent for the BARC study region (Fig. 7b) where the land cover 
classification was done manually based on a rigorous visual inspection of the fields. The 
isodata-based classification applied at Fort Cobb (section 5.3) may have increased the 
likelihood of mixing individual land cover types. Despite these issues, REGFLEC Cab 
retrieval accuracies for the FC region still compare favorably to results reported in other 
studies on agricultural crops and grasses [29,30,55,67]. 

6.3 Land-cover specific parameter retrievals 
As detailed in section 3.2, REGFLEC assumes invariance of leaf structure (N), Markov 

clumping parameter (Sz), leaf inclination angle (θl), and brown pigment concentration (Cbp) 
within a given land cover class. The values derived for these land-cover-specific parameters 
for agricultural cover types within the BARC and FC study regions are listed in Table 2 along 
with the average value of fB within each class. The results for the BARC area suggest little 
variation in derived leaf structure and Markov clumping characteristics between the corn, 
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soybean, and grass cultivars. The value of 1.0 – 1.25 for the leaf structure parameter is at the 
lower extreme of the reported range in N and is lower than the value (N = 1.41) derived in 
Ref. 68 by inverting the PROSPECT model on measured corn reflectance and transmittance 
spectra, and values of 1.4 and 1.7 issued from PROSPECT inversions on corn and soybean 
leaf spectra, respectively [30]. Retrievals of N for the FC region appear to be more in line 
with these indirect measurements (Table 2). However N cannot be directly measured and a 
verifiable set of species-specific values does not exist. 

A value of 1.0 is being consistently derived for Sz, which indicates a random distribution 
of vegetation elements within the canopy. While this is a reasonable approximation for the 
grass, wheat and soybean fields in the two study regions, values between 0.4 and 0.95 have 
been reported for row crops like corn and cotton [48,69,70]. Nevertheless, the random 
distribution assumption (i.e. Sz = 1.0) resulted in excellent and largely unbiased agreements 
between REGFLEC LAI estimates and measurements made with the LAI-2000 for a wide 
range of canopies (Fig. 7a and 9a). While optical instruments like the LAI-2000 in principle 
provide effective rather than ‘true’ LAI [71], the employed measuring protocol for row crops 
(section 4.1) is believed to largely correct for deviations between effective and ‘true’ LAI for 
clumped canopies. However a thorough analysis on the relationship between measurements of 
LAI using non-destructive optical (LAI-2000) and destructive leaf sampling techniques may 
be needed to establish the nature (i.e. effective versus ‘true’) of the REGFLEC LAI estimates 
for the two study regions.  

In REGFLEC N, Sz, θl and Cbp are adjusted to arrive at LAI and Cab solutions that best 
satisfy the matching criteria described in section 3.2. While these estimates are likely to 
reflect actual leaf and canopy structural characteristics of a prescribed land cover class, model 
uncertainties (e.g. inversion technique, equation set and simplifying assumptions), land cover 
classification errors (mixing of cover types) and uncertainties in the reflectance data (e.g. due 
to radiometric and atmospheric correction) may cause deviations from the ‘true’ set of land 
cover specific parameter values. Ref. 10 discussed the effect of atmospheric effects on 
estimates of LAI and Cab and identified the choice of aerosol model (i.e. continental versus 
urban) as a particularly critical element. Ref. 65 tested the sensitivity of a neural-network 
radiative transfer model to uncertainty in the input reflectance and reported a relative 
difference between RMS deviations obtained using original and biased datasets (i.e. 
[RMSDbias-RMSDorig]/RMSDorig×100) of 41% for a reflectance bias of +10%. Similar test 

Land cover N  Sz  θl  Cbp  fB  
BARC Jul Aug Jul Aug Jul Aug Jul Aug Jul Aug 

Corn 1.25 1.0 1.0 1.0 70 70 2.5 4.5 0.09 0.34 
Soybean 1.0 1.0 1.0 1.0 70 70 4.0 4.5 0.08 0.10 
Alfalfa - 1.5 - 1.0 - 70 - 4.5 - 0.09 
Grass 1.0 1.0 1.0 1.0 70 70 2.5 4.5 0.09 0.02 

FC Apr Aug Apr Aug Apr Aug Apr Aug Apr Aug 
Wheat 1.5 - 1.0 - 70 - 4.5 - 0.12 - 
Corn - 1.5 - 1.0 - 55 - 4.5 - 0.14 
Cotton - 1.75 - 1.0 - 70 - 4.5 - 0.14 
Peanuts - 1.5 - 1.0 - 70 - 4.5 - 0.12 
Grass - 1.25 - 1.0 - 55 - 4.5 - 0.15 

Table 2. REGFLEC inverse estimates (section 3.2) of land cover specific 
canopy parameters for major cover types within the BARC and FC study 
regions. The average value of fB within each land cover class is also reported. 
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simulations with REGFLEC resulted in a RMSD difference of on
Cab for a reflectance uncertainty of +10%. REGFLEC parti
reflectance errors by adjusting the land cover specific parame

ly 15% for LAI and 16% for 
ally compensates for input 

ters; the Fort Cobb corn and 
cotton land cover types, for example, saw N increase to 1.75 (from 1.5) and 2.0 (from 1.75), 
respectively as a result of adding a 10% error to the surface reflectance dataset.  Thus despite 
apparent discrepancies in the land cover specific retrievals, the REGFLEC retrieval system 
may not benefit from site-specific in-situ calibration data (if available) as N, Sz, θl and Cbp 
function more as an internal calibration of the model system. This is also supported by the 
overall high LAI and Cab retrieval accuracies previously reported.  

