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Abstract. Dispersion encoded full-range (DEFR) frequency-domain optical coherence tomography (FD-OCT) and
its enhanced version, fast DEFR, utilize dispersion mismatch between sample and reference arm to eliminate the
ambiguity in OCT signals caused by non-complex valued spectral measurement, thereby numerically doubling the
usable information content. By iteratively suppressing asymmetrically dispersed complex conjugate artifacts of
OCT-signal pulses the complex valued signal can be recovered without additional measurements, thus doubling
the spatial signal range to cover the full positive and negative sampling range. Previously the computational
complexity and low processing speed limited application of DEFR to smaller amounts of data and did not allow
for interactive operation at high resolution. We report a graphics processing unit (GPU)-based implementation
of fast DEFR, which significantly improves reconstruction speed by a factor of more than 90 in respect to
CPU-based processing and thereby overcomes these limitations. Implemented on a commercial low-cost GPU,
a display line rate of ∼21;000 depth scans∕s for 2048 samples∕depth scan using 10 iterations of the fast DEFR
algorithm has been achieved, sufficient for real-time visualization in situ. © 2012 Society of Photo-Optical Instrumentation Engi-

neers (SPIE). [DOI: 10.1117/1.JBO.17.7.077007]
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1 Introduction
Optical coherence tomography (OCT) is an emerging non-
invasive optical imaging technique with high axial resolution
for biological tissues.1 Since its demonstration for in vivo
imaging,2 OCT has been widely used in many fields such as
ophthalmology, cardiology, and developmental biology. In
conventional time-domain OCT (TD-OCT), echo time delays of
light are detected by measuring an interference signal (k-line)
along a depth scan (A-scan) as a function of time during transla-
tion of the reference-arm end mirror. In frequency-domain
OCT (FD-OCT), optical frequency components are recorded
either time-encoded in sequence (swept-source OCT) or simul-
taneously by spatial encoding with a dispersive element (spec-
tral-domain OCT).3 Depth intensity profiles are reconstructed
from spectral interference patterns numerically by Fourier
transformation without any mechanical scan utilizing the beam
at all depths simultaneously, thereby significantly improving
light efficiency and dramatically increasing imaging speed.
Recently, line rates of hundreds of kHz to multiple MHz have
been achieved in swept source, as well as spectrometer-based
FD-OCT.4,5

Nevertheless, common FD-OCT systems suffer from a lim-
ited useful depth range due to continuous falloff in sensitivity
with distance from the zero delay position (ZDP) where sample
and reference-arm length are matched.3 In addition, image

quality is severely reduced by the appearance of complex-
conjugate signal copies that originate in the real-valued
intensity-dependent acquisition of the interferometric signal in
the FD. The latter prohibit placement of objects that extend
above a single side of the delay. Several techniques have
been proposed to eliminate the complex conjugate artifacts for
the purpose of doubling the effective depth range of FD-OCT
and utilize the most sensitive portions of the depth scan close to
the ZDP.1 Among them, the dispersion encoded full-range
(DEFR) technique6 has the lowest physical complexity because
it utilizes the commonly suppressed dispersion mismatch natu-
rally found in every OCT-system, and numerically removes the
complex conjugate mirror term for each individual depth scan in
a post-processing step, without adding further acquisition chan-
nels7–11 or limiting the scanning pattern.12–15 DEFR’s iterative
reconstruction method is inherently phase stable but has high
computational complexity as a result of two Fourier transforms
per iteration. Recently, we developed a faster version of DEFR
which was able to detect multiple signals in each iteration so
that the convergence speed of the algorithm was significantly
improved.16 A speed of ∼0.1 frames∕s (1024 depth scans ×
2048 samples) for 20 iterations per depth scan was achieved
in MATLAB, corresponding to ∼89 depth scans∕s.16 The
computational time can be reduced further for a system with
higher dispersion diversity (ratio of maximum conjugate signal
to maximum signal peak after numeric dispersion compensa-
tion) by reducing iterations.16 However, reconstructing a
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slow signal processing excludes the adoption of DEFR in fields
where real-time visualization or massive volumetric datasets
are needed.

