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Ever since the invention of laser pulses,1–5 one of the key directions for
the development of laser technology has been the creation of ever
shorter pulses of light. Over the past sixty years, improvements in tech-
nology have pushed pulse durations down from nanoseconds through
picoseconds to femtoseconds, giving us access to time-resolved studies
of molecular nuclear motion and chemical reactions.6 Just in time for
the 59th birthday of the standard (SI) prefixes “femto” and “atto,”7 the
2023 Nobel Prize in Physics was awarded to the latest landmark in this
effort: the generation of attosecond pulses of light,8–10 which opens a
window to the most fundamental timescale of the world around us –
the timescale of electrons moving inside atoms, molecules, and con-
densed matter.

Attosecond pulses are the result of decades of combined advances in
laser technology, raising the intensity boundary of laser pulses,11,12 and
in nonlinear optics, which expanded to use these intense laser pulses to
their full potential. Attosecond pulses are born in the extreme nonlinear
interaction of high-intensity laser pulses with matter – conventionally
with noble gases, but increasingly with solid-state media – in a process
known as high-harmonic generation (HHG).8 HHGmarks the growth of
nonlinear optics from the finding of second-harmonic generation13 to
the observation of nonperturbative processes with harmonic order that
can now be measured in the thousands14 (Fig. 1).

The 2023 Nobel Prize in Physics awards the discovery of HHG
by Anne L’Huillier and her team in 1988,8 and the subsequent use of
this process by Pierre Agostini and Ferenc Krausz to experimentally
demonstrate pulses of light shorter than one femtosecond.9,10

HHG occurs when a strong and ultrafast laser drives the atoms in
a gas, with enough intensity to go beyond the perturbative regime.
The atoms can then up-convert the frequency of the laser, by combining
large numbers of laser photons into single high-frequency harmonics.
In contrast with “standard” harmonic generation, where the efficiency
of the conversion drops exponentially with the number of laser photons
being combined, L’Huillier and her team at CEA in Saclay, France,
observed a long, flat plateau of harmonics (somewhat reminiscent of
an optical frequency comb15,16) emitted with roughly equal intensities,8

which had first been glimpsed one year previously.17

The process is best understood via the so-called three-step model,
discovered independently by Paul Corkum and by Kenneth Kulander
et al. in 1993,18,19 building on previous work by Brunel20,21 and
Kuchiev.22 The driving laser first rips an electron off an atom via tunnel
ionization,23 then accelerates it in the continuum through the oscilla-
tions of the electric field of the laser over one cycle, and finally clashes
it with its parent ion at high speed, where it recombines with the hole it
left behind and emits its considerable kinetic energy as a burst of light.
This process then repeats every half-cycle of the driving laser, produc-
ing a train of pulses. The simple classical picture was confirmed by
experiments correlating HHG to recollision-induced double ioniza-
tion,24 and it was shortly followed by an analytical quantum-mechanical
theory developed by Maciej Lewenstein and co-workers.25

The bursts of radiation emitted by the recolliding electron occur on a
subcycle timescale. It was realized early on after the discovery of the
HHG plateau that, if the harmonics are locked in phase with each other,
then their broad bandwidth would support subfemtosecond pulses.26–28

Moreover, the identification of the subcycle – attosecond – electron
dynamics in the continuum that produces these flashes of light opened
the door to the design of methods to confine the attosecond-pulse emis-
sion to only one half-cycle of the driving laser, thus singling out one of
the attosecond pulses in the train as an isolated attosecond pulse,29–31

a family of methods now known as “gating.”32

The scent of the attosecond world fired the starting pistol, and the
race was now on: to generate attosecond pulses of light from HHG,
either in a train or in isolation. This race presented significant chal-
lenges, in the design and implementation of methods for temporal char-
acterization which could reach such an unprecedented and demanding
time resolution, and – for the generation of isolated pulses – the devel-
opment of gating methods practical enough to be built in the lab.

The first to cross the finish line was Pierre Agostini and his team,
also at CEA in Saclay, who built a stable HHG setup and successfully
timed the duration of the radiation bursts in the train down to a
quarter of a femtosecond,9 i.e., 250. To do this, they used a fre-
quency-domain technique now known as RABBITT33,34 (attosecond
science acronyms have a distinct “animal” theme35–37), which looks
at interference patterns in electrons ionized by the attosecond pulse
train in the presence of a mid-intensity replica of the driving laser.

Almost simultaneously, Ferenc Krausz and his team at the Technical
University of Vienna reported the generation of the first isolated

Fig. 1 An artist’s idea of weak and strong fields interacting with
matter: the weak field produces linear and low-order harmonic
response to the laser field, while the strong one breaks the matter
and generates high-order harmonics. Applying some imagination,
one can even attribute the sound of breaking strings to attosecond
pulses. Courtesy of Vasily Strelkov and Inna Midzyanovskaya.
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attosecond pulse.10 This was the result of a long development campaign
to push the duration of strong laser pulses down to the few-cycle (and
even single-cycle) regime. With such a short driver, the HHG emission
is effectively confined to only a single burst, a technique now known as
amplitude gating. Moreover, Krausz and his team managed to measure
the duration of the emission down to 650 attoseconds, using a cross-
correlation technique38 closely related to a now-standard method called
the attosecond streak camera.39,40

In the two decades since these breakthroughs, the floodgates for
discovery have opened wider and wider, allowing for a number of
measurements and observations that were considered impossible or
unthinkable for decades. Attosecond pulses have been used to track
nuclear motion,41 and later to observe faster and faster dynamics, in-
cluding direct tracking of valence electron motion in atoms42 and bio-
molecules,43 and of the even faster motion of core-shell electrons.44

They have also provided views of the time-resolved build-up of quan-
tum interference patterns in atomic spectra,45 the interference of the
various quasi-classical electron trajectories that produce HHG,46 and of
the time-resolved coupling of electron and phonon degrees of freedom.47

One standout example is the application of the attosecond streak
camera to directly observe the oscillations of the electric field of a light
wave,48 providing a new and fresh answer to the question of optical
coherence.49,50 This possibility breaks many of the assumptions held
during the construction of quantum mechanics in the 1920s and 1930s,
similarly to the prospects offered by the manipulation of individual
quantum systems.51,52

The attosecond pulses produced via HHG have also been joined by
pulses from additional sources, including other high-order parametric
processes,53 oscillating relativistic plasma mirrors,54 and, most impor-
tantly, facility-scale X-ray free-electron lasers.55 XFELs also offer at-
tosecond capabilities, at high brightness, and with a nuanced set of
trade-offs regarding coherence and timing precision. This wider set of
sources promises to further enrich our ability to probe the microscopic
world and its attosecond dynamics.

Looking forward, the future of attosecond science promises signifi-
cant and inspiring innovations, both in the advance of attosecond
sources and in their applications. On the side of the sources, it has
recently become possible to use attosecond pulses to both pump and
probe ultrafast phenomena in the same experiment,56 and attosecond
interferometry has reached extreme levels of precision,57 both of which
hold significant promise in reaching new regimes and dynamics. The
optical control of attosecond pulses continues to increase, including the
use of structured light,58 tailored polarizations,59 chiral states of light,60

attosecond frequency combs based on femtosecond enhancement
cavities,61 and detailed control of the HHG wavefronts.62

Attosecond science also continues to expand the range of systems
it can study, from HHG in solids63 to liquids64 and nanostructures.65

Its growth has also made it possible to build fertile interfaces with other
branches of physics, including quantum optics,66 and quantum informa-
tion processing,67 which hold substantial promise of innovation for this
young – but now mature – and dynamic discipline.
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