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Abstract. Optimization of source and detector (SD) arrangements in a diffuse optical tomography system is helpful
for improving measurements’ sensitivity to localized changes in imaging domain and enhancing the capacity of
noise resistance. We introduced a rigorous and computationally efficient methodology and adapt it into the
diffuse optics field to realize the optimizations of SD arrangements. Our method is based on Cramer–Rao lower
bound analysis, which combines the diffusion-forward model and a noise model together. This method can be
used to investigate the performance of the SD arrangements through quantitative estimations of lower bounds
of the standard variances of the reconstructed perturbation depths and values. More importantly, it provides
direct estimations of parameters without solving the inverse problem. Simulations are conducted in the reflection
geometry to validate the effectiveness of the method on selections of the optimized SD sets, with a fixed number
of sources and detectors, from an SD group on a planar probe surface. The impacts of different noise levels and
target perturbation depths are considered in the simulations. It is demonstrated that the SD sets selected by this
method afford better reconstructed images. This methodology can be adapted to other probe surfaces and other
imaging geometries. C©2011 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.3549738]
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1 Introduction
Diffuse optical tomography (DOT) has been developed from
simulations and a phantom experimental realm to in vivo experi-
ments such as animal and human subject imaging.1–6 DOT image
quality depends on many practical issues, such as intrinsic tissue
heterogeneity, imaging system noise, and improper deployment
of sources and detectors on the imaging probe. Many research re-
garding enhancing the accuracy and reducing the computational
cost of the forward model, developing advanced inverse meth-
ods and improving some experimental conditions (e.g., source
detector calibration) have been reported.5–11 Optimizations of
source and detector (SD) arrangements have also been studied
by some groups in recent years.12–22 The singular value analysis
(SVA) technique was widely used for selecting optimized SD
sets through evaluating the useful information contained in the
weight matrix of a given imaging setup.13–21 It can provide a
generic estimation of the SD set’s performance over the whole
imaging domain. However, it cannot directly provide a quan-
titative analysis of the accuracy of reconstructed values under
specified noise conditions, unless the inverse problem is explic-
itly solved. Besides, the selections of the thresholds for singular
value selections depend on the experimental setup and mea-
surement scheme. Such thresholds must be determined case by
case.20, 21 The computational cost for SVA of Jacobian matrices
in a Matlab R© environment is high, especially when dealing with
large numbers of matrices of large sizes. In our study, we in-
troduce a rigorous and low computational cost method to select
optimized SD sets by directly estimating the accuracy of recon-
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structed values, quantitatively. Thus, it can distinguish different
SD sets’ performance on a quantitative base.

In order to select optimized SD sets, we must investigate the
performance of each SD set from an SD group in terms of spatial
resolutions (location of the perturbation) and optical properties
of the perturbations. The accuracy of the estimations of the
locations and the optical properties of the perturbations depends
on the noise level and also the sensitivity of the measurements to
these parameters.23, 24 The Cramer–Rao lower bound25 (CRLB)
was introduced by some groups to calculate the precision limit
(accuracy) of the estimations of the perturbation depth (single
parameter) based on the given forward model, noise model, and
noise level.23, 24

In this paper, we adapted the CRLB method into the issue
of optimization of SD arrangements in the DOT field. To verify
the model we derived, we jointly estimated the precision limits
of the depth and the perturbation value of a single target, which
was embedded in different depths of a diffusive semi-infinite ge-
ometry and with different noise levels. Our estimation method is
based on the diffusion equation in the Laplace domain, a Gaus-
sian noise model, and the CRLB. The reliability of the CRLB
values was examined through comparisons of the CRLB values
and the corresponding sample variances of the same SD sets.
Furthermore, we compared the effectiveness of CRLB method
to the commonly used SVA method on the same SD sets. Re-
construction images from two simulated SD sets, one with the
higher precision limits and the other with the lower precision
limits, were presented in this paper to demonstrate the effective-
ness of our method for selecting optimized SD arrangements in
terms of image qualities. The proposed method will be applied
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to optimize the SD arrangements on a rotation probe, which will
be used in our time domain (TD) DOT system.26, 27 Although all
the simulations were conducted in the Laplace domain,28, 29 our
method can be adapted to frequency domain and time domain as
well.

