
RESEARCH PAPER

Efficient channelization on a graphics
processing unit

Bruce Merry*
South African Radio Astronomy Observatory, Cape Town, South Africa

ABSTRACT. We present an implementation of a channelizer (F-engine) running on a graphics
processing unit (GPU). While not the first GPU implementation of a channelizer,
we have put significant effort into optimizing the implementation. We are able to
process 4 antennas each with 2 Gsample∕s, 10-bit dual-polarized input and 8-bit
output, on a single commodity GPU. This fully utilizes the available peripheral com-
ponent interconnect express (PCIe) bandwidth of the GPU. The system is not as
optimized for a single high-bandwidth antenna but handles 6.2 Gsample∕s, limited
by single-core central processing unit (CPU) performance.

© The Authors. Published by SPIE under a Creative Commons Attribution 4.0 International License.
Distribution or reproduction of this work in whole or in part requires full attribution of the original
publication, including its DOI. [DOI: 10.1117/1.JATIS.9.3.038001]

Keywords: channelization; correlator; F-engine; graphics processing unit

Paper 23033G received Mar. 16, 2023; revised Jun. 8, 2023; accepted Jun. 28, 2023; published Jul.
12, 2023.

1 Introduction
TheMeerKAT radio telescope has an existing correlator-beamformer based on field programmable
gate arrays (FPGAs), which has been previously described.1 The MeerKAT extension project is
currently underway to add more dishes with longer baselines.2 Since the MeerKAT correlator
depends on a number of hardware components that have reached end-of-life (particularly the
Hybrid Memory Cube memory) and there were concerns that the design would not scale up,
a new correlator is being designed rather than expanding the existing correlator.

The FPGA development process for MeerKATwas plagued by long compile times (usually
overnight), difficult-to-use tools, and rigid designs: each channel count used a different design,
and changes had to be manually copied between designs. While FPGA development tools have
since improved, it nevertheless remains challenging to achieve high performance.3

Graphics processing units (GPUs) offer an alternative with a mature ecosystem and a more
convenient development process. They have been used for some years for the correlation (X) step
in F-X correlators,4 but the only GPU-based channelizer (F step) of which we are aware is the
Cobalt correlator (used by LOFAR).5,6 There are also GPU-based spectrometers, such as at
the Green Bank Telescope7 and Atacama Compact Array,8 but these do not include the delay
correction needed for an F-X correlator.

We first developed a proof-of-concept channelizer, which implemented the data-path
functionality of the MeerKAT wide-band correlator. Partly based on the good results from this
proof-of-concept, we elected to pursue a fully GPU-based correlator for the MeerKAT extension.
This paper describes the implementation and tuning of our GPU-based channelizer.

Section 2 describes the functionality included in our channelizer, and summarizes the pro-
gramming model for GPUs. Section 3 details the initial software implementation. We then describe
a significant optimization in Sec. 4. We finish with results (Sec. 5) and conclusions (Sec. 6).

*Address all correspondence to Bruce Merry, bmerry@sarao.ac.za

J. Astron. Telesc. Instrum. Syst. 038001-1 Jul–Sep 2023 • Vol. 9(3)

https://doi.org/10.1117/1.JATIS.9.3.038001
https://doi.org/10.1117/1.JATIS.9.3.038001
https://doi.org/10.1117/1.JATIS.9.3.038001
https://doi.org/10.1117/1.JATIS.9.3.038001
https://doi.org/10.1117/1.JATIS.9.3.038001
https://doi.org/10.1117/1.JATIS.9.3.038001
mailto:bmerry@sarao.ac.za
mailto:bmerry@sarao.ac.za
mailto:bmerry@sarao.ac.za


2 Background

2.1 Channelization
The exact steps performed by a channelizer are likely to vary from one instrument to the
next. The MeerKAT wide-band channelizers (both the original FPGA design and our new
GPU design) perform the following steps. These are essentially the same as those performed
by Cobalt.5

1. Digitized samples are received. The MeerKAT digitizers produce 10-bit signed integer
voltage samples. The data rate varies depending on the observing band but is up to
1750 Msample∕s (17.5 Gbit∕s) for each of the two polarizations of each antenna.

2. A coarse delay is applied. Signals of interest will arrive at different antennas at different
times due to the finite speed of light, and these delays change over time as the Earth rotates.
Before correlating them, this delay must be corrected. Coarse delay is applied in the time
domain and operates only on a whole number of samples.

3. A polyphase filter bank (PFB)9 is applied to convert time-domain data to the frequency
domain. A PFB is essentially a set of finite impulse response (FIR) filters followed by a
Fourier transform. Each filter is applied to regularly spaced sets of samples rather than to
contiguous samples. Suppose we wish to compute a spectrum with start time t0 with n
channels. The PFB has a set of weights wi;j (0 ≤ i < 2n, 0 ≤ j < T where T is the number
of “taps”). The filtered sample gt at time t0 þ t (0 ≤ t < 2n, where time is measured in
samples) is

EQ-TARGET;temp:intralink-;e001;114;476gt ¼
XT−1

j¼0

st0þt−cþ2nj · wt;j; (1)

where s contains the original samples and c is the coarse delay. The filtered samples gt are
then put through a 2n-element real-to-complex (R2C) Fourier transform, from which only
the n non-negative frequencies are retained. The Nyquist frequency (which lacks phase
information) is dropped so the result is a convenient power-of-two size.

A standard windowed Fourier transform can be seen as a PFB with T ¼ 1. Using more
taps allows the frequency-domain response of each channel (shown in Fig. 7) to more
closely approximate an ideal band-pass filter.

MeerKAT supports 1024, 4096, or 32,768 frequency channels, and the MeerKAT
extension will additionally support 8192 channels. The MeerKAT PFBs use up to 16 taps
in the FIR filters to improve the channel isolation. The PFB is “critically sampled,” mean-
ing that the next spectrum starts at time t0 þ 2n. Each spectrum uses a window of 2nT
contiguous samples as input, so these windows overlap with each input contributing to T
different output spectra.

4. A fine delay is applied. This is the residual delay not corrected by the coarse delay step.
Since delaying a sine wave is equivalent to changing its phase, this can be performed in
the frequency domain by applying a frequency-dependent phase rotation to each channel.
In addition, we apply a frequency-independent phase rotation for fringe-stopping.

5. Bandpass correction is applied to compensate for instrumental effects: each value is multi-
plied by a complex, channel-dependent correction factor supplied by the telescope control
and monitoring system.

6. The internal representation is quantized to 8-bit signed Gaussian integers, arranged into
packets and transmitted to the network.

In the signal processing steps described above, the two polarizations remain independent of
each other. However, to maintain compatibility with the MeerKAT packet formats, each output
packet contains data from both polarizations, and hence the channelizer needs to operate on both
polarizations together. Doing so also allows for new features in the future, such as correcting for
polarization leakage. We refer to a pipeline performing all the steps above for two polarizations
of a single antenna as an F-engine. A single server may run multiple F-engines as independent
processes.

Merry: Efficient channelization on a graphics processing unit

J. Astron. Telesc. Instrum. Syst. 038001-2 Jul–Sep 2023 • Vol. 9(3)



2.2 Network Protocol
MeerKAT uses the streaming protocol for exchanging astronomical data (SPEAD),10 deployed
over multicast user datagram protocol (UDP). This is a protocol for transmitting multi-dimen-
sional arrays of data with associated metadata (such as timestamps). The basic protocol data
unit is the “heap,” which may be fragmented into multiple UDP packets and reassembled by
the receiver.