Recently, FD-OCT image reconstruction followed the trend
towards the use of massive parallel computing utilizing cheap
and fast graphics processing units (GPUs) in highly paralleliz-
able tasks like image processing to accelerate numerical
signal processing, instead of slower central processing units
(CPUs).17–22 AGPU with hundreds of processing cores provides
highly parallel computational capability to FD-OCT in which
processing for each depth scan is identical and independent.
Simple access to program the hardware provided by conversion
software—together with an extension from 16-bit to 32-bit and,
for scientific application, 64-bit floating point arithmetic for
large matrices—has advanced this platform to a stage that
permits fast implementation of complex algorithms. In raster-
scanning DEFR OCT, individual depth scans can be treated
independently, which leads to a well parallelizable problem.
Computational complexity in FD-OCT reconstruction is primar-
ily attributed to the digital Fourier transform, which scales non-
linearly [∝ n·logðnÞ] with the number of samples n within a
depth scan. Up to now for standard FD-processing, a computa-
tional speed (excluding the transfer of data between host PC and
GPU) of>3 million depth scans∕s (1024 samples in each depth
scan) using a GPU has been achieved, enabling real-time 4-D
visualization of FD-OCT images.21 GPU-based processing is
becoming an important component in high-speed, low-cost
FD-OCT systems.

In this work, we developed a GPU-based implementation
of the fast-DEFR algorithm for real-time display of full-range
FD-OCT images. The complete processing for FD-OCT, includ-
ing background subtraction, up-sampling, k-space linearization,
spectral shaping, and DEFR, has been implemented on a GPU.
Including the time taken for data transport between host and
GPU memory, the GPU-based fast DEFR achieved a maximum
processing speed of ∼21;000 depth-scans∕s for 2048 samples∕
depth scan and 10 iterations, sufficient for real-time video rate
visualization for high resolution applications.

2 Scheme of GPU-Based Fast DEFR
Both programming and computation in this work were imple-
mented with a workstation hosting a NVIDIA GeForce GTX
580 GPU (PCIe 16× interface, 512 cores at 1.5 GHz, 1.5-GB
graphics memory), an AuthenticAMD CPU (3.3 GHz) and
16-GB host memory. The operating system was Microsoft
Windows 7 Professional. In contrast to previously reported
GPU-based OCT systems, in which codes were directly pro-
grammed through NVIDIA’s Compute Unified Device Archi-
tecture (CUDA),17–20 we employed the commercial software
Jacket (Version 1.7.1, AccelerEyes, GA, USA) that translates
standard MATLAB (Version R2010a, MathWorks Inc., MA,
USA) codes to GPU codes and GPU-memory access to allow
for faster and more flexible adaptation of the existing signal-
processing routines. The detailed algorithm of fast DEFR has
been presented in Ref. 16. The codes were modified for the
Jacket syntax and optimized in order to utilize the advantage
of highly parallel computation of the GPU.

Figure 1(a) and 1(b) shows flowcharts of the whole GPU-
based program for FD-OCT and the fast DEFR, respectively.
Non-parallelizable steps that are independent of the number
of depth scans were separated from the main processing loop
and were implemented on the CPU. The processes on the left

[Fig. 1(a)—light gray frame] used the CPU for the initialization,
while the ones on the right (dark gray frame) were fully executed
on the GPU. Thick arrows denote data flow from host to GPU
memory or back, which is a critical resource when analyzing
multiple gigabytes of data. During the recording procedure
the background b was recorded when the sample arm was
blocked. The relationship between the spectral index space
and the wavenumber k-space was calibrated so as to generate
a nonlinear index vector Ĵ which corresponded to a uniform
coordinate in k-space. Dispersion coefficients were extracted

