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Abstract. We investigated the definition for circular off-axis aspheric mirrors (COAMs). The clear opening of the
COAM obtained by projecting a circular aperture on the aspheric surface does not form a plane but a curved
surface. To solve this problem, we propose to use a plane to cut the aspheric surface to obtain a COAM.
The COAM has three characteristics: (i) an elliptical opening; (ii) the major axis of the opening lies on the meridio-
nal plane containing the original optical axis of the aspheric surface and the minor axis lies on the sagittal plane
perpendicular to the meridian plane; and (iii) it is not deepest at the center of the ellipse. The third characteristic
suggests two methods for defining the COAM using a plane: (i) with the center of the elliptical opening as
a reference and (ii) with the deepest point of the mirror as a reference. All the formulas required to obtain
the desired COAM using the two methods are presented. © The Authors. Published by SPIE under a Creative Commons
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1 Introduction
An off-axis aspheric mirror is a well-established form for large-
scale telescope mirrors, and many of the recently developed tele-
scopes employ a large number of segmented off-axis aspheric
mirrors. Some examples include the Giant Magellan Telescope
(GMT),1,2 the Thirty Meter Telescope (TMT),3 the European
Extremely Large Telescope (EELT),4 the James Webb Space
Telescope (JWST),5 and the Daniel K. Inouye Solar Telescope.6

In addition to the radius of curvature R and conic constant K
to represent the aspheric surface, each segment mirror requires
two additional parameters: (i) the size of the mirror and (ii) the
distance from the reference optical axis (ROA) of the aspheric
surface to the center of the mirror.7 Although it is easy to under-
stand the meanings of the two parameters from a simple linguis-
tic point of view, there are practical ambiguities that can cause
problems. If the shape of the mirror is not an exact circle, it is
unclear whether the size denotes the size of the surface on which
the light is actually reflected or whether it denotes the longest
size or the shortest size. Furthermore, for most lenses or mirrors
of aspheric surfaces in rotational symmetry, various terms such
as the center of the opening, vertex, center of curvature, deepest
point, or the optical axis all refer to the same element. The ROA
is the normal line at the vertex of the aspheric surface that passes
through the center of the surface or opening. It is the deepest
point at the center of the opening. For off-axis aspheric mirrors,
all of the above terms might convey different meanings. Thus,
the additional parameters are only abstract unless sufficiently
accurate definitions are provided. We believe such a detailed
treatment is not currently available.

The above-mentioned large astronomical telescopes com-
monly have one large mirror, which is composed of a number
of segment mirrors but can be roughly divided into two catego-
ries: (i) TMT, EELT, and JWST are one category, in which the
segment mirrors are all connected, and (ii) GMT is another cat-
egory, in which all the elements are separated. For the mirrors to

be connected, not only must the shape of each mirror be correct
but also the curved surface of the mirror must be continuous at
all the connecting sides, and it is hard to imagine alternative
ways of satisfying these obvious requirements for the first
category of mirrors. By contrast, the condition of continuity
between the seven primary segments of the GMT apart from
each other is not as obvious as for those in the first category.8,9

In addition, the circular shape of each segment mirror for the
GMT raises some questions: how precisely circular is the open-
ing of the mirror and how flat is the opening. These points were
unclear enough to stimulate us to conduct the present work.

In order to answer the numerous unclear points, we first
tested a way of acquiring a circular off-axis aspheric mirror
(COAM) by simple projection, in which a circular aperture was
simply projected on an aspheric surface. The results show that
the COAM opening is not a plane but a curved surface, as
described in Sec. 2. This result has caused considerable diffi-
culty in establishing shapes and related terms for the COAM,
and the necessity of developing methods to define the COAM
has been raised. Thus, we propose a method to define the
COAM by cutting the aspheric surface with a plane to make
the COAM opening a plane. In Sec. 3, we derived the relations
between the plane and the COAM, which can be reversed to find
the characteristics of the plane for the desired COAMs. In Sec. 4,
the depth of the COAM mirror is analyzed, and two conditions
for defining the plane are identified. In Secs. 5 and 6, the char-
acteristics of the COAM, defined by the two definitions, are
described in detail.