Digitizers send voltage samples in 4096-sample heaps, each comprising a single packet. The
10-bit samples are packed, so the heaps contain 5120 bytes of payload. The two polarizations
are sent independently.

To reduce the number of F-engine output heaps, each heap contains data for 256 spectra. The
data in a heap are a c × 256 × 2 array of Gaussian integers, where c is the number of channels
sent to each consumer, and for MeerKAT can be anywhere from 4 to 2048. Output heaps may
comprise multiple UDP packets, as they are typically larger than the largest possible UDP packet.

2.3 Graphics Processing Units
Our target GPUs are those from NVIDIA, and so we will use the terminology used by Compute
Unified Device Architecture (CUDA; NVIDIA’s programming toolkit). GPUs from other vendors
are similar but use different terminology. CUDA-capable GPUs have multiple levels of parallelism:

1. Theards are the finest level and are conceptually similar to central processing unit (CPU)
threads. Each thread has its own registers. Threads are programmed as if they have inde-
pendent control flow, but in practice there are limitations to this, and dynamic control flow
at the thread level can reduce performance.

2. Warps are groups of 32 threads and are the unit of scheduling. For best performance, all the
threads in a warp execute the same instruction at the same time and access adjacent
memory locations.

3. Thread blocks are sets of threads that execute concurrently on a single streaming multi-
processor (SM)—one of the hardware units of the GPU. Threads in the same block can
communicate through a high-speed shared memory that is local to the SM. Each SM also
has an L1 cache.

4. Grid are the coarsest level. The CPU dispatches work to the GPU as a grid of thread blocks.
Every thread executes the same program but is assigned a unique index that allows it to be
differentiated from other threads. A grid may contain more thread blocks than the GPU has
the resources to handle concurrently, in which case some thread blocks may only start after
others have completed.

The GPUs we have tested all connect to a host system via 16 lanes of a peripheral component
interconnect express (PCIe) 4.0 bus. The CUDA busGrind tool typically shows that NVIDIA
GPUs can sustain 26 GB∕s for unidirectional traffic and 21 GB∕s each way for bidirectional
traffic. This is 1 to 2 orders of magnitude less than the bandwidth of the random access memory
(RAM) on the GPU and can easily become a bottleneck for data streaming applications.

3 Implementation
Unlike other correlators of which we are aware, the CPU parts of our correlator are implemented
entirely in Python, whereas the GPU kernels are written in CUDA C++. While not generally
known for its performance, Python’s high-level nature has lead to high developer productivity.
All the compute-intensive work is either performed on the GPU or handled by off-the-shelf libra-
ries, such as spead2 or numpy that use C/C++ internally. Some code is carefully written to ensure
that Python does not get used for performance-critical inner loops.

3.1 Batching
The programming model in CUDA (and other GPU programming interfaces) is batch-oriented
rather than based on a continuous stream of data. Large batches of work (millions of threads)
allow for sufficient parallelism to keep the GPU fully utilized. We thus break the input stream
into chunks of a few million samples. The output stream is similarly decomposed into chunks,
but for reasons we will explain later, they are not in one-to-one correspondence. Because the

Merry: Efficient channelization on a graphics processing unit

J. Astron. Telesc. Instrum. Syst. 038001-3 Jul–Sep 2023 • Vol. 9(3)



Python code is involved at the batch level (rather than on individual samples or packets), large
chunks also help amortize the overheads of the relatively slow interpreter.

To ensure that all parts of the system are kept busy, we use a pipelined design with com-
ponents connected by queues of chunks, as shown in Fig. 1. In particular, we need host-to-GPU
transfers, GPU-to-host transfers, and GPU computations to happen concurrently to maximize the
overall throughput. We use Python’s asyncio library to manage these concurrent operations.

The PFB uses overlapping windows, which means that some computations require data
spanning an input chunk boundary. To allow the PFB calculation to operate on contiguous data,
each chunk is allocated on the GPU with some extra space at the end. The prefix of the following
chunk is then copied to this space, and computations are performed on this expanded chunk.
Provided that this extra space is at least as large as the PFB window size, every PFB window
can now be located inside a single chunk, as shown in Fig. 2.

3.2 Networking
We use the spead2 library (a high-performance implementation of the SPEAD protocol) both to
receive input heaps from the digitizers and to transmit output heaps to the X-engines. On the
receive side, it supports collecting multiple heaps into a chunk, reordering them as necessary
based on timestamps,11 before passing the chunk to the Python code for processing. It also allows
the Python code to control the allocation of the memory: we allocate it in CUDA pinned memory,
which allows it to be efficiently copied to the GPU.

It would have been simplest to treat the two polarizations jointly in the receive code, placing
them into a single chunk. Unfortunately, spead2 uses locks in a way that prevents multiple
threads from working on a chunk in parallel, and we were not able to achieve the required per-
formance with a single thread. Thus, each input chunk contains only a single polarization, and
Python code is used to pair up chunks with the same timestamp. This allows the two threads to

Fig. 1 Processing linked by queues. Where the diagram shows a circular buffer, the implemen-
tation uses one queue carrying full buffers forward, and a second queue carrying empty buffers
backwards.

Fig. 2 Overlapping chunks. The dark areas show the chunks as originally received from the net-
work. Each chunk is then extended (light area) to contain a copy of some data from the following
chunk. The braces show the overlapping PFB windows, with every spectrum computed from
contiguously-stored data.

Merry: Efficient channelization on a graphics processing unit

J. Astron. Telesc. Instrum. Syst. 038001-4 Jul–Sep 2023 • Vol. 9(3)



receive data in parallel, but it adds complexity because this code needs to handle corner cases
where one polarization is lost.

On the transmit side, spead2 allows heaps to be defined in advance with pointers to the data.
These may then be transmitted many times with the values pointed to changing each time. It also
allows a list of heaps to be submitted for transmission in one step. When allocating the output
chunks, we also create the corresponding heap structures, thus minimizing the overhead incurred
at transmission time.

3.2.1 Data transfer

In the default implementation, each input sample is involved in four host memory accesses, and
each output sample in two, as shown in Fig. 3(a). The network interface card (NIC) writes pack-
ets directly to RAM. The spead2 library then assembles the packet payloads into chunks, again in
RAM. The final input step is that the GPU pulls the chunks from RAM. On the output side, the
GPU copies chunks to RAM, and the NIC pulls data from RAM. There is no need for the CPU to
copy data into individual packets, because the NIC is able to gather the headers and payload for
each packet from different addresses.

NVIDIA’s GPUs are able to map GPU memory into the system’s address space. This allows
for a data flow that places less load on the system’s RAM, as shown in Fig. 3(b). First, when
spead2 assembles chunks, it writes directly to the GPUmemory, rather than to a staging area in host
memory. Second, the NIC is given pointers to GPU memory, rather than to a copy in host memory.

For the latter optimization, the results are disappointing. We found that having the NIC read
directly from the GPU performs well only when the GPU is idle; when its memory system is
heavily used, the achieved bandwidth drops to below 120 Gbit∕s, significantly <160 Gbit∕s
which we are able to achieve by staging through host memory. We are able to achieve by staging
through host memory. NVIDIA recommends12 using a motherboard where the GPU and NIC sit
behind a PCIe switch, which is not the case for the systems we tested, and so better results may be
possible. It should also be noted that we were only able to get this feature working at all on a data
center GPU (A10) and not on gaming GPUs.

Having the CPU write directly to GPU memory is more promising. We were able to get the
feature working on gaming GPUs but with the limitation that only 256 MiB can be mapped. This
significantly limits the maximum chunk size, particularly when running multiple engines per
GPU, and caused performance to be lower overall.