Fig. 1 Flowcharts of (a) the GPU-based program and (b) the fast disper-
sion encoded full-range (DEFR). b: background array; Ĵ: nonlinear index
vector corresponding to the uniform coordinate in k-space; φ: complex
dispersion phase vector; φ�: conjugate of φ; f i: real valued spectra;
ti : double-sided, complex-valued signals (residuum); Δpi : found peaks;
pi: peaks (single-sided, complex-valued signals); i: iteration counter;
Re() denotes the real function; units stand for an unsigned integer. The
spectral-to-spatial (frequency-to-time) transforms and representations
are indicated as background colors of the respective functions. Passing
through the DEFR function without iteration acts like a simple FD-OCT
reconstruction after numeric dispersion compensation.
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in advance using minimum information entropy estimation of
the spatial-domain signal adopted in our work.6 Here, only
the second- and third-order dispersion coefficients were deter-
mined and used to generate the complex dispersion phase vector
φ and its conjugate term, the inverse dispersion phase vector φ�.
This was sufficient in our measurements, since we mainly intro-
duced these orders when inserting non-linear glass into the refer-
ence arm and it resulted in an almost optimal axial point spread
function that corresponded to the free-space resolution. Then,
the threshold γ for the multi-peak detector (MPD) in the fast
DEFR algorithm was calculated from the OCT system back-
ground b and φ.16 All these parameters were prepared in
prior and transferred to the GPU memory only once in the initi-
alization step. The spectral interference vectors acquired in non-
linear k-space were copied from host to GPU memory, and
converted from 16-bit integer (acquired spectrum) to 32-bit
floating-point type (single precision). Then, background sub-
traction, up-sampling, k-space linearization, spectral shaping,
fast DEFR, and log scaling of the magnitude signal were imple-
mented within the computing pipeline of the GPU. The resulting
conjugate artifact-removed image was finally converted from
32-bit floating-point back to 16-bit integer for storage outside
the GPU or passed further to the GPU’s display buffer. We em-
ployed up-sampling by a factor of two and linear-interpolation-
based resampling for k-space linearization. Reference 18
demonstrated that linear interpolation was superior to the nearest
neighbor interpolation, but slightly inferior to cubic spline inter-
polation, in the reconstruction quality of OCT images. It is note-
worthy that the computational time of linear interpolation was
exactly the same as that of nearest neighbor interpolation using
GPU because of the hard-wired texture memory mechanism.18

Each spectrum was apodized by a Hann window to suppress
side-lobes formation in the image and linearize the response
within samples of fractional frequencies (i.e., frequencies not
exactly matching the sampling before discrete Fourier trans-
form). The detailed fast-DEFR algorithm is shown in Fig. 1(b).
The algorithm alternatively can be executed only partially, with-
out iteration to be equivalent to a standard frequency-time
conversion, including λ → k mapping after numeric dispersion
compensation. In the iterative process loop single-sided signal
peaks are extracted via the MPD from the dispersion-corrected
signal within the suppression-intensity range given by the
dispersive broadening of the corresponding mirror peaks. By
generating a synthetic double-sided spectrum that contains
the artifacts and successive subtraction from the original signal,
the original spectrum is reduced to the undetermined signal
components, forming the residuum. For a single depth scan, the
fast DEFR must performNiter iterations of fast Fourier transform
(FFT) and inverse FFT (iFFT) respectively, and Niter iterations
of MPD. Loading the residual signals requires an additional
iFFT, which principally can be deactivated. In this work, the
residual signals were loaded.

Since most OCT systems adopt C/C++ or LabVIEW as a
coding tool for data acquisition and system control, while algo-
rithm development is frequently performed in MATLAB, we
demonstrate a strategy that employs a shared library compiled
from MATLAB scripts to compute the FD-OCT processing in a
practical OCT system. The MATLAB scripts were first com-
piled using the deployment tool to build a dynamic link library
(DLL). Then programs written using VC++ (Visual Studio
2008, Professional Edition) invoked functions in this DLL to
implement the DEFR algorithm on the GPU. The data

communication between VC++ and MATLAB DLL was carried
out by using mwArray Class in VC++.23 The VC++ scripts were
further compiled to generate another DLL which was available
for other program platforms such as LabVIEW. In this project,
we use LabVIEW (Version 2011, National Instrument, TX,
USA) to implement GPU-based DEFR algorithm by calling a
Jacket-MATLAB DLL via a C++ DLL.

3 Results
Figure 2 shows a transverse scan in the horizontal meridian of an
eight-week-old albino (MF1) mouse’s right eye, obtained by a
1060 nm SS-OCT system with ∼70 nm bandwidth, and the
associated video demonstrates the graphic user interface during
processing of the mouse-eye images. Details of the OCT system
have been presented previously.24 Figure 2(a) and 2(b) was
calculated with the host CPU with double precision, while 2(c)
and 2(d) utilized the GPU with single precision. Because the
optical axis of mouse eyes is too long to be imaged with the
“single-sided” depth range of the regular FD-OCT, we located
the zero delay position inside the eye lens (denoted by a dashed
line in the figure). It was found that the non-linear index vector
calculated from a single calibration measurement in a free-space
Michelson interferometer was sufficient for the k-space linear-
ization of the raw spectra, thanks to the high sweep stability
of the laser and no continuous recalibration was necessary.
Figure 2(a) and 2(c) demonstrates the images directly recon-
structed from dispersion-compensated spectra using a simple
iFFT. Although the entire length of the eye is visualized, the
images are compromised by the presence of “double-dispersed”
conjugate components (indicated by arrows). From these
images, it is difficult to measure the thickness of the crystalline