2 Nonplanar Opening of a COAM Created
by Projecting Circular Aperture

The sag or z-component of the aspheric surface with conic
constant K and radius of curvature R as a function of ðx; yÞ is
expressed as follows:

EQ-TARGET;temp:intralink-;e001;326;109zðx; yÞ ¼ R −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − ðK þ 1Þðx2 þ y2Þ

p
K þ 1

; (1)
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or

EQ-TARGET;temp:intralink-;e002;63;491x2 þ y2 ¼ 2Rz − ðK þ 1Þz2: (2)

In the absence of a standard way of dealing with the COAM,
one easy way to define a COAM of a desired size is to project
a circular opening of the required size horizontally to the
aspheric surface, as shown in Fig. 1. The corresponding equa-
tion for the opening can be expressed as follows:

EQ-TARGET;temp:intralink-;e003;63;410x2 þ ðy − y0Þ2 ¼ R2
c; (3)

where yo is the distance from the ROA, which is the z-axis, to
the center of the opening, and Rc is the semidiameter of the
opening, the desired size. The circular opening is assumed
to be in a plane perpendicular to the ROA. If we project this
circular opening on the aspheric surface, then the projected
intercepts are expressed as follows:

EQ-TARGET;temp:intralink-;e004;63;312z ¼ R −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − ðK þ 1ÞðR2

c − y20 þ 2y0yÞ
p

K þ 1
: (4)

Figure 1 shows the schematic of a COAM with two z-com-
ponents in green indicating the depth in two orthogonal direc-
tions and with round intercepting points in black indicating the
clear opening. The circular aperture is depicted by a dashed line.
The blue vertical and red horizontal dashed lines on the circular
aperture, respectively, pass through the center of the aperture,
which is denoted as y0. The blue solid line on the COAM is
the connecting line between the two projected points of both
ends of the blue dashed line of the aperture and forms a meridio-
nal plane with a corresponding green depth line. Among many
meridional planes, the meridional plane becomes the reflection
symmetric plane for the COAM. Similarly, the red solid line is
also the connecting line between two projected points of both
ends of the red dashed line. The example shown in Fig. 1 was
generated for the set of numerical values R ¼ 4000 mm,
K ¼ −0.7, Rc ¼ 500 mm, and y0 ¼ 1100 mm.

The opening looks flat at first sight. However, it is not a plane
but a curved surface. We attempted to demonstrate the amount

of deviation from a plane in two different ways. First, we con-
sidered the shortest distance between two blue and red solid
skew lines in Fig. 1. The horizontal line can be represented
as the point ð0; y0; z0Þ on the basis of the rotational symmetry
property of the COAM, where z0 is expressed as follows:

EQ-TARGET;temp:intralink-;e005;326;697z0 ¼
R −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − ðK þ 1Þðy20 þ R2

cÞ
p

K þ 1
: (5)

If the top and bottom points are ð0; yT; zTÞ and ð0; yB; zBÞ,
respectively, where

EQ-TARGET;temp:intralink-;e006;326;631

8>>>>><
>>>>>:

yT ¼ y0 þ RC

yB ¼ y0 − RC

zT ¼ R−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2−ðKþ1Þðy0þRCÞ2

p
Kþ1

zB ¼ R−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2−ðKþ1Þðy0−RCÞ2

p
Kþ1

; (6)

the line connecting the two points can be expressed as
azþ byþ c ¼ 0, where

EQ-TARGET;temp:intralink-;e007;326;523

8<
:

a ¼ yT − yB
b ¼ zB − zT
c ¼ yBzT − yTzB

: (7)

The shortest distance between the two lines is then given as
in Ref. 10:

EQ-TARGET;temp:intralink-;e008;326;444D ¼ jaz0 þ by0 þ cjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p ; (8)

and is nonzero for −1 < K < 0, indicating that the opening of the
COAM is clearly not a plane. For the numerical COAM shown
in Fig. 1, the shortest distance was 0.712 mm.

The second endeavor is to visualize the gap between the two
lines, as shown in Fig. 2. Although Eq. (4) clearly shows the
relation between the independent variable y and the dependent
variable z, the analysis was not easy. Equation (4) can be
expanded as a Taylor series about y ¼ yo, indicating the sag
as a polynomial. The fact that the opening looks flat indicates
that the first-order term of the polynomial is dominant. Thus, to
emphasize the curved opening, the first-order term is removed

Fig. 1 3-D plot of COAM created by projecting a circular aperture.