3.3 Coarse Delay
The MeerKAT channelizer implements coarse delay by duplicating or removing samples from
the stream. This is easy to do with an FPGA, but less so with a GPU since the samples are not
streamed one at a time. In addition, any PFB windows overlapping the insertion or removal have
a mix of different coarse delays, potentially leading to artefacts. In practice, the derivative of
delay is small (less than 3 × 10−9 for sidereal targets), and so these artefacts are rare.

Instead of inserting or removing samples, we handle coarse delay by adjusting indices used
to fetch samples. For each output spectrum (with a given timestamp), we identify the appropriate
position in the input stream at which to load the data to achieve the necessary delay. This
approach allows for absolute delays that are essentially unlimited (even negative), and every

(b)(a)
Fig. 3 System data flow. (a) Default. (b) System RAM usage is reduced by having the CPU write
directly to the GPU and the NIC read directly from the GPU.

Merry: Efficient channelization on a graphics processing unit

J. Astron. Telesc. Instrum. Syst. 038001-5 Jul–Sep 2023 • Vol. 9(3)



PFB window uses a consistent delay. However, large step changes in delay (such as when switch-
ing targets) can be problematic if they require access to older data that have already been
discarded. We can protect against this by increasing the size of the overlap zone shown in
Fig. 2 by a number of samples equal to the largest desired instantaneous delay change. This
is not a major issue for a dish array as a big change in delay center usually requires the dishes
to be slewed, during which time the data will be discarded anyway.

A similar problem is that the two polarizations may have different delays, although the dif-
ference is expected to be very small since the delays are dominated by the geometric component,
which is common. Provided the overlap zone is large enough, we can always find a pair of
chunks with the same timestamp that holds the data for both polarizations.

3.4 Polyphase Filter Bank
In this subsection, we describe only the filtering step (Eq. 1). The fast Fourier transform (FFT)
step is described in Sec. 3.5.

It is easier to implement the filter efficiently if the coarse delay can be treated as a constant.
As previously noted, coarse delay changes are rare, so we handle this by splitting each chunk into
regions with fixed coarse delay and using a separate kernel invocation for each region. We will
thus ignore it in the following exposition, as it is simply an index offset in the chunk.

The input samples can be viewed as a 2D array with width 2n, in which the i’th column
undergoes a FIR filter with weights wi. This maps easily to CUDA, with one thread for each
column. The thread holds wi in its registers, as well as a sliding window of input samples, thus
minimizing the number of memory accesses required. However, this does not provide sufficient
parallelism to fully occupy the GPU: at least hundreds of thousands of threads are needed. We
thus split each column into smaller pieces, with a thread per piece. While the output space is
completely partitioned between threads, some inputs are loaded by multiple threads, as shown in
Fig. 4. There is thus a trade-off between having too few threads (and not fully utilizing the GPU)
and too many (and performing many redundant loads). A heuristic we found worked reasonably
well (but which may be need to be tuned to the GPU model) is to ensure that each thread

Fig. 4 Relationship of threads to input samples in the PFB. Each black arrow shows the input
samples loaded by a single thread, for a four-tap PFB.

Merry: Efficient channelization on a graphics processing unit

J. Astron. Telesc. Instrum. Syst. 038001-6 Jul–Sep 2023 • Vol. 9(3)



computes at least 8T outputs, where T is the number of taps, unless this would lead to fewer
than 131,072 (217) threads.

3.5 Fast Fourier Transform
Due to coarse delays, each invocation of the PFB FIR kernel produces a variable amount of data.
We keep invoking it until we have enough data to fill an output chunk. The last invocation may
need to be truncated to avoid overrunning the output buffer. Once this is done, we use a library to
perform a batched one-dimensional (1D) FFT.

We have considered two libraries for the FFT: cuFFT (provided as part of CUDA) and
vkFFT.13 The latter is highly configurable; we have used the defaults, except that the transfor-
mation is out-of-place. Figure 5 shows the performance of these two libraries on R2C and com-
plex-to-complex (C2C) transforms. It is clear that for batched 1D transforms with the sizes of
interest, cuFFT has superior performance, and so we do not consider vkFFT further.

3.5.1 FFT precision

For MeerKAT, the digitizer samples are 10-bit signed integers, and the F-engine outputs are 8-bit
signed integers. Since half-precision floating point (FP16) has a 10-bit mantissa, one might
expect that a half-precision FFT would be sufficient, as rounding errors would be smaller than
the quantization errors associated with the input and output.

While this may be true for a single instance of the FFT, it ignores the statistical properties of
the errors. Provided the signal is suitably dithered,14 quantization errors will have zero mean and
will not affect the expected value of the Fourier transform. In contrast, the rounding errors in the
FFT are data-dependent, have spectral features, and have non-zero mean. It is known that fixed-
point PFB implementations for radio astronomy benefit from extra internal precision for the
FFT15 (MeerKAT uses 22-bit registers1), but we are not aware of any studies for low-precision
floating point. To test the effect of using an FP16 FFT, we synthesized some data as follows:

1. Generate a tone at a fixed frequency.
2. Quantize it to 10-bit signed integers, using a uniform dither.
3. Perform a R2C transform using cuFFT, in either FP16 or FP32.
4. Repeat the above many times and average the results (in double precision).
5. Square the absolute values of the averages to convert voltage to power.

An example of the results are shown in Fig. 6. While the noise floor is similar, there are
harmonics at around −75 dB. The period of the features varies depending on the binary repre-
sentation of the channel number used for the tone, reflecting the structure of the FFT. This is
significantly higher than the noise floor of the PFB (Fig. 7) and in the MeerKAT environment

Fig. 5 FFT library performance, with batched single-precision 1D transformations. All results use
225 output values. Time is given per complex output value, and the horizontal line indicates the
theoretical bound given by the memory bandwidth of the GeForce RTX 3070 Ti. Note that for
R2C transforms, the input size is twice the output size.

Merry: Efficient channelization on a graphics processing unit

J. Astron. Telesc. Instrum. Syst. 038001-7 Jul–Sep 2023 • Vol. 9(3)



could potentially cause strong sources of narrow-band radio frequency interference (RFI)16 to
contaminate useful parts of the band. We thus chose to stick with FP32 for the FFT.

3.6 Post-Processing
The remaining steps are applying fine delay, bandpass corrections, and quantizing to 8-bit signed
Gaussian integers. These are all quite straight-forward to implement, as they can be computed
independently for each sample. We use inline parallel thread execution (PTX; CUDA’s
intermediate representation) to perform the quantization with rounding and saturation.

In addition, the data are transposed: the input is time-major, channel-minor, but the layout
expected by the X-engines is channel-major within each heap. The transposition is done in shared
memory to improve the memory access pattern.17

3.7 Lost Data
So far, we have assumed a lossless network in which all expected packets actually arrive. While
we aim to have enough headroom that data loss does not routinely happen, we still need to handle
it gracefully. Within each chunk, spead2 sets flags indicating which heaps were actually received.
This information is carried through the pipeline: if the window of input samples for a PFB has
any missing data, the output spectrum is flagged as unusable. Any output heap that contains
unusable spectra is simply not transmitted. This may also cause usable spectra to be discarded
but since this is not expected to occur during normal operation, we have not attempted to
optimize it.

(a) (b)
Fig. 6 FFT simulation using (a) FP32 and (b) FP16, averaged over 224 iterations. Only power is
shown (not phase). The tone is in channel 192 of 1024.

Fig. 7 Channel response for 1024 and 32,768 channels with 16 taps.