Fig. 2 In vivo transverse section in the horizontal meridian through the
right eye of an albino (MF1) mouse. Image size: 4.21 × 8.11 mm
(512 × 800 pixels). Images were computed by (a) CPU without DEFR
(b) CPU with DEFR, (c) GPU without DEFR, and (d) GPU with
DEFR. (e) Normalized differential images between Fig. 2(b) and 2(d).
The dashed line and arrows in (a) denote the zero delay position
and the complex conjugate artifacts. Computation was implemented
on CPU with double precision, on GPU with single precision. The
grayscale values are normalized to the background-noise level. See
also movie captured from the graphic user interface in processing
the mouse eye images. (MOV, 3.27 MB) [URL: http://dx.doi.org/10
.1117/1.JBO.17.7.077007.1].
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lens, because the posterior lens surface is covered by the con-
jugate artifact of the cornea. Figure 2(b) and 2(d) shows the
images generated by fast DEFR with 10 iterations and a stability
parameter16 δ ¼ 0.5. Complex conjugate artifacts were sup-
pressed significantly without reducing sensitivity and axial
resolution. In these figures the suppression of conjugate artifacts
extends over the entire z-axis (depth) range, providing clear
views of the cornea, lens, and retina. By comparison, there is
nearly no qualitative difference between the corresponding
CPU- and GPU-processed images, even when calculated at
different computational precision. Figure 2(e) shows the differ-
ential image between Fig. 2(b) and 2(d), which is normalized to
the system background-signal level. Numerical comparison
verifies that the average remaining error in the worst case
(single-precision GPU versus double-precision CPU) is
−8.2 dB.

Codes were programmed in vector and matrix algebra as far
as possible in order to maximize efficiency on the Jacket-
MATLAB platform. For computation of a data batch, no cycle
operations were employed except for the iteration in DEFR.
Table 1 lists the average processing times with single precision
and the speedup factors of GPU over CPU for a spectral batch
of 512 × 2048 samples in terms of the number of iterations.
Niter ¼ 0 denotes that the images are directly reconstructed from
dispersion-compensated spectra via iFFT. The samples in depth
were doubled to 4096 in DEFR as we used an up-sampling
factor of two. Since DEFR uses the dispersion mismatch, the
computational time for digital dispersion compensation is
included there.

From Table 1, one can see the significant speed improvement
of GPU over CPU. In the computation at single precision,
speedup factors of more than ×90 were achieved for the fast
DEFR with GPU. The total time for 10 and 20 iterations was
decreased to 43.92 and 69.61 ms from 3.28 and 6.07 s, resulting
in speedup factors of ×74.78 and ×87.20, respectively. The
former corresponds to a frame rate of ∼22.8 f∕s for high-
resolution images, which is very close to video rate (25 f∕s).
Expectedly, the runtime of DEFR is proportional to the number
of iterations, while the sum of other processing time Tother

remains constant for both GPU and CPU. The speedup factor
of DEFR is higher than that of Tother. Therefore, the overall
speedup factor increases with the number of iterations.

Figure 3 illustrates the percentage of the GPU processing
time for the case of 10 DEFR iterations in Table 1. DEFR
and k-space linearization occupy 67% and 16% of the total
GPU computational resource, respectively. Here, the time for
the k-space linearization includes that for the up-sampling
processing. The data transfer between the host and GPU
memories takes a relatively small portion (9.39%) of the total
computational time, which favors faster GPUs with larger
numbers of processing pipelines.

Figure 4 shows the processing line rates of the GPU-based
DEFR against the number of depth scans per batch. Each depth
scan contains 2048 samples without up-sampling and the
number of DEFR iterations is 10. The abbreviations used are
Comp: the line rate for pure processing excluding data transfer
and image display; Tot: the line rate including data transfer from
host to GPU memory and back; and Disp: the line rate including
image display, but excluding data transfer back to the host. For
visualization, we used the Jacket image display codes to avoid
GPU-CPU-GPU memory transfers. However, this might still
involve GPU-internal data transfers. To provide a fair compar-
ison, we cleared the GPU memory before testing the processing
time when the batch size was altered. Figure 4 illustrates that
initially, the line rates increase with batch size and reach a max-
imum of ∼21;000 k-lines∕s at ∼3; 584 depth scans per batch
with synchronous display (Disp). Then, the line rates dramati-
cally drop off above 4096 depth scans. In the experiment, we
noticed that the peak memory access of the DEFR algorithm

Table 1 Processing times for a spectral batch of 512 × 2048 samples (mean of 100 tests, given in seconds) and speedup of GPU over CPU computing
at single precision.