2 Theory
2.1 Forward formula
For a given Laplace parameter p, the photon density at lo-
cation r can be given by the first Born approximation,6 as
follows:

〈�(r,p)〉 = 〈�bg(r,p)〉 + �pert(r,p). (1)

where 〈�bg(r,p)〉 is the background photon density of a ho-
mogenous tissue at the location r, and �pert(r,p) is the scatter-
ing field caused by the perturbations in optical properties of the
tissue. Assuming absorption variations only,

�pert(r,p) =
∫

V
G0(r,rd,p)δμa(r)G0(rs,r,p)d3r. (2)

Rewritten Eq. (2) into a matrix form,

�pert = Aδ. (3)

�pert=
[
�pert1(r,p),�pert2(r,p),�pert3(r,p), . . . , �pertM (r,p)

]T
is a M × 1 vector representing M measurements. Each element
of A is Ai, j = G0(r j ,rdi,p)G0(rsi,r j ,p)dv , where rsi is the
source position of i’th measurement, rdi is the detector position
of i’th measurement, rj is the position of the j’th voxel, and dv
is the voxel size. δ=[δμa1,δμa2,δμa3, . . . ,δμaN]T denotes the
perturbations of the absorption coefficients at N voxel positions.
Many works have been conducted to develop inverse methods
for estimating δ within the tissue.6, 30

2.2 Cramér–Rao Lower Bound
While using the same reconstruction method, different sets of
measurements using the same SD set lead to different estima-
tions of δ mainly due to the system noises. We examined the
accuracy of reconstructed δ from two aspects: the accuracy of
estimated reconstructed perturbation value �μa and the accu-
racy of estimated perturbation center R. For the single target case
in the imaging geometry, �μa and R can be considered as ran-
dom variables with standard deviations σ (�μa) and σ (R). With
other conditions held the same, the SD arrangements that result
in lower values of σ (�μa) and σ (R) after adequate repetitions of
experiments have a higher possibility of obtaining better quality
of reconstruction image and higher noise immunity. However,
it is impractical to test all the SD sets from the entire SD group
by conducting simulations or repetitive experiments on every
set because of the time cost and the change of experimental
conditions.

Here we introduce the Cramer–Rao lower bound analysis,
which combines the forward model solution, the noise model,
and the specified noise level together,23–25 to calculate the lower
bound for the deviations σ (�μa) and σ (R). It is known that in
the simplest form of the Cramér–Rao bound analysis, the esti-
mator is assumed to be unbiased, and the estimator in diffuse
optical imaging is generally biased, mainly due to the ill-posed

inverse problem. However, the ill-posedness of the inverse prob-
lem can be minimized in certain situations, especially when
a priori information is available. In our method, the target is as-
sumed to be single and there are only two unknown parameters:
the center location and the absorption coefficient perturbation.
The estimators for them should be approximately unbiased when
there are adequate source-detector pairs. Advanced instrumen-
tation methods (e.g., time-resolved DOT) can also help alleviate
the problem. Other issues, such as the accuracy of the forward
model, are of less importance and their effects could be removed
by calibrations. Thus, the CRLB analysis can be adapted to our
problem. The following relationships exist:

σ (�μa) ≥ √CRLB�μa
, σ (R) ≥

√
CRLBR, (4)

where
√

CRLB�μa
and

√
CRLBR are the lower bounds of the

deviations σ (�μa) and σ (R).
In a DOT system, the measurements of photon density

obtained from the same source-detector pair obeys Gaussian
statistics, with the mean value 〈�k(θ )〉 and the standard de-
viation σ k(θ ) equal to the noise strength. Subscript k denotes
the k’th source-detector pair in one SD set. θ is defined as θ