Fig. 10 shows original REGFLEC output results (Cab, LAI and fB) for a cotton pivot 
within the FC study region and demonstrates how variations in N, Sz and θl from their 
originally derived value (1.75, 1.0, 70, respectively) affect the output maps. For each 
simulation the modeled values of Cab, LAI and fB are provided for two sites within the field 
where measurements were made. The original REGFLEC simulations at the two field plots 
(red and white flag) indicate a canopy of green leaves (fB ~ 0.02) characterized by a LAI of 

Fig. 10 a) REGFLEC output results of Cab, LAI and fB for
the Fort Cobb study region. The sensitivity of the output results 
(b), Sz (c) and θl (d) is shown. For each simulation the exact va
and fB are provided for two sites within the field where meas
Photos of the two field plots are provided at the bottom along
measurements at each site.

 a cotton pivot within 
to variations in N 
lues of Cab, LAI 

urements were made. 
 with the in-situ 
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3.6 - 3.8 and a Cab of 56 - 62 μg cm-2, which agrees well with the observed values of 3.3 – 3.9 
and 63 – 65 μg cm-2, respectively (Fig. 10a). Changing the value of N from 1.75 to 1.0 causes 
a significant decrease in Cab (~32 %), LAI responds with a ~30% increase, whereas fB 
remains largely unchanged (Fig. 10b). This response of Cab and LAI to a decrease in N is 
explained by a resultant decrease in simulated green and near-infrared reflectance [23,72] as a 
function of Cab and LAI, respectively. As a result discrepancies between estimates and 
observations of Cab and LAI increase (Fig. 10b).  

The clumping effect was investigated by changing Sz from 1.0 (no clumping) to 0.5 
(significant clumping). REGFLEC compensates by increasing Cab, LAI and fB to unrealistic 
levels; at the field plot with the white flag measurements of Cab, LAI and fB are overestimated 
at 17 μg cm-2 (26 %), 2.9 (88 %) and 0.18, respectively (Fig. 10c). While variations in θl 
appear to have a relatively minor influence on Cab, LAI values are seen to decrease 
significantly as the canopy changes from an erectophile to a predominantly planophile leaf 
angle distribution (Fig. 10d). Evidently, REGFLEC output results are highly sensitive to the 
choice of parameter values and in this case REGFLEC arrived at a set of land cover specific 
parameters (N=1.75, Sz=1.0, θl=70) that allow for realistic retrievals of Cab, LAI and fB (Fig. 
10a). 

6.4 Comparison with empirical models 
This section investigates the retrieval accuracies obtainable by standard empirical approaches 
in order to provide a comparison with the performance results of the physically-based 
REGFLEC model. Fig. 11 demonstrates the correlation of measurements of LAI with 
atmospherically corrected satellite observations of NDVI, GNDVI and near-infrared 
reflectance for the two study regions. As expected, LAI is reasonably correlated with NDVI 

Fig. 11 Correlation between in-situ measurements of LAI and atmospherically 
corrected satellite observations of NDVI, GNDVI and near-infrared reflectance 
for BARC and FC study regions. The relative and absolute root-mean-square 
deviation (rmsd) is listed along with the type of regression model. 
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and GNDVI (Fig. 11a and b) and the exponential regression analysis produces overall relative 
RMS deviations on the order of 19 % (Fig. 11). The uncertainty estimates are likely to be at 
the low end as an independent LAI dataset was not available for validation.  

While the normalized vegetation index relationships approach a saturation level at 
intermediate LAI values (~3 – 4), the near-infrared reflectances tend to increase more linearly 
with increasing leaf biomass (Fig. 11c). However the increased LAI sensitivity of the near-
infrared band is not evident from an empirical-statistical standpoint (RMSD = 22% and 33%, 
respectively) being the result of confounding factors. Variations in soil reflectance, canopy 
characteristics, and external conditions significantly influence the near-infrared reflectance 
signal and multiple soil and land cover specific LAI – ρnir relationships are needed to 
effectively utilize the added information content of the ρnir band [10]. For both study regions, 
REGFLEC LAI retrieval accuracies were higher than achievable by any of the empirical 
models displayed in Fig. 11. 