GPU [s] CPU [s] ratio (CPU/GPU)

Niter DEFR Tother Total DEFR Tother Total DEFR Tother Total

0 0.00188 0.01452 0.01640 0.1582 0.513 0.6712 84.15 35.33 40.93

5 0.01645 0.01398 0.03043 1.4931 0.4943 1.9874 90.77 35.36 65.31

10 0.02954 0.01438 0.04392 2.7759 0.5086 3.2845 93.97 35.37 74.78

15 0.04270 0.01412 0.05682 4.2506 0.5107 4.7613 99.55 36.17 83.80

20 0.05552 0.01409 0.06961 5.556 0.5138 6.0698 100.07 36.47 87.20

Each spectrum was up-sampled by a factor of two.
Niter, number of iterations.
Tother, sum of processing time excluding DEFR.
Niter ¼ 0 denotes that the images were directly reconstructed from dispersion-compensated spectra with iFFT.

Fig. 3 Percentage (mean of 100 tests) of the GPU time for processing a
spectral batch of 512 × 2048 sampling points with an up-sampling
factor of two and 10 DEFR iterations. mem-cpy: data transfer between
host and GPU memory.
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was proportional to the batch size with an increment rate of
∼152 MB∕1024 k-lines. The maximum graphic card memory
usage was ∼1.0 GB for a batch size of 4096 depth scans,
and out-of-memory errors occurred above 6656 depth scans.

In the LabVIEW implementation the program contained two
concurrent threads, one for data (interference spectra) acquisi-
tion from external devices, and the other for signal processing.
The program automatically assigned CPU cores to the threads,
and the data were shared via global variables. The average
processing time for a frame (512 × 2048 samples, 10 DEFR
iterations, up-sampling factor of two) was measured to be
∼68 ms, corresponding to 7.5k k-lines∕s. This speed was lower
than that in Table 1 for the program on the MATLAB platform
(∼44 ms), which may be attributed to multiple internal copies
caused by LabVIEW when calling the DLLs.

4 Discussion
In performance studies of GPU computing for standard FD-OCT
by other researchers, the memory copy occupied ∼60% of the
computational resource.20 Due to the relatively low computa-
tional-load-to-data ratio during FD-OCT, standard processing
computation is memory-bandwidth limited. In contrast, DEFR
is computationally about 10 times more expensive, thus the
iterative reconstruction process dominates the post-processing
time in DEFR OCT, while data transfer (9.39%, Fig. 3) is easily
outweighed. However, the amount of data transfer in DEFR
OCT and the processing in respect to signal content is only half
the regular one, resulting in reduced data-transfer time/voxel.
Because overall processing speed in upcoming GPU generations
tends to progress faster than memory bandwidth, the algorithms
will profit fromnewerGPUs as theyare alsopositively affected by
further process optimizations, such as compiled code and
improvements in the programming environment.

Common computing tasks on CPUs are performed at double
precision due to availability of optimized computing pipelines.
In the field of GPUs, floating-point arithmetic was only recently
supported. Especially in the cheap “consumer-grade” class of
devices, double-precision computations are commonly not
implemented or deactivated by the manufacturer and cost/
performance calculations for the gaming industry result in large
arrays of single-precision processing units on such devices.
However, consumer demand has also raised support levels for