= [�μa,R]T. Thus, the distribution of a measurement set �

= [�1,�2,�3, . . . ,�M]T is denoted as � ∼ N[〈�(θ )〉,C(θ )],
where 〈�(θ )〉 is the M × 1 mean value vector representing
the independent measurements in one SD set and C(θ ) is the
diagonal M × M covariance matrix with the main diagonal ele-
ment formulized as σ k(θ )2. The probability density function is
written as25

P(�) = 1

(2π)M/2det1/2C(θ )

× exp

[
−1

2
[� − 〈�(θ )〉]T C(θ )−1[� − 〈�(θ )〉]

]
, (5)

where M is the number of measurements in one measurement
set. σ k(θ ) can be represented as

σk(θ ) = a〈�k(θ )〉, (6)

where a denotes the noise level.
Because we considered only one single target, Eq. (3) can be

rewritten as

�pert = A1 · �μa. (7)

A1 is a M × 1 vector with each element of it formulized as∑
n⊂N1

Ak,n , where n denotes the voxel index number, N1 is the
set of voxel index numbers of a single target with the size of a
few voxels, k is the index of the k’th measurement from one SD
set, and M is the total number of measurements from one SD
set.

To calculate the lower bounds
√

CRLB�μa
and

√
CRLBR for

Gaussian observations, the Fisher information matrix (FIM) is
introduced with typical elements,25

Fi, j
def=
〈(

∂

∂θ i
ln P(�)

)(
∂

∂θ j
ln P(�)

) ∣∣∣θ〉

=
[

∂〈�(θ )〉
∂θ i

]T

C(θ )−1

[
∂〈�(θ )〉

∂θ j

]

+1

2
tr

[
C(θ )−1 ∂C(θ )

∂θ i
C(θ )−1 ∂C(θ )

∂θ j

]
, (8)
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where 〈· · ·〉 denotes the ensemble average. Substitute
Eqs. (1), (6), and (7) into Eq. (8), we obtain the FIM adapted to
our problem,

F =
[

F11, F12

F21, F22

]

with

F1,1 =
X1,...,Xn∑

k=1

(
2 + 1

a2

) (∑
n⊂N1

Ak,n
)2

〈�k(θ )〉2
,

F1,2 = F2,1 =
M∑

k=1

(
2+ 1

a2

)
�μa

(∑
n⊂N1

Ak,n
) (

∂R
∑

n⊂N1
Ak,n

)
〈�k(θ )〉2

,

F2,2 =
M∑

k=1

(
2 + 1

a2

)
�μ2

a

(
∂R
∑

n⊂N1
Ak,n

)2
〈�k(θ )〉2

, (9)

where ∂R represents ∂/∂R, the subscript n in Eq. (9) denotes
the n’th voxel. For multiparameter case, the Cramér–Rao lower
bound states that the covariance matrix of θ satisfies Cov(θ )
≥ F−1.25 Thus,

√
CRLB�μa

and
√

CRLBR in Eq. (4) can be
written as

√
CRLB�μa

def=
√

F2,2

det (F)

=

√√√√√√√
(

2 + 1

a2

)−1
∑M

k=1

[(
∂R
∑

n⊂N1
Ak,n

)2
/〈�k(θ )〉2

]
∑

{k, j}⊂C

[(∑
n⊂N1

Ak,n
) (

∂R
∑

n⊂N1
A j,n

)− (∑n⊂N1
A j,n

) (
∂R
∑

n⊂N1
Ak,n

)]2
〈�k(θ )〉2〈� j (θ )〉2

.