Merry: Efficient channelization on a graphics processing unit

J. Astron. Telesc. Instrum. Syst. 038001-8 Jul–Sep 2023 • Vol. 9(3)



4 Optimizing the Fourier Transform
In Fig. 5, it is clear that there is a large penalty for FFT sizes above 16,384, and that this penalty is
worse for R2C transforms. This threshold is the point at which cuFFT switches from doing the
entire transform in a single pass, to performing two (for C2C) or three (for R2C) passes over
the memory.

To eliminate this penalty for larger channel counts, we stop treating the FFT as a black box,
and split off some of the work to the other kernels.

4.1 R2C Transform
We will start by eliminating the extra pass required for the R2C transform. While the cuFFT
documentation does not describe how R2C transforms are implemented, the name of the final
kernel (postprocessC2C_kernelmem) suggests that it uses a technique that first treats the even
and odd elements as real and imaginary components of complex numbers, performs a C2C trans-
form, and then performs post-processing to get the final result.18

Instead of having cuFFT apply this technique, we can apply it manually, with cuFFT
handling just the C2C step. The advantage of doing the post-processing ourselves is that it can
be integrated into the post-processing kernel, thus eliminating a round trip to memory.

4.2 Unzipping the FFT
The two passes used by cuFFT’s C2C transform correspond to the “four-step” FFT,19 in which
a transform of size ab is decomposed into b transforms of size a followed by a transforms of
size b, with the smaller transforms all computed within a faster level of the memory hierarchy
(in this case, on-chip shared memory).

As in the previous subsection, we can improve efficiency by performing this decomposition
ourselves and merging some of the steps with existing kernels. Our approach is actually based on
the “six-step” FFT:19

1. Transpose the input data, interpreted as an a × b matrix, to a b × a matrix (all matrices
being row-major).

2. Perform b individual a-point FFTs.
3. Multiply the resulting b × a matrix by appropriate roots of unity (the so-called “twiddle

factors”).
4. Transpose this b × a matrix into an a × b matrix.
5. Perform a individual b-point FFTs.
6. Transpose the resulting a × b matrix into a b × a matrix, which can be interpreted as a 1D

ab-element array.

In our implementation, there are no explicit transposition passes; instead, indexing of the
surrounding operations is adjusted to take the transposition into account. This makes the
transposition “free” in the sense that it does not directly cause extra memory transfers, but
it does lead to less efficient memory access patterns as contiguous accesses are replaced with
strided access.

We incorporate step 1 into the PFB FIR kernel (adjusting the addresses at which values are
written), perform step 2 with cuFFT, and fold the remaining steps into the post-processing kernel.

We refer to b as the “unzipping” factor. While the four-step FFT is normally used with a and
b having similar magnitude, we prefer to use a small value, specifically b ¼ 4, for several
reasons:

1. We need to implement our own b-point FFT inside the post-processing kernel. While
writing a general FFT implementation, handling a range of sizes (even if only powers of
two) is a major undertaking, a four-point FFT is simple to code.

2. Our b-point FFT implementation operates serially, holding all the data in registers of a
single thread. Larger values of b thus create more register pressure and would probably
require a rewrite using a parallel implementation. This is exacerbated by the post-process-
ing for the R2C transform, which requires two such FFTs to be computed by the same
thread.

Merry: Efficient channelization on a graphics processing unit

J. Astron. Telesc. Instrum. Syst. 038001-9 Jul–Sep 2023 • Vol. 9(3)



3. The implicit transpositions result in access strides of b elements, so smaller values of b
have better data locality.

Figure 5 shows that the cost of step 2 is largely independent of a provided it is at most 8192,
so the increase in a that comes from reducing b is not an issue. For simplicity, we have kept b ¼ 4

for all channel counts (1024 to 32,768).
We also attempted to make the transpositions more explicit using shared memory17 but

found that the synchronization overheads outweighed the benefits. It is possible that a more
sophisticated implementation (for example, using recent CUDA asynchronous application pro-
gramming interfaces) would achieve better results.

5 Results

5.1 Hardware
Unless otherwise noted, all results are for a GeForce RTX 3070 Ti GPU. To improve reproduc-
ibility, we have locked the graphics and memory clocks to 1575 Hz and 9251 MHz respectively,
which gives theoretical performance of 19.35 TFLOP/s (single precision) and 592 GB∕s.
Despite this, we have found that the performance of the post-processing kernel drops by
20% to 25% if it is repeated thousands of times in a tight loop, so the results for that kernel
are measured on 1000 iterations at a time. This does not seem to occur when mixed with the
other kernels in real-world usage.

The CPU is an Advanced Micro Devices (AMD) EPYC 7313P (Milan) with 16 cores, 3 GHz
base clock, and 3.7 GHz boost clock, equipped with 64 GiB of DDR4-3200 on a Supermicro
H12SSL-i motherboard. We considered disabling the boost clock to give more consistent results
(similar to locking the GPU clocks) but found that doing so made a huge reduction in perfor-
mance and did not substantially improve consistency. We thus chose to keep the boost clocks
enabled so that results correspond more closely to real-world usage. Our tests are relatively short-
running, and it is possible that performance will decline in a system that runs continuously due to
thermal limitations.

The network card is an NVIDIA ConnectX-6 Dx with dual 100 Gbit∕s ports.

5.2 Channel Response
To measure the channel response, we use a simulated digitizer that generates a common full-scale
tone in both polarizations but with independent dithering. We then cross-correlate the F-engine
outputs and integrate over 8 s (we use a cross-correlation rather than an auto-correlation so the
dithering noise is uncorrelated). By varying the frequency of the tone by small (sub-channel)
amounts, we can determine the channel response of the engine. The 8-bit F-engine output does
not have enough dynamic range to give a full picture, so we use different gain settings for differ-
ent tones. Figure 7 shows the result for 1024 and 32,768 channels and 16 taps. It also shows
the theoretical ideal computed by taking the Fourier transform of the PFB weights (a Hann-
windowed sinc filter). There is extremely good agreement down to a noise floor around
−120 dB. We believe the noise floor is higher with fewer channels because the ratio of coherent
gain (gain for narrow-band signals) to incoherent gain (gain for white noise) depends on the
channel count.

5.3 GPU Throughput

5.3.1 Polyphase filter-bank

Figure 8 shows a “roofline” plot of the performance of the pre-processing filter kernel, for 32,768
channels (the results for other channel counts are qualitatively similar). All the results are in the
left-hand side of the graph, indicating that memory accesses dominate the performance. The
configurations with up to 16 taps all use 75% or more of the available memory bandwidth.
However, as the number of taps goes up, the number of registers needed increases, the number
of threads that can be run concurrently decreases and the GPU’s ability to hide memory latency is
reduced. With 32 taps, the theoretical occupancy (fraction of the theoretical maximum number of
concurrent threads) is 41.67%.

Merry: Efficient channelization on a graphics processing unit

J. Astron. Telesc. Instrum. Syst. 038001-10 Jul–Sep 2023 • Vol. 9(3)



While the roofline plot shows that the memory accesses that do occur are performed effi-
ciently, it does not consider that some memory accesses are redundant. The kernel loads many
bytes more than once, and if this is not absorbed by the caches, it will harm the throughput. The
maximum potential throughput of the kernel can be computed from the total size of the input
and output buffers and the theoretical bandwidth of the device. Figure 9 shows the achieved
efficiency relative to this ideal, again for 32,768 channels.

The results above all use factor-4 unzipping. This results in uncoalesced memory writes,
which reduces the performance by 4% on average over the test scenarios, and 19% in the worst
case.

5.3.2 Fourier transform

For power-of-two sizes from 64 up to 16,384 (the largest size for which cuFFT uses a single
pass), the C2C FFT is memory-bound: arithmetic intensity is at most 4.5 flops per byte, and
at least 87% of the memory bandwidth is used (both of these occur at the largest size).