Fig. 2 Numerical result of Eq. (4) with the linear term removed.

Journal of Astronomical Telescopes, Instruments, and Systems 044002-2 Oct–Dec 2018 • Vol. 4(4)

Han and Lee: Methods of defining circular off-axis aspheric mirrors



by employing numerical curve-fitting analysis. If the opening of
the COAM was a plane, then the sag would be zero for all
y values after its removal. Figure 2 shows the numerical result
of Eq. (4) for the COAM shown in Fig. 1, and the opening
cross-section of Eq. (4) with the linear term removed clearly
demonstrates the curved opening.

After a thorough investigation, it is now clear that the curved
opening is a result of the original aspheric surface, whether
the COAMs are connected to each other or not. That is, the
seven segments of GMT can be simply considered as a set
of continuous segmented mirrors with the interconnecting seg-
ments removed.

However, despite the fact that the distance between the cen-
ters of the horizontal and vertical lines is longer than the shortest
distance between the lines for the example shown in Fig. 1, the
curved opening reveals several important factors if the segment
was obtained by projecting a circular aperture: the opening is not
circular and is not flat but curved several tenths of millimeters
upward toward both the top and bottom parts.

Further study revealed the possibility that the nonplanar
opening can become flat if the projecting aperture is not circular.
This possibility motivated the work of finding a way to
define COAMs.

3 Aspheric Surface, a Plane, and an Off-Axis
Aspheric Segment

Instead of analyzing the detailed shape of the opening for the
COAM obtained by projection, we propose a way to define
the COAM. Let us consider the same aspheric surface, whose
section in the yz-plane is shown in Fig. 3. The z-axis and the
origin of the coordinate system correspond to the ROA and
the vertex of the surface, respectively. To begin with the planar
opening for the COAM, we used a plane. The red line, shown in
Fig. 3, depicts the plane intersecting with the aspheric surface.
The angle between the plane and the xz-plane is θ, and the plane
intercepts the xy-plane at the point (or line to be exact) y ¼ yC.
Thus, we define a COAM as a part of the aspheric surface cut-off
by the plane so that the clear opening of the COAM is evidently
a plane to begin with.

Although the original xyz-system is convenient to present the
aspheric surface, it is neither convenient to analyze the depth
property of the COAM nor it is intuitive. Thus, a xuv-coordinate

system is introduced, as depicted in the red lines in Fig. 3. The
x-axis is the same; the u-axis is perpendicular to the x-axis and
lies on the plane, cutting the aspheric surface to form a COAM;
and the v-axis is perpendicular both axes. The origin of the
system is at the center of the clear opening of the COAM,
and the coordinates are ð0; y0; z0Þ with respect to the original
xyz-system. It is at a distance u0 from the y-intercept
yC, where ðy0 − yCÞ2 þ z20 ¼ u20. The transformation matrix
between the two systems can be expressed as follows:

EQ-TARGET;temp:intralink-;e009;326;653

 x
y − yC

z

!
¼
 
1 0 0

0 sin θ − cos θ
0 cos θ sin θ

! x
uþ u0

v

!
: (9)

Because the intercept points between the plane and the
aspheric surface lie on the plane v ¼ 0, they are expressed as
follows:

EQ-TARGET;temp:intralink-;e010;326;565

8<
:

x ¼ x
y ¼ sin θðuþ u0Þ þ yC
z ¼ cos θðuþ u0Þ

: (10)

Then after substitution of Eq. (10), Eq. (2) can be rewritten as
follows:

EQ-TARGET;temp:intralink-;e011;326;487x2 þ ðsin θðuþ u0Þ þ yCÞ2 ¼ 2R cos θðuþ u0Þ
− ðK þ 1Þcos2 θðuþ u0Þ2;

(11)

and after some algebra, Eq. (11) can be converted into the
equation of an ellipse as follows:

EQ-TARGET;temp:intralink-;e012;326;401

�
x
Rx

�
2

þ
�

u
Ru

�
2

¼ 1; (12)

where

EQ-TARGET;temp:intralink-;e013;326;345

8>><
>>:

u0 ¼ R cos θ−yC sin θ
K cos2 θþ1

Rx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K cos2 θ þ 1

p
Ru

Ru ¼ cos θ
K cos2 θþ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − 2yCR tan θ − y2CðK þ 1Þ

p : (13)

For 0 < K < −1, the ratio Rx∕Ru is always <1, so that Rx

represents the minor and Ru represents the major semidiameter
of the elliptical opening. That is, the opening of the COAM
cut-off from the aspheric surface by a plane is an ellipse with
a horizontal minor axis and a vertical major axis. In addition,
the center of the ellipse is at a distance of u0 away from the
y-intercept yC.

4 Depth Profile of Off-Axis Aspheric Segment
Equation (13) shows the characteristics of the opening of
a COAM obtained by the plane of the y-intercept yC and
angle θ, indicating the possibility of acquiring the two param-
eters of the plane for the desired COAM. To do so, one more
parameter needs to be addressed: the depth property.

The depth of the COAM is easily identified as the v-value of
the segment. By using Eq. (9), Eq. (2) in the xuv-coordinate
system can be expressed as follows:

Fig. 3 Schematic diagram of an aspheric surface in a dashed line with
respect to the coordinate system, whose origin and z-axis coincide
with the vertex and rotational axis of the surface, respectively. The
coordinate system of ðx; u; vÞ is depicted in red.
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EQ-TARGET;temp:intralink-;e014;63;752

x2 þ ðsin θðuþ u0Þ − cos θvþ yCÞ2
¼ 2Rðcos θðuþ u0Þ þ sin θvÞ
− ðK þ 1Þðcos θðuþ u0Þ þ sin θvÞ2; (14)

which can be rewritten as the quadratic equation av2 − 2bvþ
c ¼ 0 for the depth, where

EQ-TARGET;temp:intralink-;e015;63;672

8>><
>>:

a ¼ ð1þ K sin2 θÞ
b ¼ R sin θ þ yC cos θ − K cos θ sin θðuþ u0Þ
c ¼ x2 þ ðyCÞ2 þ 2ðyC sin θ − R cos θÞðuþ u0Þ

þ ðK cos2 θ þ 1Þðuþ u0Þ2
:

(15)

Among the two solutions of the quadratic equation, the one
with the negative value is the correct one. Equation (15) can be
used to visualize the depth map for the region of interest for the
set of values of the aspheric surface and the plane of interest.
The numerical values used in Fig. 1 cannot be used directly
because the values of the plane are not known yet and because
the corresponding projecting circular aperture is thus not known
yet. Instead, Fig. 4 shows a contour map for the depth of the
COAM having R ¼ 4000 mm, K ¼ −0.7, yC ¼ 436.7 mm, and
θ ¼ 74.5 deg, which clearly indicates the existence of the deep-
est point at a different location from the center of the opening.
It is easy to understand that the deepest point is located in the
meridional plane passing through the center of the opening,
which corresponds to the major diameter of the elliptical open-
ing, on the basis of the reflection symmetry of the COAM. Thus,
let us consider the condition x ¼ 0; Eq. (14) is now expressed as
follows:

EQ-TARGET;temp:intralink-;e016;63;403ðsin θðuþ u0Þ − cos θvþ yCÞ2
¼ 2Rðcos θðuþ u0Þ þ sin θvÞ

− ðK þ 1Þðcos θðuþ u0Þ þ sin θvÞ2: (16)

To find the exact location of the deepest point, it is useful to
differentiate Eq. (16) to obtain as follows:

EQ-TARGET;temp:intralink-;e017;326;730ðsin θðuþ u0Þ − cos θvþ yCÞðsin θðduÞ − cos θdvÞ
¼ Rðcos θðduÞ þ sin θdvÞ − ðK þ 1Þðcos θðuþ u0Þ
þ sin θvÞðcos θðduÞ þ sin θdvÞ; (17)

where du and dv are the differentials along the u- and v-axis,
and we obtain as follows:

EQ-TARGET;temp:intralink-;e018;326;641

dv
du

¼ðKcos2θþ1Þðuþu0ÞþyC sinθ−R cos θþK sinθ cos θv
þR sinθ−Kðcos θðuþu0ÞþsinθvÞsinθ−vþyC cos θ