(10)

√
CRLBR

def=
√

F1,1

det (F)

=

√√√√√√√
(

2 + 1

a2

)−1
∑M

k=1

[(∑
n⊂N1

Ak,n
)2

/〈�k(θ )〉2
]

�μ2
a

∑
{k, j}⊂C

[(∑
n⊂N1

Ak,n
) (

∂R
∑

n⊂N1
A j,n

)− (∑n⊂N1
A j,n

) (
∂R
∑

n⊂N1
Ak,n

)]2
〈�k(θ )〉2〈� j (θ )〉2

.

(11)

where {k,j} is a subset of C, and C includes all the subsets of
combinations of two index numbers out of M index numbers.
Recall that M is the total number of measurements from one SD
set. Detailed derivations of Eqs. (10) and (11) can be found in
the Appendix.√

CRLB�μa
represents the cross-coupling precision limit for

�μa when taking the influence of unknown R into account.
F−1/2

11 is the precision limit for �μa when R is known. Same
rules apply for

√
CRLBR and F−1/2

22 . In our case, �μa and R
affect the signal in a coupling way. Note that the true values
of δμa and r are independent; however, the covariance of the
random variables �μa and R may not equal to zero. The lowest
value of the covariance between �μa and R can be obtained
from the antidiagonal of F−1.

3 Simulation Results and Discussion
We conducted simulation to compare the performance of differ-
ent SD arrangements on a rotation probe shown in Fig. 1. The ro-
tation center is at the center of the probe. There are 23 source po-
sitions and 12 detector positions on the probe plane for selection.
The examined geometry was chosen to be semi-infinite, and the
dimensions of the imaging domain were 3.5×3.5×3.6 cm. The
imaging domain started from the probe surface. We discretized
the imaging domain into voxels with the size of 0.5×0.5×0.4
cm. The total number of voxels was 441. The rotation probe
and the imaging domain were coaxial. We set the angle of rota-

tion at 40 deg. All possible combinations of three sources and
four detectors (876,645 sets) from the SD group were examined.
Some works14, 15 have suggested choosing identical quantities
of sources and detectors to achieve better image qualities. Our
proposed method can be used to compare selections of different
number of sources and detectors, and there is no restriction either

Fig. 1 XY plane of rotation probe: the circles on the left indicate the 23
source positions for selection and the asterisks on the right represent
the 12 detector positions for selection. (Color online only.)
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Fig. 2 Normalized precision limits of perturbation depth and perturbation value for all examined SD sets. Each point of data in (a–d) represents the
normalized precision limit for one SD set under specified conditions. The normalization formulas and the ranges of the precision limits are indicated
in (a–d). (a) The normalized precision limits of perturbation depth with target depth = 1 cm and noise level equal to 1, 2, and 3%, respectively.
(b) Normalized precision limits of perturbation depth with noise level = 1% and target depth equal to 1.0, 1.8, and 2.6 cm, respectively.
(c) Normalized precision limits of perturbation value with target depth = 1 cm and noise level equal to 1, 2, and 3%, respectively. (d) Normalized
precision limits of perturbation value with noise level = 1% and target depth equal to 1.0, 1.8, and 2.6 cm, respectively.

on the combinations of sources and detectors or on the number
of sources and detectors. However, in our case, we focused on
choosing better SD arrangements of given numbers of sources
and detectors for an illustration. The Laplace parameters used in
our model ranged from –0.4×109 S− 1 to 0.6×109 S− 1 in step
size of 0.2×109 S− 1. The absorption coefficient and reduced
scattering coefficient of the homogenous background were set
to be 0.02 and 6 cm− 1, respectively, which were close to the
optical properties for normal breast tissue.11 The refractive in-
dex of the background was 1.4, which was close to the tissue
refractive index.27