5.3.3 Post-processing

As with the other kernels, the post-processing is memory-bound, with an arithmetic intensity of 6
to 7 flops per byte. Figure 10 shows the efficiency relative to the ideal of accessing every input
and output value once at the theoretical maximum bandwidth. The efficiency declines with
increasing channel counts because the memory access pattern causes some cache lines to be
loaded multiple times. For 32,768 channels, an extra 7% memory traffic is generated.

Fig. 9 Efficiency of the PFB FIR filter. All results are for 32,768 channels.

Fig. 8 Roofline plot for PFB FIR filter. Within each cluster, the points are for 16, 12, 10, 8, and 4 bits
per sample from left to right. All results are for 32,768 channels. The line indicates theoretical
maximum performance.

Merry: Efficient channelization on a graphics processing unit

J. Astron. Telesc. Instrum. Syst. 038001-11 Jul–Sep 2023 • Vol. 9(3)



5.3.4 Overall GPU throughput

For even a mid-range GPU, the maximum sampling rate that can be handled is limited by PCIe
bandwidth rather than the computations on the GPU. For each combination of PFB taps and input
bit depth, we have estimated the GPU memory bandwidth required to ensure that it does not
become the bottleneck. To make this estimate, we used the following process:

1. Assume a PCIe bandwidth of 160 Gbit∕s in each direction (achievable on NVIDIA
Ampere GPUs with a little headroom), and from this determine a sampling rate.

2. Measure the time required to run all the kernels on our test system, and use linear scaling to
determine a memory bandwidth of a hypothetical GPU that would run the kernels just fast
enough.

3. Since the measurement above does not include any PCIe transfers, add the GPU memory
bandwidth required for transferring the inputs and outputs over PCIe. Similarly, add time
to copy the prefix of each chunk to the suffix of the previous chunk. In both cases, we
assume 100% efficiency in the memory accesses.

Figure 11 shows the results for 1024 and 32,768 channels. It may seem counter-intuitive that
going from 8 to 16 bits per sample reduces the required bandwidth. This occurs because the PCIe
bandwidth is kept constant and hence the sampling rate decreases. The bulk of the on-GPU
memory traffic is performed in single-precision FP rather than scaling with the input bit depth,
and so decreasing the sample rate decreases the memory bandwidth needed for that traffic.

Fig. 11 Estimated GPU memory bandwidth. This is the minimum bandwidth the GPU will require
for the computations to become bottlenecked by a PCIe 4.0 bus. The top of each bar represents
32,768 channels while the horizontal line near the top represents 1024 channels.

Fig. 10 Efficiency of the post-processing kernel.

Merry: Efficient channelization on a graphics processing unit

J. Astron. Telesc. Instrum. Syst. 038001-12 Jul–Sep 2023 • Vol. 9(3)



To validate this model, we can artificially limit the memory clock on our test hardware to
simulate a lower-end GPU. This is not a perfect test since a lower-end GPU would generally have
fewer streaming multiprocessors and a narrower memory bus but should give some indication of
the accuracy. Our GPU only supports a few fixed memory frequencies, so we fix it to 810 MHz,
which gives a theoretical bandwidth of 51.84 GB∕s. At 32,768 channels, 10-bit samples, and
16 taps, the model indicates a maximum sampling rate of 1077 Msample∕s. In practice, we
found that 930 Msample∕s was the highest rate we could run the full engine without falling
behind the incoming data (to the nearest 10 Msample∕s). This shows that there are additional
overheads not accounted for by the model, but (at least for this case) they are <15%.

5.4 System Tuning
We found that we needed to do a substantial amount of system-level tuning to obtain good
performance, using a combination of hardware placement, basic input/output system (BIOS)
settings, and kernel settings.

To test the throughput of the whole system, we run either one or four instances of the
F-engine on the system under test. Input data are provided by digitizer simulators (one per
F-engine) running on another machine. The output data are sent into the network (as multicast
streams). Using four engines is representative of how the code is expected to be deployed for
the MeerKAT extension, where the highest sampling rate will be 1750 Msample∕s. In this case,
each engine is assigned to a single quadrant of the CPU and hence to a single core complex die
(CCD). Tests with a single engine are aimed at measuring the maximum bandwidth achievable
with the current implementation, and use one thread per CCD (one network receive thread per
polarization, one network transmit thread and the main Python thread). The four engines operate
entirely independently, just as if they were running on separate hosts.

Since the UDP protocol in use is lossy, it is not possible to measure maximum throughput
directly. Rather, we repeat a number of experiments in which a fixed sampling rate is chosen, and
we observe the F-engine input over 20 s to check if there are any gaps in the received timestamps
(indicating packet loss). The engine is allowed to run for a few seconds before this observation
period begins, as it is quite common for some packets to be lost while the process “warms up.”
We then use a binary search to determine the highest sampling rate for which no packets are lost,
to the nearest 10 Msample∕s. As the sampling rate approaches the critical rate at which the
implementation can keep up, packet loss during the 20 s window becomes a random event, and
so we see variation of a few percent even when the configuration is not changed.

These results should be seen as upper bounds, as running for 20 s under ideal conditions
(for example, with no changes to delay) does not guarantee stable operation in real-world use.

5.4.1 BIOS settings

Table 1 shows achieved sampling rates in each case, starting with our optimized system as a
baseline and then showing the impact of changing one setting at a time (except for the row
marked “BIOS defaults”). These results all use 32,768 channels, 16-tap PFBs, and 10-bit digi-
tizer samples (a representative configuration for the MeerKAT extension). The chunk size is 226

samples for one engine or 224 samples per engine when using four engines.
The BIOS settings chosen are a combination of those recommended by AMD20,21 and our

own experience and experimentation. Not all of the settings recommended by AMD are available
on our motherboard.

The first group of settings, starting with algorithmic performance boost disable (APBDIS)
relate to power management. Because the F-engine operates on a batch of data then becomes idle
until the next batch is ready, it may cause some part of the system to drop into a lower-power,
less-performant state. There is usually a latency to return to full performance, and if that is too
high it can lead to data loss. In this case, it appears that only data fabric (DF) Cstates are ben-
eficial. In smaller microbenchmarks, we have seen APBDIS cause poor performance at certain
data rates—usually not the highest data rates, but rather ones that are low enough to allow the
low-power state to be engaged.

CPU power management (P-states and C-states) is also important, but we chose to control
that through the operating system (OS) rather than the BIOS.

Merry: Efficient channelization on a graphics processing unit

J. Astron. Telesc. Instrum. Syst. 038001-13 Jul–Sep 2023 • Vol. 9(3)



The next group relate to the way memory accesses are performed. By default, memory
addresses are interleaved across all the memory channels [1 non-uniform memory access
(NUMA) node per socket (NPS1)], but the memory channels can also be partitioned into two
or four sets (NPS2/NPS4) where the OS can allocate memory from specific sets. This can reduce
memory latency if the users of the memory (CPU cores or PCIe devices) are located close to
the memory controllers. A single PCIe bus can also be designated as the “preferred I/O bus,” and
will get priority when there is contention for memory access. Finally, “PCIe relaxed ordering”
allows PCIe transactions to proceed out-of-order under some circumstances, which can improve
utilization by preventing head-of-line blocking.