:

(18)

The condition for the existence of the deepest depth
corresponds to the numerator of Eq. (18) being equal to zero;
that is,

EQ-TARGET;temp:intralink-;e019;326;524ðK cos2 θþ 1Þðuþu0Þþ yC sin θ−R cos θþK cos θ sin θv

¼ 0: (19)

Thus, solving the coupled equations of Eqs. (17) and (19)
simultaneously results in a quadratic equation for (uþ u0) as
follows:

EQ-TARGET;temp:intralink-;e020;326;441aðuþ u0Þ2 − 2bðuþ u0Þ þ c ¼ 0; (20)

where

EQ-TARGET;temp:intralink-;e021;326;398

8>>><
>>>:
a¼ðKþ1ÞðKcos2θþ1Þ

ðKsinθcosθÞ2

b¼ððKþ1ÞyCsinθ−RcosθÞ ðKcos2θþ1Þ
ðKsinθcosθÞ2

c¼y2CðKcos2θþ1ÞðKþ1Þsin2θ−2RðKcos2θþ1ÞsinθcosθyCþR2cos2θð1−Ksin2θÞ
ðKsinθcosθÞ2

:

(21)

Among the two solutions of Eq. (20), the correct solution is
as follows:

EQ-TARGET;temp:intralink-;e022;326;285uþ u0 ¼
b −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 − ac

p

a
: (22)

Because
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 − ac

p
¼ − R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K cos2 θþ1

p
K sin θ cos θ (negated because of−K),

Eq. (22) can be simplified as follows:

EQ-TARGET;temp:intralink-;e023;326;211uþ u0 ¼ R
cos θ

K þ 1

�
1þ K sin θffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K cos2 θ þ 1
p

�
− yC sin θ: (23)

If the first equation of Eq. (13) is used, Eq. (23), the exact
location for the deepest point with respect to the center of the
elliptical opening can be expressed as follows:

EQ-TARGET;temp:intralink-;e024;326;127u� ¼ K cos θ sin θ

K cos2 θ þ 1

�
R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K cos2 θ þ 1

p
− sin θ

K þ 1
− yC cos θ

�
(24)

Fig. 4 Contour plot of the depth profile near the opening center
for COAM of R ¼ 4000 mm, K ¼ −0.7, yC ¼ 439.4 mm, and
θ ¼ 74.45 deg.
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and the corresponding depth as follows:

EQ-TARGET;temp:intralink-;e025;63;741v� ¼ R
sin θ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K cos2 θ þ 1

p

K þ 1
þ yC cos θ: (25)

The numerical depth profile for the COAM shown in Fig. 2
has its deepest point 5.8 mm from the center of the opening, and
the maximum depth is −30.4825 mm.

In short, the deepest point of a COAM is located at a different
point from the center of the elliptical opening when the COAM
was obtained by using a plane to cut the aspheric surface, indi-
cating that the reference point for the distance from the center of
the opening from the ROA can be either the center of the open-
ing or the deepest point of the mirror. The distance from the
ROA to the reference point is called the Y-offset or the off-
axis distance (OAD). We chose to call the distance the OAD.
For both cases, the major diameter of the elliptical opening
will be called the clear aperture (CA), which is equal to the
size of the COAM. Thus, in the following two sections, we
will investigate the details of the COAM for both cases.

5 First Method of Defining OAD for COAM
In the first method, the OAD refers to the deepest point of the
mirror, as shown in Fig. 5, and the coordinate of the deepest
point is ð0;OAD; zOADÞ, where

EQ-TARGET;temp:intralink-;e026;63;480zOAD ¼ R −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − ðK þ 1ÞOAD2

p
K þ 1

: (26)

Because the tangent plane at the deepest point is parallel to
the xu-plane ð∵dv

du jðu�;v�Þ ¼ 0Þ, the plane cutting the aspheric
surface must be parallel to the tangential plane, indicating
that the angle for the plane can be obtained by the angle of
the tangent plane at the OAD. To obtain the angle, Eq. (2)
can be differentiated as follows:

EQ-TARGET;temp:intralink-;e027;63;369

dy
dz

¼ R − ðK þ 1Þz
y

; (27)

and by using y ¼ OAD and Eq. (26), the angle of the plane can
be obtained as follows:

EQ-TARGET;temp:intralink-;e028;326;752 tan θ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

R
OAD

�
2

− ðK þ 1Þ
s

: (28)

Because the desired size of the COAM is equal to the major
diameter of the ellipse, denoted by CA, the right-hand side of
the third equation of Eq. (6) can be expressed as follows:

EQ-TARGET;temp:intralink-;e029;326;677CA ¼ 2
cos θ

ðK cos2 θ þ 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − 2R tan θyC − y2CðK þ 1Þ

q
:

(29)

By combining Eqs. (28) and (29), the y-intercept, yC, for the
plane can be obtained, after some algebraic work of rearranging
and regrouping the terms, as follows:

EQ-TARGET;temp:intralink-;e030;326;587yC

¼
−R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
R

OAD

�
2−ðKþ1Þ

q
þ� R

OAD

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2− ðKþ1ÞCA2

4
��

R
OAD

�
2
−K
�� R

OAD

�
2

r
ðKþ1Þ :

(30)

Once the aperture plane is determined, the relative location of
the deepest point with respect to the center of the opening, after
substituting Eqs. (28) and (30) into Eq. (25), can be obtained as
follows:

EQ-TARGET;temp:intralink-;e031;326;453u�

¼
KðOADÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2−ðKþ1ÞðOADÞ2

p �
1−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− ðKþ1ÞðCAÞ2

4ðR2−KðOADÞ2Þ

q �
ðKþ1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2−KðOADÞ2

p :

(31)

For the segment OAD ¼ 1100 mm and CA ¼ 1026 mm of
the aspheric surface with R ¼ 4000 mm and K ¼ −0.7as an
example, the numerical values of the angle and the y-intercept
of the aperture plane are θ ¼ 74.4548 deg and yC ¼
439.41 mm. Figure 6 shows the depth profiles numerically

Fig. 5 First method of defining OAD.

Fig. 6 Depth profile in two orthogonal directions for the segment
defined by the first method with the set of parameters R ¼
4000 mm, K ¼ −0.7, OAD ¼ 1000 mm, and CA ¼ 1026 mm.
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computed for both orthogonal directions for the segment men-
tioned above. The blue line corresponds to the depth profile
along the major axis, and the red line corresponds to the depth
profile along the minor axis near the center of the aperture.
Along the major axis, the depth profile clearly shows a mini-
mum at u� ¼ −5.80094 mm from the center of the aperture
as computed by Eq. (31), and the depth of −30.4825 mm is
0.0039 mm deeper than the depth at the center of the aperture.

6 Second Method of Defining OAD and
CA for an Off-Axis Aspheric Segment

The second method of specifying an off-axis aspheric segment is
to define the OAD as the distance from the ROA to the center of
the aperture, as shown in Fig. 7. The CA in this case is similarly
defined as the major diameter of the elliptical aperture. Unlike in
the first method, the angle of the aperture plane is not known
a priori. Thus, both the angle and the y-intercept of the aperture
plane must be solved by applying the two conditions of the OAD
and CA to Eq. (7) as follows:

EQ-TARGET;temp:intralink-;e032;63;541

�
OAD − yC ¼ sin θu0
CA ¼ 2Ru

; (32)

or

EQ-TARGET;temp:intralink-;e033;63;485

(
OAD ¼ R cos θ sin θþðKþ1Þcos2 θyC

K cos2 θþ1

CA ¼ 2 cos θ
K cos2 θþ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − 2R tan θyC − ðK þ 1Þy2C

p : (33)

Equation (33) is a coupled equation of the two parameters of
CA and OAD in terms of θand yC and can be reversed to solve
for the parameters of θand yC in terms of CA and OAD. The first
equation of Eq. (33) was rewritten to make the variable yC
a function of OAD:

EQ-TARGET;temp:intralink-;e034;326;752yC ¼ ðOADÞðK cos2 θ þ 1Þ − R cos θ sin θ

ðK þ 1Þcos2 θ : (34)