We focused on investigating the precision limits of �μa and
depth L [simply replace ∂R with ∂L in Eqs. (10) and (11)] of
the central targets, in order to select those SD sets that are
more sensitive to the perturbations in the central area and have
higher robustness in noisy environment. In our simulations, the
central targets were defined as those with their centers along
the axis passing through the center of the cylindrical rotation
probe. A central target of 3×3×3 voxels with the absorption
coefficient equal to 0.22 cm− 1 and reduced scattering coefficient
equal to 6 cm− 1 was embedded into the homogeneous diffusive
background at different depths. The corresponding Cramer–Rao
lower bound was calculated for noise levels of 1, 2, and 3% of the
signal. Figure 2 illustrates the parameters’ precision limits for
all the examined SD sets. From Fig. 2, one can observe that with
the same target depth in Figs. 2(a) and 2(c), the ranking orders
of SD sets, based on the corresponding precision limits of both
parameters, are similar for different noise levels. The same rules
apply for the cases of different target depths with the same noise

level. Some small differences in the ranking of some local SD
sets, with different noise levels or different target depths, are due
to numerical errors from Matlab calculations of precision limits
of those local SD sets. These precision limits from different
local SD sets have very close values to each others and thus lead
to small changes in the ranking of local SD sets, because we
cannot avoid the numerical errors. From our observations, we
deduce that those SD sets with lower precision limits in a certain
environment (with specified noise level or with specified target
depth in the central area), comparing to the rest of SD sets, have a
more robust performance across the central area. This conclusion
can be extended to the noncentral area: those SD sets with lower
precision limits in a certain environment (with specified noise
level or with specified target depth), comparing to the rest of SD
sets, have a more robust performance across the z-axis (while
keeping the XY position of the target constant). This is because
of the composition of Eqs. (10) and (11). Furthermore, for other
imaging geometry, as long as the single volume target moves
along the normal vector of the surface, the ranking of different
SD sets based on the precision limits of perturbation depths
and values remains similar under different noise conditions and
with different target depths. In our case, we only focused on the
central area because of the difficulty of imaging this area.

To verify the correlation between the performance of the SD
sets in terms of accuracy of reconstructed parameters and the pre-
cision limits calculated from the proposed method, a Levenberg–
Marquardt algorithm30 with positivity constraint was used to
reconstruct the optical properties of the imaging domain under
simulated noise conditions. We randomly chose 500 sets with

Journal of Biomedical Optics March 2011 � Vol. 16(3)035001-4
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Fig. 3 Sample variances of the reconstructed target perturbation values versus the corresponding CRLB values for the selected 1500 SD sets. Each
black asterisk represents the sample variance of the reconstructed target perturbation value generated from each SD set after 20 times’ repetitions of
simulations. Each red asterisk represents the CRLB value of the same SD set. The data unit for all the data presented in the images is centimeters to
the –1. The images are represented in columns based on noise level from 1 to 3%, and in rows based on target depth equal to 1.0, 1.8, and 2.6 cm,
respectively. The target absorption perturbation value is 0.2 cm− 1. (Color online only.)

index numbers smaller than 600, 500 sets with index numbers
between 465,000 and 475,000, and another 500 sets with index
numbers larger than 870,000, according to the SD sets’ index
numbers from Fig. 2, to conduct the investigations. Figure 3

shows the sample variances of the target perturbation values af-
ter 20 times’ repetitions of simulations with 1, 2, and 3% noise
levels, respectively, and the CRLB values calculated from the
proposed method for different SD sets. Figure 4 shows the

Fig. 4 Sample variances of the reconstructed target depths versus the corresponding CRLB values for the selected 1500 SD sets. Each black asterisk
represents the sample variance of the reconstructed target depth generated from each SD set after 20 times’ repetitions of simulations. Each red
asterisk represents the CRLB value of the same SD set. The data unit for all the data presented in the images is centimeters. The figures are represented
in columns based on noise level from 1 to 3%, and in rows based on target depth equal to 1.0, 1.8, and 2.6 cm, respectively. The target absorption
perturbation value is 0.2 cm− 1. (Color online only.)

Journal of Biomedical Optics March 2011 � Vol. 16(3)035001-5



Chen and Chen: Optimization of source and detector configurations . . .