We expected NPS1 to produce sub-optimal results for one engine, because the load is not
evenly balanced across the system. However, we expected NPS4 to work well for four engines,
because each engine runs on one CCD and uses the nearest memory channels, which should give
ideal load balancing and minimal latency. Our hypothesis is that the copy engines on the GPU
perform coarse-grained time-sharing between the processes, and hence only utilize half or
a quarter of the memory channels at a time rather than having in-flight transactions on them all
concurrently. This does match AMD’s recommendation that workloads requiring accelerator
throughput should use NPS1.

We were surprised that setting the GPU as the preferred input/output (I/O) device was opti-
mal. It is commonly recommended that the NIC is the preferred I/O device, because it has real-
time requirements and will drop packets if it is not able to transfer them quickly. However,
because the whole system is real-time, low GPU throughput can also lead to packet loss, and
early experiments suggest that the GPU does not cope well with contention for memory access.

The final set of options concern features that can be enabled. Using x2APIC may reduce
interrupt latency, but this does not appear to be important, and differences may be just noise.
Using the input/output memory management unit (IOMMU) seems to reduce performance.

5.4.2 Kernel settings

Table 2 shows the effect of kernel settings, similarly to Table 1. The first two settings control
CPU frequency scaling and low-power CPU states, and can also be controlled via the BIOS.

Table 1 Effect of BIOS settings on sampling rate.

Setting Baseline Tested

One engine Four engines

Msample/s % Msample/s %

Baseline 6260 100.0 2080 100.0

BIOS defaults 4550 72.7 1610 77.4

APBDIS 1 Auto* 6240 99.7 2080 100.0

DF Cstates Disabled Enabled* 5740 91.7 2070 99.5

LCLK frequency control 593 MHz Auto* 6220 99.4 2070 99.5

NUMA nodes per socket NPS1* NPS2 4970 79.4 1970 94.7

NUMA nodes per socket NPS1* NPS4 2780 44.4 1610 77.4

Preferred I/O bus GPU Auto* 6210 99.2 1880 90.4

Preferred I/O bus GPU NIC 6030 96.3 1880 90.4

PCIe relaxed ordering Enabled* Disabled 5780 92.3 1150 55.3

Local APIC mode x2APIC Auto* 6170 98.6 2090 100.5

IOMMU Disabled Enabled* 6240 99.7 1770 85.1

Values marked with a * are the effective BIOS defaults (the nominal default in most cases is “Auto”).
Percentages are relative to the baseline configuration. LCLK = local clock; APIC = advanced programmable
interrupt controller.

Merry: Efficient channelization on a graphics processing unit

J. Astron. Telesc. Instrum. Syst. 038001-14 Jul–Sep 2023 • Vol. 9(3)



The latter appears not to affect performance, presumably indicating that the full workload is
sufficiently intense to prevent the CPU from entering these deep C-states. As with APBDIS and
DF Cstates, it is possible that lower-bandwidth workloads will actually perform worse if they are
light enough to allow these low-power states to be used.

By default, the NVIDIA NIC loops outgoing internet protocol (IP) multicast traffic into the
receiver path so that processes running on the same machine can receive the traffic. While con-
venient, this creates a significant overhead in transmitting multicast data. Disabling this behavior
(by writing to /sys/class/net/*/settings/force_local_lb_disable) improves performance with four
engines. The loopback behavior is automatically disabled if there is only one process using
ibverbs, which is why the single-engine case is unaffected. With other ibverbs processes present
(but stopped, and hence using no CPU time), the rate is reduced to 5580 Msample∕s.

The last four options aim to reduce CPU overhead and allow the code to run more efficiently.
In the four-engine case, we are not CPU-bound, which is why they make no difference. The
vm.nr_overcommit_hugepages setting allows spead2 to allocate its buffers in huge pages, which
can reduce the number of translation look-aside buffer misses.

NUMA balancing is a kernel mechanism, which monitors which cores are using which
memory pages;21 it is implemented by periodically unmapping some pages, causing the next
access to page fault. While the results show no effect, we have found in longer tests that these
page faults can cause occasional high latency leading to data loss.

We enable real-time scheduling for the processes to ensure that they get CPU time whenever
they need it. By default, Linux does not allow real-time processes to use more than 0.95 s of every
second, to prevent a malfunctioning real-time process from locking up a system. We increase this
to 0.999 s to allow the processes more CPU time without completely removing the protection.
Surprisingly, this makes much more than a 4.9% difference. We hypothesize that this is because a
process that uses <95% CPU on average may still exceed it during some second, and when
it does so, the 50 ms it is stalled is long enough for the network buffer to be overrun. On the
other hand, a 1 ms stall is short enough that a process with <99.9% average usage can recover
from it.

5.4.3 Hardware placement

The motherboard has five ×16 PCIe 4.0 slots, but performance-wise they are not all the same.
The I/O die of the CPU is split into four quadrants. Each quadrant supports 32 PCIe lanes, but we
found that a quadrant is not able to sustain full-bandwidth transfers between these lanes and
system memory: the maximum is around 36 GB/s in each direction. We thus found extremely
poor performance when placing the GPU and the NIC in a pair of slots connected to the same
quadrant.

Table 2 Effect of kernels settings on sampling rate. The tested values are the kernel defaults.
Percentages are relative to the baseline configuration.

Setting Baseline Tested

One engine Four engines

Msample/s % Msample/s %

Baseline 6260 100.0 2080 100.0

CPU scaling governor Performance On demand 3030 48.4 2070 99.5

cmdline: processor.max_cstate 1 6230 99.5 2080 100.0

NIC force_local_lb_disable 1 0 6240 99.7 1400 67.3

vm.nr_overcommit_hugepages 2048 0 5960 95.2 2080 100.0

kernel.numa_balancing 0 1 6260 100.0 2080 100.0

kernel.sched_rt_runtime_us 999,000 950,000 5210 83.2 2080 100.0

cmdline: mitigations Off 5860 93.6 2070 99.5

Merry: Efficient channelization on a graphics processing unit

J. Astron. Telesc. Instrum. Syst. 038001-15 Jul–Sep 2023 • Vol. 9(3)



Even when using slots attached to different quadrants, not all combinations are equal.
Table 3 shows the results with various combinations of slots, and Fig. 12 shows the association
of the slots to the quadrants of the CPU.22

5.5 Power Consumption
We used the four-engine test case to measure power consumption, as it places greater demand
on the system (by virtue of having greater total bandwidth). We used a sampling rate of
2000 Msample∕s, and other parameters are the same as for the system tuning results.

With the GPU clocks locked to the base values, the power consumption for the GPU, as
reported by nvidia-smi, is 156 W, and the power for the whole system, as reported by the base-
board management controller, is 407 W. Unlocking the clocks causes power usage to increase by
73 W. On the other hand, the graphics clock can be reduced as low as 660 MHz without causing
any loss of data, but doing so saves only 8 W compared to using the base clocks.

When using a sampling rate of 1712 Msample∕s, 4096 channels (a common configuration
for MeerKAT), and base GPU clocks, the system power usage is 388 W, or 97 W per antenna.
Within the margins of error, this is the same per-antenna power consumption as the current
Square Kilometre Array Reconfigurable Application Board (SKARAB) FPGA platform used
in MeerKAT. It should be noted that the SKARAB platform is almost a decade old, and hence
is not representative of the power consumption of more modern FPGAs.

6 Conclusions and Future Work
We have built a wide-band channelizer that is able to process the data for four MeerKATantennas
on a single commodity GPU, which implements all the features of the existing FPGA-based
wide-band channelizer. The throughput is limited by the PCIe bandwidth of the GPU. The main
outstanding work to make it ready for the MeerKAT extension correlator is the addition of a
narrow-band mode. We have done some prototyping of a low-pass filter kernel and are confident
that it will be possible to implement concurrent wide-band and narrow-band modes within the
same pipeline.