double-precision GPU computing, although GPUmanufacturers
usually fully support high-performance computing only with
costly speciality solutions. Despite different implementations
double precision is more complex and generally slower. In
view of the cost/performance ratio we investigated the physical
and computational performance of GPU and CPU for DEFR
with different floating-point types. Table 2 presents the ratios
of processing times with double precision to single precision
in Table 1. Both GPU and CPU are slower at double precision
over single precision as expected. Interestingly, the ratio of cost
to time for GPU is higher than that for CPU with double pre-
cision, resulting in lower performance gains. DEFR GPU and
DEFR CPU need about 2× and 1.1× longer for double precision
over single precision, respectively. For direct iFFT, the ratios are
2.6× for GPU and 1.3× for CPU. In order to investigate the
effect of floating-point type on the image quality, we extracted
the interference spectrum of a depth-scan in Fig. 2 for DEFR
reconstruction with different floating-point types. Figure 5
plots the intensity profiles of an A-scan in Fig. 2 computed with
single and double precision for different iterations. One can see
that the results achieved at different computational precision
increasingly differ with the number of iterations, but these
alterations mainly remain within the noise background region
affecting the signal-to-noise ratio (SNR) only at an insignificant
amount. This is because the error caused by the computational
inaccuracy accumulates throughout the iterations, until weak
signals loose their coherence and further become part of the
directionally ambiguous background. The images in Fig. 2
demonstrate that computation with single precision does not
cause appreciable image-quality degeneration. We investigated
the effect of precision on the SNR by simulating a signal at
1.0 mm depth position at −42 dB SNR, and found the SNR
loss was less than 0.2 dB in DEFR with up to 20 iterations.
Therefore, it can be concluded that the floating-point type of
single precision provides sufficient accuracy in DEFR OCT in
practical situations. Both GPU and CPU can obtain computa-
tional acceleration with single precision, but the GPU imple-
mentation benefits more. In this context it has to be noted
that the fast-DEFR algorithm with a lower number of necessary
iterations profits from less numeric noise, which also means that
an optimum setting of the amount of dispersion16 is of critical
importance. Furthermore a lower density of scatterers, or the
signal sparseness, is also beneficial for the algorithm and its
residual (non-complex) background-elimination capability.

As documented above, the processing speed of GPU-based
DEFR relates to the batch size. It has been confirmed that the
position of this inflection point around 4k samples coincides
with the GPU memory size. DEFR OCT is a more complex
algorithm than regular FD-OCT processing; therefore it requires
more memory space for intermediate variables (∼10× in the cur-
rent implementation). GPU cards with more memory can further
contribute to an increased available batch size. However, it is
still advantageous to optimize the codes further toward reduced
memory requirements, although a batch size of 4096 is sufficient
for most applications. To achieve the same depth range as in the
half-range implementation (standard FD processing) only half
the sampling points are needed for DEFR, which might be
interesting in cases where sampling speed is the limiting factor.
Due to the n · logðnÞ proportionality of the Fourier transform’s
computational complexity with the sample number n, DEFR can
also be speeded up by a factor of four. Furthermore, for less
detailed previews, image quality can be sacrificed by avoiding

Fig. 4 Processing line rates against depth-scan batch sizes. Each depth
scan contains 2048 samples and the number of DEFR iterations is 10.
Comp: computational time only; Tot: computational time + data trans-
fer from host to GPUmemory and back;Disp: Tot—data transfer back to
host + image display.
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up-sampling, which reduces computing time and increases the
possible batch size. With the rapid development of consumer-
grade GPUs from multiple competitors and continuous develop-
ment of code optimizers, the processing line rate and the batch
size of DEFR has the potential to scale to a couple of hundred
k-lines/s and longer sampling depths. Recently released GPU
architectures and GPU clusters already make the current
DEFR code applicable for more demanding real-time visualiza-
tion tasks that require higher line rates and depth ranges in
ultra-high-resolution OCT and micro-OCT.

As a high-level interpreted language, MATLAB has the
disadvantage of lower efficiency in respect to hand-tuned
code that sometimes can reach performance gains with
hardware-optimized code in the range of ×1.5 to ×3, and the
same is true for hand-coded CUDA routines on the GPU.
However, MATLAB provides fast matrix computation for vector
processing to overcome this deficiency, together with a just-
in-time compiler for code optimization. Also, its FFT operator
employs the fastest Fourier transform in the West (FFTW),
which is a C subroutine library for computing the discrete
Fourier transform. In our previous work,16 a DEFR implemen-
tation in LabVIEW achieved a computation time of ∼1.8 s for
five iterations (512 × 2048 samples) with a 2-GHz CPU. This
is comparable with the MATLAB version and might be
improved in other, better optimizable environments. For GPU
DEFR, the processing of a single iFFT (with dispersion compen-
sation) took 0.0722 s, corresponding to 272 depth scans∕s.
Reference 20 reported that their NVIDIA GTX295 Card
(240 cores) achieved 680 depth scans∕s for a frame size of
8192 × 2048 samples. Jacket-MATLAB adopts a garbage col-
lection algorithm for memory management. Compared to C++,
which allows both manual memory management as well as auto-
mated garbage collection,25 MATLAB often consumes more
resources but optimizes the code via a just-in-time compiler
during runtime unless the code is already written in vectorized
form. This may cause overhead memory allocation for variables,
although the fixed dimension of variables in our codes signifi-
cantly reduces the need to reallocate memory. Consequently,
the Jacket-MATLAB software typically performs worse than
hand-coded and optimized compiled CUDA as does MATLAB
in respect to hand-optimized and compiled C/C++. Since in
either case the most computationally expensive tasks (FFT and
interpolation) are realized in compiled library subroutines, the