Fig. 5 (a) The total number of the useful singular values above 10− 4 for the selected 1500 SD sets. Each asterisk represents the total number of the
useful singular values for each SD set. (b) The sum of the useful singular values above 10− 4 for the selected 1500 SD sets. Each asterisk represents
the sum of the useful singular values for each SD set.

sample variances of the target center and the corresponding
CRLB values with the same simulation conditions as the data
shown in Fig. 3. From these two figures, we observed that those
SD sets with lower precision limits throughout all the tested

target depths have a higher chance of achieving higher accuracy
of reconstructed parameters. Thus, the signal sensitivity from
these SD sets to the reconstructed parameters is higher. We
also observed that there are some of sample variances smaller

Fig. 6 Six SD sets with different precision limits of the perturbation depths and perturbation values. The solid circles from the 23 source positions
indicate the chosen source positions while the solid circles from the 12 detector positions indicate the chosen detector positions for three sources
and four detectors’ case. (a–c) represent three of the best SD sets with the lowest precision limits. (d–f) represent three of the worst SD sets with the
highest precision limits. (Color online only.)
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Fig. 7 Reconstruction images of targets in the YZ plane (X = 0): Target depth is (a,b) 1.0 cm, (c,d) 1.8 cm, and (e,f) 2.6 cm. (a,c,e) using SD set 1.
(b,d,f) using SD set 6. Images in the first column show the original depths and values of the target. Images in the second column are reconstructed
from a signal without noise. Images in the third column are reconstructed from a signal with 1% noise. Images in the fourth column are reconstructed
from a signal with 2% noise. Images in the fifth column are reconstructed from a signal with 3% noise.

than the corresponding CRLB. This is mainly due to numeri-
cal errors from calculation. In addition, for those SD sets with
close precision limits, the sample variances of the reconstructed
parameters are not strictly following the same ranking of the
precision limits. This is due to the fluctuations of the simu-
lation data generated with simulated random noises and also
the numerical errors from calculations. In a word, for those
SD sets with similar precision limits, the performances of them
in terms of the accuracy of the reconstructed parameters are
comparable.

The effectiveness of the CRLB method and the commonly
used SVA method for selecting optimized SD sets were also
compared. Figure 5 shows the SVA analysis of the total num-
ber of useful singular values above a threshold of 10− 4 and
the sum of them for the same group of SD sets as in Figs. 3
and 4. Note that the trend of useful singular value numbers
of different SD sets is not affected by the value of threshold,
although the actual numbers of useful singular value change
when using different threshold values.13–21 It is known that the
SVA method is a widely used method for evaluating the per-
formance of an imaging probe configuration. Its judgement is
based on the number of useful singular values above a specified
threshold. Figures 3–5 show that for two SD sets with signifi-
cant different numbers of useful singular values, the SD set with
larger numbers of useful singular values is more optimized than
the other. Also from Figs. 3–5, we observed that for those SD
sets with similar numbers of useful singular values, their per-
formances are comparable. Similar observations are found in
the CRLB case: for those SD sets with similar CRLB values of
examined parameters, their performances are comparable. Nev-

ertheless, the SVA method cannot provide quantitative analysis
on particular parameters, or under different conditions. For ex-
ample, one cannot estimate how low the precision limit of the
estimated target position can be or whether the performance of
the SD set under different noise conditions is stable or not. In
contrast, the CRLB method provides quantitative analysis of the
interested parameters. Besides, the computational time for the
CRLB analysis is much lower than that for the SVA analysis.
This was demonstrated through our simulations. By using a PC
with Intel(R) Core(TM)2 CPU 6300 at 1.86 GHz, the computa-
tion time for calculating

√
CRLB�μa

and
√

CRLBR of one SD
set was ∼0.005 s, while the computation time for SVA of the SD
set’s Jacobian matrix was ∼0.450 s, which is nine times longer
than our method. To summarize, qualitatively, the accuracy of
the SVA method and that of the CRLB method are comparable;
quantitatively, only the CRLB method can provide meaningful
estimations of particular parameters under different setting and
conditions.