Fig. 12 Mapping of ×16 PCIe slots to CPU quadrants on H12SSL-i motherboard.

Table 3 Effect of PCIe slots on performance. Percentages are relative to the top row, which is the
baseline used in other results.

NIC slot GPU slot

One engine Four engines

Msample/s % Msample/s %

3 7 6260 100.0 2080 100.0

1 7 610 9.7 150 7.2

3 6 6170 98.6 2000 96.2

1 6 610 9.7 150 7.2

7 3 6180 98.7 2080 100.0

5 3 3550 56.7 900 43.3

Merry: Efficient channelization on a graphics processing unit

J. Astron. Telesc. Instrum. Syst. 038001-16 Jul–Sep 2023 • Vol. 9(3)



The computations on the GPU are not a bottleneck for our chosen GPU (RTX 3070 Ti).
Furthermore, there are GPUs available with significantly higher memory bandwidth, so given
sufficient budget, we do not expect them to become a bottleneck for any use cases. We have thus
not tried to squeeze out all the possible performance. Nevertheless, there may be value in further
optimizations to allow cheaper and less power-hungry GPUs to be used. Here are a number of
high-level optimizations we have considered:

1. We have split off a small part of the FFT into the other kernels, but perhaps it can be
completely fused, with step 2 of the six-step FFT merged into the PFB FIR kernel.
The challenge here is that performing an FFT pass requires a fairly specific mapping
of data to threads and thread blocks, which might not be compatible with the mapping
currently used by those kernels. For channel counts that are low enough to support a
single-pass FFT, it may be possible to fuse all three kernels together.

2. While we have noted issues with computing the FFT in FP16, it may be feasible to use
FP16 for the inputs and/or outputs of the FFT, with the internal computations done in
FP32. The PFB FIR could then also potentially be performed in FP16, which would reduce
register pressure and allow more taps to be used at the same throughput.

A common theme in these optimizations, as well as the optimizations we have already
implemented, is that modular design does not work well for memory-bound applications.
For example, we started by treating the PFB FIR, the FFT, and the post-processing as three
independent modules but to improve performance we had to redistribute functionality between
them, causing tight coupling. Similarly, the PFB FIR kernel and the post-processing kernel are
tightly coupled to the input and output data formats and cannot be used as-is for a system that
expects different formats. This makes it difficult to create optimal yet reusable code that can be
mixed and matched in stream processing frameworks such as Bifrost,23 which use GPU memory
as an interface boundary.

Because the implementation was originally designed for MeerKAT, it did not target higher
data rates per antenna. While ingress rates exceeding 120 Gbit∕s are possible, they are limited by
the single-core performance of spead2. This is not a fundamental limitation, as the network
receive functionality could be distributed across several threads, or spead2 could be replaced by
a bespoke library tailored to the exact packet layout. We expect that input rates of 160 Gbit∕s
could be achieved, as they are for the multi-engine case.

The results presented all use a single GPU. We have also experimented with using two GPUs
and two NICs per server (on a different server). Unfortunately, performance does not scale
linearly, because the system memory bandwidth becomes a bottleneck, and we are forced to
use sub-optimal PCIe slots. Recently released CPUs may help with bandwidth: EPYC 9004-
series processors double the PCIe bandwidth (with PCIe 5.0) but more than double the memory
bandwidth (from 205 GB/s to 461 GB/s),24 whereas Xeon Max CPUs have on-board high band-
width memory.25

Data, Materials, and Code Availability
The channelizer implementation described in this paper is available under a BSD license at https://
github.com/ska-sa/katgpucbf.

Acknowledgments
The MeerKAT telescope is operated by the South African Radio Astronomy Observatory, which is
a facility of the National Research Foundation, an agency of the Department of Science and
Innovation. Boston Limited and Boston IT Solutions South Africa provided access to test systems
that were used in the development of the software described in this paper.

References
1. A. van der Byl et al., “MeerKAT correlator-beamformer: a real-time processing back-end for astronomical

observations,” J. Astron. Telesc. Instrum. Syst. 8(1), 011006 (2021).
2. Max Planck Institute for Radio Astronomy, “The MeerKAT Extension project,” 16 September 2020, https://

www.mpifr-bonn.mpg.de/pressreleases/2020/9.

Merry: Efficient channelization on a graphics processing unit

J. Astron. Telesc. Instrum. Syst. 038001-17 Jul–Sep 2023 • Vol. 9(3)

https://github.com/ska-sa/katgpucbf
https://github.com/ska-sa/katgpucbf
https://github.com/ska-sa/katgpucbf
https://doi.org/10.1117/1.JATIS.8.1.011006
https://www.mpifr-bonn.mpg.de/pressreleases/2020/9
https://www.mpifr-bonn.mpg.de/pressreleases/2020/9
https://www.mpifr-bonn.mpg.de/pressreleases/2020/9
https://www.mpifr-bonn.mpg.de/pressreleases/2020/9
https://www.mpifr-bonn.mpg.de/pressreleases/2020/9


3. B. Veenboer and J. W. Romein, “Radio-astronomical imaging: FPGAs versus GPUs,” Lect. Notes Comput.
Sci. 11725, 509–521 (2019).

4. M. Clark, P. L. Plante, and L. Greenhill, “Accelerating radio astronomy cross-correlation with graphics
processing units,” Int. J. High Perform. Comput. Appl. 27(2), 178–192 (2013).

5. P. C. Broekema et al., “Cobalt: a GPU-based correlator and beamformer for LOFAR,” Astron. Comput.
23, 180–192 (2018).

6. J. W. Romein, “A comparison of accelerator architectures for radio-astronomical signal-processing algo-
rithms,” in 45th Int. Conf. Parallel Process. (ICPP), pp. 484–489 (2016).

7. J. Chennamangalam et al., “A GPU-based wide-band radio spectrometer,” Publ. Astron. Soc. Aust. 31, e048
(2014).

8. ALMA, “First light with the new spectrometer for the Atacama Compact Array,” https://alma-telescope.jp/en/
news/aca-202203 (accessed 13 January 2023).

9. D. C. Price, “Spectrometers and polyphase filterbanks in radio astronomy,” in The WSPC Handbook of
Astronomical Instrumentation, ch. 7, A. Wolszczan, Ed., pp. 159–179, World Scientific (2021).

10. J. Manley et al., “SPEAD: streaming protocol for exchanging astronomical data,” 2010, http://casper
.berkeley.edu/astrobaki/images/9/93/SPEADsignedRelease.pdf.

11. B. Merry, “Chunking receiver in spead2,” CASPER Workshop 2022, 2022, https://drive.google.com/drive/
folders/1yfZGzA1_zMiPT7bkQqvf0QsTbgQWcHmg.

12. NVIDIA, “GPUDirect RDMA,” v12.0, December 2022, https://docs.nvidia.com/cuda/archive/12.0.0/
gpudirect-rdma/index.html.

13. D. Tolmachev, “VkFFT-a performant, cross-platform and open-source GPU FFT library,” IEEE Access
11, 12039–12058 (2023).

14. L. Schuchman, “Dither signals and their effect on quantization noise,” IEEE Trans. Commun. Technol. 12(4),
162–165 (1964).

15. T. Myburgh, “Finite precision arithmetic in polyphase filterbank implementations,” Master’s thesis, Rhodes
University (2020).

16. P. J. Manners, “Measuring the RFI environment of the South African SKA site,” Master’s thesis, Rhodes
University (2007).

17. M. Harris, “An efficient matrix transpose in CUDA C/C++,” 2013, https://developer.nvidia.com/blog/
efficient-matrix-transpose-cuda-cc/.