Now, Eq. (34) was substituted into the second equation of
Eq. (33) to obtain a quadratic equation with respect to the
variable m2 after some trivial algebra:

EQ-TARGET;temp:intralink-;e035;326;683am4 þ bm2 þ c ¼ 0; (35)

where

EQ-TARGET;temp:intralink-;e036;326;640m ¼ tan θ; (36)

and

EQ-TARGET;temp:intralink-;e037;326;603

8<
:

a ¼ 4ðOADÞ2
b ¼ 4ðOADÞ2ðK þ 2Þ þ ðCAÞ2ðK þ 1Þ − 1R2

c ¼ ðCAÞ2ðK þ 1Þ2 − 1R2 þ 4ðOADÞ2ðK þ 1Þ
: (37)

Unfortunately, the term b2 − 4ac for Eq. (37) cannot be fur-
ther reduced to the square of a sum, and no further simplification
is possible. Among the two possible solutions of the quadratic
equation, the positive value is the correct solution because its
square root has to be taken to calculate the final solution for
m. Once the angle and the y-intercept are obtained, the location
and depth for the deepest point can be calculated by using
Eqs. (24) and (25).

7 Comparison of Two Methods and
Discussion

Table 1 shows a list of characteristics of the COAM defined by
the two different methods with the same values of OAD and CA
and the radius of curvature, and conic constant. The numeric
values indicate only a small difference between the two meth-
ods. However, the difference of ∼10 μm in the maximum depth
cannot be ignored when the requirements of tolerance in the
values of CA and OAD are tight.

The methods will help define a COAM with an aperture of
a plane, unlike those defined by the projection. It is easy to dis-
tinguish the center of the aperture, the deepest point of the mir-
ror, and the distance between the two points. Furthermore,
several equations can directly yield their values. Prior to these
methods, one must complete a series of computations from
the sag equation with various conditional check points to ensure
that the computations are done properly.

Most importantly, it is noteworthy to understand two meth-
ods of a very similar COAM. To demonstrate the difference
between the two methods, various characteristics are evaluated
as a function of a conic constant while other parameters
remain constant. The differences between the two methods are
shown in Fig. 8. As the conic constant approaches −1, the differ-
ence between the two methods disappears. The disappearingFig. 7 Second method of defining OAD.

Table 1 Comparison the values calculated by two definitions for the OAD with the set of parameters R ¼ 4000 mm, K ¼ −0.7, OAD ¼ 1100 mm,
and CA ¼ 1026 mm.

Method θ (deg) yC (mm) u� (mm) Maximum depth (mm) Depth at u0 (mm)

1 74.4548 439.414 −5.80094 30.4825 30.4786

2 74.4193 441.023 −5.81219 30.4717 30.4678
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differences confirm the correct evaluation because the two meth-
ods become equivalent for off-axis parabolic mirrors.11 The
monotonic trend of various characteristics also indicates that
small differences are not artifacts or errors caused by the com-
putations. They instead indicate the nature of the COAM defined
by the two methods.

The second method seems more intuitive because of the
center of the aperture. However, because the angle of the aper-
ture plane can be obtained directly, the first method might be
more reasonable. More studies on the difference between
the two methods with respect to the fabrication and testing
COAMs should be performed.

8 Summary
We presented a thorough analysis of an off-axis aspheric seg-
ment considered as a part of an aspheric surface cut by a
plane. We found that the off-axis segment is an elongated ellipse
along the direction of the meridional plane and that the deepest
point is different from the center of the aperture of the segment.
This indicates that we should trace the location of contact point
during all grinding processes because the location of the point is
not fixed. This is not trivial for both fabrication and testing
points of view. The difference also led us to consider two differ-
ent methods of defining the so-called OAD. The two methods
are slightly different from each other in every aspect of the
segment.

Every telescope shares a series of common procedures for
designing, optimizing, manufacturing, and testing the segment
over a long period of time,12 and the development of an unam-
biguous definition of a segment cannot be overemphasized.
When a telescope consists of multiple segments, each of
which needs to be manufactured at different sites, such a def-
inition is essential. It is highly desirable that the standard
include correspondingly clear definitions. The definitions
presented here, we believe, can minimize guesswork and

uncertainty and improve the repeatability of multiple segment
production.
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