To provide a direct image about the arrangements of the
sources and detectors, we choose six SD sets for illustration.
Figures 6(a)–6(c) list three SD sets with the three lowest preci-
sion limits of very close values, and Figs. 6(d)–6(f) list the other
three SD sets with the three highest precision limits of very close
values based on the data from Fig. 2. These six sets performed
stable under other conditions as shown in Fig. 2. From Figs.
6(a)–6(c), one can see that the distances from the probe center
to the sources or the detectors are close to each other within
the same SD set; the sources and the detectors are distributed
dispersedly from the XY center. From Figs. 6(d)–6(f), one can
see that the distances from the probe center to the sources or the
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detectors differ from each other: some detectors are too close
to the probe center. Besides, the sources are too close to each
other as well as the detectors. Because we were observing the
central area, we may infer that those SD sets with dispersed
distributions of sources and detectors and proper distances (nei-
ther too far nor too close) from sources and detectors to the
probe center perform better than others. Reconstructed images
of different central targets with different noise levels at the YZ
plane (X = 0) using SD sets 1 [Fig. 6(a)] and 6 [Fig. 6(f)] are
presented in Fig. 7 to illustrate the differences in image qualities
caused by the differences in SD arrangements. Figure 7 shows
that the image quality (in terms of accuracy of reconstructed
target depths, values and background artificial effects) is better
using the SD set 1 than that using the SD set 6 for all the exam-
ined target depths and the examined noise levels. All images use
the same color bar for the data range from 0.02 to 0.22 cm− 1

for easy comparing. Detailed data of the reconstructed values is
presented in Table 1. From our investigations, the SD sets with
lower precision limits for all the conditions we applied can be
chosen for the optimization purpose.

4 Conclusion
We have introduced a rigorous and computationally efficient
methodology for selecting optimized source and detector ar-
rangements for DOT systems. Simulations were conducted on a
rotation probe hosting three sources and four detectors to vali-
date the effectiveness of the proposed method. The various per-
formances of different source and detector sets were investigated
based on precision limits of the target depth and target perturba-
tion values. The SD sets corresponding to the lowest precision
limits can be selected for designing an optimized DOT imaging
probe, which leads to the best possible image quality. We also
discussed the advantages of our method over the SVA method.
Our method can be adapted to other imaging geometries, differ-
ent numbers of sources and detectors and different combinations
of sources and detectors.

Appendix
The derivations of Eqs. (8)–(10) presented are shown here. Be-
cause we only consider the single-target case, there is only one
perturbation value, and Eq. (3) can be rewritten as �pert =
A1 · �μa. A1 is a M × 1 vector with each element of it for-
mulized as

∑
n⊂N1

Ak,n , where n denotes the voxel index num-
ber, N1 is the set of voxel index numbers of a single target of
3×3×3 voxels, k is the index of the k’th measurement from one
SD set, and M is the total number of measurements from one
SD set.

By substituting Eqs. (1), (3) and (6) into Eq. (7) and deriving
from it, we get the first derivative of 〈�(θ )〉 and C(θ ) with
respect to ∂�μa and ∂ R:

∂〈�(θ )〉
∂�μa

= ∂�pert(θ )

∂�μa
= A1; (12)

∂〈�(θ )〉
∂ R

= ∂�pert(θ )

∂ R
= �μa · ∂RA1; (13)
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∂C(θ )

∂�μa
= 2a2 · diag [〈�(θ )〉 · A1]T ; (14)

∂C(θ )

∂ R
= 2a2�μa · diag [〈�(θ )〉 · ∂RA1]T . (15)

Using Eqs. (12)–(15) here, we get[
∂〈�(θ )〉
∂�μa

]T

C(θ )−1

[
∂〈�(θ )〉

∂ R

]
= �μa · AT

1 C(θ )−1∂RA1

=
M∑

k=1

�μa

(∑
n⊂N1

Ak,n
) (

∂R
∑

n⊂N1
Ak,n

)
a2〈�k(θ )〉2

; (16)