18. H. Sorensen et al., “Real-valued fast Fourier transform algorithms,” IEEE Trans. Acoust. Speech Signal
Process. 35(6), 849–863 (1987).

19. D. H. Bailey, “FFTs in external or hierarchical memory,” in Supercomput. ’89: Proc. 1989 ACM/IEEE Conf.
Supercomput., pp. 234–242 (1989).

20. AMD, “Workload tuning guide for AMD EPYC™ 7003 series processors,” 2022, Version 3.0, https://www
.amd.com/system/files/documents/amd-epyc-7003-tg-workload-57011.pdf.

21. AMD, “High performance computing (HPC) tuning guide for AMD EPYC™ 7003 series processors,”
Version 4.0, 2022, https://www.amd.com/system/files/documents/high-performance-computing-tuning-
guide-amd-epyc7003-series-processors.pdf.

22. Supermicro, “H12SSL-I/C/CT/NT user’s manual,” Revision 1.0a, 2021, https://www.supermicro.com/
manuals/motherboard/EPYC7000/MNL-2314.pdf.

23. M. D. Cranmer et al., “Bifrost: a Python/C++ framework for high-throughput stream processing in
astronomy,” J. Astron. Instrum. 6, 1750007 (2017).

24. AMD, “AMD EPYC™ 9004 series processors,” https://www.amd.com/system/files/documents/epyc-9004-
series-processors-data-sheet.pdf (accessed 2023-02-14).

25. Intel, “Intel Xeon CPU Max series,” https://www.intel.com/content/dam/www/central-libraries/us/en/
documents/2023-01/xeon-cpu-max-series-product-brief.pdf (accessed 2023-02-14).

Bruce Merry received his BSc (Hons) and PhD degrees in computer science from the University
of Cape Town in 2003 and 2007, respectively. He is a senior developer at the South African Radio
Astronomy Observatory. He has published papers in computer graphics, accelerated computing,
and radio astronomy software. His specialities include high-performance networking and GPU
computing.

Merry: Efficient channelization on a graphics processing unit

J. Astron. Telesc. Instrum. Syst. 038001-18 Jul–Sep 2023 • Vol. 9(3)

https://doi.org/10.1007/978-3-030-29400-7_36
https://doi.org/10.1007/978-3-030-29400-7_36
https://doi.org/10.1177/1094342012444794
https://doi.org/10.1016/j.ascom.2018.04.006
https://doi.org/10.1109/ICPP.2016.62
https://doi.org/10.1017/pasa.2014.43
https://alma-telescope.jp/en/news/aca-202203
https://alma-telescope.jp/en/news/aca-202203
https://alma-telescope.jp/en/news/aca-202203
http://casper.berkeley.edu/astrobaki/images/9/93/SPEADsignedRelease.pdf
http://casper.berkeley.edu/astrobaki/images/9/93/SPEADsignedRelease.pdf
http://casper.berkeley.edu/astrobaki/images/9/93/SPEADsignedRelease.pdf
http://casper.berkeley.edu/astrobaki/images/9/93/SPEADsignedRelease.pdf
https://drive.google.com/drive/folders/1yfZGzA1_zMiPT7bkQqvf0QsTbgQWcHmg
https://drive.google.com/drive/folders/1yfZGzA1_zMiPT7bkQqvf0QsTbgQWcHmg
https://drive.google.com/drive/folders/1yfZGzA1_zMiPT7bkQqvf0QsTbgQWcHmg
https://drive.google.com/drive/folders/1yfZGzA1_zMiPT7bkQqvf0QsTbgQWcHmg
https://docs.nvidia.com/cuda/archive/12.0.0/gpudirect-rdma/index.html
https://docs.nvidia.com/cuda/archive/12.0.0/gpudirect-rdma/index.html
https://docs.nvidia.com/cuda/archive/12.0.0/gpudirect-rdma/index.html
https://docs.nvidia.com/cuda/archive/12.0.0/gpudirect-rdma/index.html
https://docs.nvidia.com/cuda/archive/12.0.0/gpudirect-rdma/index.html
https://docs.nvidia.com/cuda/archive/12.0.0/gpudirect-rdma/index.html
https://docs.nvidia.com/cuda/archive/12.0.0/gpudirect-rdma/index.html
https://doi.org/10.1109/ACCESS.2023.3242240
https://doi.org/10.1109/TCOM.1964.1088973
https://developer.nvidia.com/blog/efficient-matrix-transpose-cuda-cc/
https://developer.nvidia.com/blog/efficient-matrix-transpose-cuda-cc/
https://developer.nvidia.com/blog/efficient-matrix-transpose-cuda-cc/
https://developer.nvidia.com/blog/efficient-matrix-transpose-cuda-cc/
https://doi.org/10.1109/TASSP.1987.1165220
https://doi.org/10.1109/TASSP.1987.1165220
https://doi.org/10.1145/76263.76288
https://doi.org/10.1145/76263.76288
https://www.amd.com/system/files/documents/amd-epyc-7003-tg-workload-57011.pdf
https://www.amd.com/system/files/documents/amd-epyc-7003-tg-workload-57011.pdf
https://www.amd.com/system/files/documents/amd-epyc-7003-tg-workload-57011.pdf
https://www.amd.com/system/files/documents/amd-epyc-7003-tg-workload-57011.pdf
https://www.amd.com/system/files/documents/high-performance-computing-tuning-guide-amd-epyc7003-series-processors.pdf
https://www.amd.com/system/files/documents/high-performance-computing-tuning-guide-amd-epyc7003-series-processors.pdf
https://www.amd.com/system/files/documents/high-performance-computing-tuning-guide-amd-epyc7003-series-processors.pdf
https://www.amd.com/system/files/documents/high-performance-computing-tuning-guide-amd-epyc7003-series-processors.pdf
https://www.amd.com/system/files/documents/high-performance-computing-tuning-guide-amd-epyc7003-series-processors.pdf
https://www.supermicro.com/manuals/motherboard/EPYC7000/MNL-2314.pdf
https://www.supermicro.com/manuals/motherboard/EPYC7000/MNL-2314.pdf
https://www.supermicro.com/manuals/motherboard/EPYC7000/MNL-2314.pdf
https://www.supermicro.com/manuals/motherboard/EPYC7000/MNL-2314.pdf
https://www.supermicro.com/manuals/motherboard/EPYC7000/MNL-2314.pdf
https://doi.org/10.1142/S2251171717500076
https://www.amd.com/system/files/documents/epyc-9004-series-processors-data-sheet.pdf
https://www.amd.com/system/files/documents/epyc-9004-series-processors-data-sheet.pdf
https://www.amd.com/system/files/documents/epyc-9004-series-processors-data-sheet.pdf
https://www.amd.com/system/files/documents/epyc-9004-series-processors-data-sheet.pdf
https://www.amd.com/system/files/documents/epyc-9004-series-processors-data-sheet.pdf
https://www.intel.com/content/dam/www/central-libraries/us/en/documents/2023-01/xeon-cpu-max-series-product-brief.pdf
https://www.intel.com/content/dam/www/central-libraries/us/en/documents/2023-01/xeon-cpu-max-series-product-brief.pdf
https://www.intel.com/content/dam/www/central-libraries/us/en/documents/2023-01/xeon-cpu-max-series-product-brief.pdf
https://www.intel.com/content/dam/www/central-libraries/us/en/documents/2023-01/xeon-cpu-max-series-product-brief.pdf
https://www.intel.com/content/dam/www/central-libraries/us/en/documents/2023-01/xeon-cpu-max-series-product-brief.pdf