While changes in leaf chlorophyll induce large differences in green spectrum canopy 
reflectance [13,73] these changes are also confounded by key factors such as soil background, 
canopy architecture and LAI [10,11]. The complex nature of leaf chlorophyll retrieval from 
canopy reflectance spectra can be clearly envisaged from the largely uncorrelated 
relationships between measurements of leaf chlorophyll and satellite observations of green 
reflectance (Fig. 12a). Empirical relationships are typically more successful at predicting total 
canopy chlorophyll content (i.e. LAIgreen x Cab) using an index such as the Gitelson green 
index (GI) that combines the chlorophyll sensitive green band and LAI sensitive near-infrared 

Fig. 12 a) Correlation between in-situ measurements of leaf chlorophyll 
content and atmospherically corrected satellite observations of green 
reflectance for BARC and FC study regions. b) Correlation between 
measurements of total canopy chlorophyll content (i.e. LAIgreen×Cab) 
and the Gitelson green index (ρnir/ρgreen-1). The relative and absolute 
root-mean-square deviation (rmsd) is listed along with the type of 
regression model. 
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band (ρnir/ρgreen-1) [45]. Still these relationships are characterized by significant scatter 
(relative RMS deviations between 25 and 27%) due to unresolved influences of e.g. canopy 
architecture, leaf structure and background effects (Fig. 12b). In fact, GI exhibit a higher 
correlation (i.e. r2) with LAIgreen than with LAIgreen x Cab in the BARC (0.83 versus 0.74) and 
FC (0.76 versus 0.74) study regions suggesting little use of the index for detecting variations 
in chlorophyll unless confounding factors are accounted for. However the derivation of total 
canopy chlorophyll may not be as straightforward as LAIgreen x Cab suggests as vertical 
gradients in leaf chlorophyll commonly occur within canopies [45,74].  

While  empirical or semi-empirical approaches have been shown to be useful for also 
generating robust and more generally applicable VI relationships, especially when employing 
narrowband hyperspectral indices [11,42,74] and reflectances in the red edge spectrum 
[16,45], the results from this study demonstrate the encouraging utility of a non-calibrated 
(non-empirical) integrated (atmosphere – canopy – leaf) radiative transfer model for 
separating the LAI and leaf chlorophyll signal from standard (i.e. green, red and near-
infrared) broadband canopy reflectance spectra over a diversity of land cover types. 

7 CONCLUSIONS 
The regularized canopy reflectance modeling tool (REGFLEC) was effectively implemented 
at the regional scale using a new LUT-based inversion strategy that incorporates various 
techniques for constraining the retrieval of LAI and leaf chlorophyll from canopy reflectance 
spectra. The integrated system of radiative transfer models (atmosphere – canopy – leaf) 
facilitates canopy biophysical retrievals directly from at-sensor radiance data in three broad 
spectral bands (green, red and near-infrared) present on most airborne and operational 
satellite sensors. The model system requires no calibration and may be run for any locality 
with availability of standard atmospheric state data (i.e. aerosol optical depth, aerosol type, 
precipitable water vapor, ozone content), a land cover classification and soil map. 

REGFLEC was applied to study regions in Maryland and Oklahoma using 10 and 20 m 
resolution SPOT-5 and SPOT-4 radiance data, respectively. The model was able to reproduce 
visible (i.e. from photographs) spatial patterns in vegetation density and leaf chlorophyll (i.e. 
greenness) within stressed and/or partially senescent agricultural fields. REGFLEC 
demonstrated robust retrieval capabilities for a mosaic of land cover types (wheat, corn, 
soybean, cotton, alfalfa, grass, peanuts) over a wide range in leaf chlorophyll levels (20 < Cab 
< 75) and vegetation density (0 < LAI < 6) and for conditions with intermixing of green and 
senescent leaf material and soil background interference. Reported relative RMS deviations 
between estimates and in-situ measurements were lower for LAI (13 – 14 %) than for Cab (11 
– 19 %), which is expected considering the added complexity in extracting the leaf 
chlorophyll signal from canopy reflectance spectra. Since the leaf chlorophyll retrievals rely 
on absolute green reflectance values they are more likely to be affected by errors/uncertainties 
in satellite data calibration, atmospheric correction, and model formulation than are the LAI 
retrievals that depend partly on normalized vegetation index formulations. A good land cover 
map that properly separates land cover types with contrasting canopy characteristics is also 
critically important for high fidelity Cab retrievals as the choice of land cover-specific 
parameter settings (i.e. leaf mesophyll structure, vegetation clumping, leaf inclination angle) 
can have a significant impact on Cab – ρgreen relationships.  

Overall the regional-scale biophysical maps demonstrated impressive utility in detecting 
spatial and temporal variations in LAI and Cab as a result of vegetation type, vegetation stress 
and plant development stage. Site-specific data for calibration of REGFLEC are not needed 
and the physical approach has the potential of being more universally applicable than 
traditional empirical approaches. 

Future work will involve more detailed studies on the application of REGFLEC in 
forested areas where particularly leaf chlorophyll estimates appear positively biased. 
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REGFLEC may potentially be run at a range of spatial and temporal scales using at-sensor 
radiance observations from airborne sensor systems such as CASI, SpecTIR, and HyMap and 
operational satellite sensors such as MODIS, Landsat TM/ETM+, SPOT, and MERIS. Thus 
possible application areas are manifold and REGFLEC derived variables may assist precision 
crop management and drought and vegetation productivity monitoring at larger scales. 
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