1

2
tr

[
C (θ )−1 ∂C (θ )

∂�μa
C (θ)−1 ∂C (θ )

∂ R

]

=
M∑

k=1

2�μa

(∑
n⊂N1

Ak,n
) (

∂R
∑

n⊂N1
Ak,n

)
〈�k(θ )〉2

. (17)

Thus,

F1,2 = F2,1 =
M∑

k=1

�μa

(∑
n⊂N1

Ak,n
) (

∂R
∑

n⊂N1
Ak,n

)
a2〈�k(θ )〉2

+
M∑

k=1

2�μa

(∑
n⊂N1

Ak,n
) (

∂R
∑

n⊂N1
Ak,n

)
〈�k(θ )〉2

=
M∑

k=1

(
2 + 1

a2

)
�μa

(∑
n⊂N1

Ak,n
) (

∂R
∑

n⊂N1
Ak,n

)
〈�k(θ )〉2

. (18)

The other elements in the Fisher matrix are also derived
using Eqs. (12)–(15). Thus, we obtain Eq. (9).

Using Eqs. (7), (9),
√

CRLB�μa
in Eq. (4) can be

written as

√
CRLB�μa

def=
√

F2,2

det (F)
=
√

F2,2

F1,1 F2,2 − F2
1,2

. (19)

Because

F1,1 F2,2 =
(

2 + 1

a2

)2

�μ2
a

[
M∑

k=1

(∑
n⊂N1

Ak,n
)2

〈�k(θ )〉2

][
M∑

k=1

(
∂R
∑

n⊂N1
Ak,n

)2
〈�k(θ )〉2

]

=
(

2 + 1

a2

)2

�μ2
a

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

M∑
k=1

(∑
n⊂N1

Ak,n
)2 (

∂R
∑

n⊂N1
Ak,n

)2
〈�k(θ )〉4

+
∑

{k, j}⊂C

[(∑
n⊂N1

Ak,n
)2 (

∂R
∑

n⊂N1
A j,n

)2
〈�k(θ )〉2〈� j (θ )〉2

+
(∑

n⊂N1
A j,n

)2 (
∂R
∑

n⊂N1
Ak,n

)2
〈� j (θ )〉2〈�k(θ )〉2

]
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⎪⎪⎪⎪⎪⎭

F2
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(
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�μ2
a

[
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) (
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we obtain

F1,1 F2,2 − F2
1,2 =

(
2 + 1

a2

)2

�μ2
a

∑
{k, j}⊂C

⎡
⎢⎢⎢⎢⎢⎣
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Ak,n
)2 (

∂R
∑
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A j,n

)2
〈�k(θ )〉2〈� j (θ )〉2

+
(∑

n⊂N1
A j,n

)2 (
∂R
∑

n⊂N1
Ak,n

)2
〈� j (θ )〉2〈�k(θ )〉2

−2

(∑
n⊂N1

Ak,n
) (

∂R
∑

n⊂N1
Ak,n

) (∑
n⊂N1

A j,n
) (

∂R
∑

n⊂N1
A j,n

)
〈�k(θ )〉2〈� j (θ )〉2

⎤
⎥⎥⎥⎥⎥⎦

=
(

2 + 1

a2

)2

�μ2
a

∑
{k, j}⊂C

[(∑
n⊂N1

Ak,n
) (

∂R
∑

n⊂N1
A j,n

)− (∑n⊂N1
A j,n

) (
∂R
∑

n⊂N1
Ak,n

)]2
〈�k(θ )〉2〈� j (θ )〉2

,
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where {k,j} is a subset of C and C includes all the subsets of
combinations of two index numbers out of M index numbers. M
is the total number of measurements from one SD set. Thus, we
obtain Eqs. (10), (11) from the derivations above.
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