Fig. 5 Intensity profiles of an A-scan in Fig. 2 computed with single
and double precision. Niter: number of iterations. Niter ¼ 0 denotes that
the images were directly reconstructed from dispersion-compensated
spectra with iFFT.

Table 2 Ratios of processing times at double precision versus single precision in Table 1, and ratio of GPU versus CPU processing at double precision.

GPU [s] CPU [s] Ratio (CPU/GPU)

Niter DEFR Tother Total DEFR Tother Total DEFR Tother Total

0 258.87% 152.69% 162.33% 129.90% 115.61% 118.98% 42.23 26.75 30.00

5 198.68% 149.13% 182.41% 112.82% 123.61% 115.50% 51.54 29.31 41.35

10 197.15% 150.74% 188.35% 112.22% 121.25% 113.62% 53.49 28.45 45.11

15 197.62% 151.75% 190.86% 106.90% 119.31% 108.23% 53.85 28.44 47.52

20 197.00% 149.68% 191.77% 107.08% 118.65% 108.06% 54.39 28.90 49.13

Niter, number of iterations.
Tother, sum of processing time excluding DEFR.
Niter ¼ 0 denotes that the images were directly reconstructed from dispersion-compensated spectra with iFFT.
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performance gains might be attributed to the overhead of inter-
pretation in MATLAB, Jacket, and LabVIEW in the current
implementation. Even though the DEFR algorithm has been sig-
nificantly accelerated by GPUs, it is still not available to process
every captured image online in state-of-the-art, hundreds-of-
kilohertz FD-OCT systems that surpass video rates. With the
imaging-speed increase of OCT, the demand for improved pro-
cessing methods always exists. Fortunately, in most applications
it is not necessary or even possible to see every frame during
measurement in real time. Usually, video rate (25 frames∕s)
display at high resolution (≥512 × 512 px) is sufficient for in-
teractive operation. Besides, DEFR will undoubtedly benefit
further from the development of the GPU and automated code-
generation technology in the future.

To our knowledge, researchers in all the previous publica-
tions directly employed the CUDA language to develop and
debug the GPU-based FD-OCT processing algorithms in the
C/C++ environment. The complex direct programming of GPUs
is still challenging and laborious to many engineers when devel-
oping and optimizing complex-signal-processing algorithms
such as DEFR, Doppler-based motion extraction, and other
analysis algorithms. In this paper, we demonstrate that easily
accessible, high-level programming environments like MATLAB
and Jacket on current consumer hardware can provide a means
of answering the needs for computing complex medical-imaging
algorithms in real time.

5 Conclusions
In this paper, we presented a computation strategy for dispersion
encoded full-range OCT for real-time complex-conjugate arti-
fact removal based on a consumer-grade GPU and evaluated
Jacket, MATLAB, as well as VC++ and LabVIEW as flexible
programming platforms for FD-OCT processing. With GPU
processing, the processing speed of DEFR could be improved
by a factor of more than ×90 over CPU processing for a typical
tomogram size of 512 depth scans with 2048 samples and an
up-sampling factor of two. The maximum display line rate of
∼21 kilo depth scans∕s for 2048 samples∕depth scan at 10
fast-DEFR iterations was successfully achieved, thereby enabling
the application of DEFR in fields where real-time visualization
is required, e.g., for adjustment purposes. Due to the reduced
numbers of iterations, the fast-DEFR algorithm also could be
employed with single precision without significant deteriora-
tion in image quality. Besides other applications, the achieved
computational speed matches the speed of common hard-drive-
based storage devices, therefore filling the gap within the stan-
dard processing queue and shifting the information-processing
bottleneck back to the analytic abilities performed by the inves-
tigator. In conclusion, adoption of GPUs for DEFR OCT will
broaden its range of potential applications.
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