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Abstract. Fluorescence molecular tomography (FMT) is an important imaging technique of optical imaging. The
major challenge of the reconstruction method for FMT is the ill-posed and underdetermined nature of the
inverse problem. In past years, various regularization methods have been employed for fluorescence target
reconstruction. A comparative study between the reconstruction algorithms based on l1-norm and l2-norm for
two imaging models of FMT is presented. The first imaging model is adopted by most researchers, where the fluo-
rescent target is of small size to mimic small tissue with fluorescent substance, as demonstrated by the early detec-
tion of a tumor. The second model is the reconstruction of distribution of the fluorescent substance in organs, which
is essential to drug pharmacokinetics. Apart from numerical experiments, in vivo experiments were conducted on a
dual-modality FMT/micro-computed tomography imaging system. The experimental results indicated that l1-norm
regularization is more suitable for reconstructing the small fluorescent target, while l2-norm regularization performs
better for the reconstruction of the distribution of fluorescent substance.© 2013 Society of Photo-Optical Instrumentation Engineers
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1 Introduction
Fluorescence molecular tomography (FMT) has become a
promising optical imaging modality that allows studying disease
noninvasively and quantitatively at the molecular level.1–3 It
can be applied to drug discovery and preclinical oncological
research.3–5 The reconstruction algorithm is crucial to recover
the location of fluorophore, the fluorescence yield, and the
images of the fluorescent lifetime. However, the solution to
the inverse problem of FMT suffers from being ill-posed due
to the diffusive behavior of light in tissue. In order to obtain
meaningful and stable results, it is essential to incorporate
adequate a priori information, such as the anatomical informa-
tion provided by computed tomography (CT) or magnetic res-
onance imaging,6–8 and the distribution of optical properties
obtained by diffuse optical tomography (DOT).7,9 Several
multimodality FMT systems have been developed.6–9 In the
reconstruction algorithms, the regularization technique is com-
monly used in the form of a penalty function to improve the
solution. In the early stage of research, the Tikhonov regulari-
zation, namely l2-norm regularization, is routinely employed for
the inverse problem.10,11 However, this method tends to create an
oversmooth effect and generate spurious small elements, which
produce noisy background when the inverse problem is severely
ill-posed. Recently, the sparsity regularization, with l1-norm
penalty function, has received considerable attention due to its

good performance in FMT. In the application of early detection
of a tumor, the observed biological mechanisms are generally
confined to localized regions. In this case, the interested biologi-
cal function is somewhat “sparse,” which can be utilized as a pri-
ori information in the form of l1-norm penalty.12,13 However, for
the application of reconstructing the distribution of the fluorescent
dye or drugs in organs, the spatial distribution of biological activ-
ity usually occurs in a large area. As a consequence, l1-norm
regularization would be no longer suitable for this problem,
while l2-norm regularization is potentially beneficial.

In this paper, we intend to fill the gap in the existing studies
to systematically show the performance of l1-norm and l2-norm
regularization methods for the two imaging models of FMT
using a fair and consistent experimental setting. The first imag-
ing model is the reconstruction of fluorophore with small size,
which is to mimic the early detection of tumor. The second
model is the reconstruction of the distribution of fluorescent
dye in organs, which is essential to drug pharmacokinetics
(PK).14 In order to evaluate the performance of the two regulari-
zation methods, apart from numerical simulation experiments,
in vivo experiments were also performed. A homemade dual-
modality FMT/micro-computed tomography (micro-CT) imag-
ing system is used as the experimental setup.

The outline of this paper is as follows. In Sec. 2, the methods,
models, and system setup are detailed. In Sec. 3, the simulation
and in vivo experiments are shown, and the results are described.
Finally, we discuss and make conclusions of this paper.
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2 Methodologies

2.1 Establishment of the System Equation

Since practical FMT operates in the wavelength range of
the near-infrared, scattering predominates in the light–matter
interaction as light propagates through biological tissues.15

The diffusion equation is sufficiently accurate for the light
propagation.16,17 Here, we only reconstructed the fluorophore
distribution in the tissue and the optical properties are known
a priori. The Robin boundary condition is performed on the
boundary.18 When FMT is excited by a continuous wave
point source, the coupled diffusion equations can be presented
as follows:(

∇ · ½DxðrÞ∇ΦxðrÞ� − μaxðrÞΦxðrÞ ¼ −Θδðr − rSÞ
∇ · ½DmðrÞ∇ΦmðrÞ� − μamðrÞΦmðrÞ ¼ −ΦxðrÞημafðrÞ

;

(1)

where r ∈ Ω, Ω is the domain under consideration. The sub-
scripts x and m denote excitation light and emission light,
respectively.Dx;m ¼ 1∕3½μax;am þ ð1 − gÞμsx;sm� is the diffusion
coefficient with μsx;sm as the scattering coefficient, g is the
anisotropy parameter, and μax;am is the absorption coefficient.

Φx;m denotes the photon density. The fluorescent yield ημaf
is the unknown parameter to be reconstructed, which is denoted
as XðrÞ hereafter. Using a finite element method to solve Eq. (1),
we obtained the following matrix forms:19–21

KxΦx ¼ bx; (2)

KmΦm ¼ FX; (3)

where Kx;m is the system matrix. F is obtained by discretizing
the unknown fluorescent yield distribution. For total S excitation
point sources, we have the final weighted matrix

Φm ¼ AX: (4)

This is a relationship between the measurements Φm and the
desired unknown fluorophore distribution X.

It should be noted that the determination of a unique solution
to Eq. (4) suffers from being ill-posed. A proper regularization
method is necessary for finding a unique and stable solution. In
general, Eq. (4) can be solved by the following minimization
problem with the lp regularization term:

min
X

fkAX −Φmk22 þ λpkXkpg; (5)

Fig. 1 Imaging models. (a) Model A: reconstruction of small fluorophore. (b) Model B: reconstruction of fluorescent dye distribution in organs, the heart
as exemplar.

Fig. 2 (a) Dual-modality FMT/micro-CT imaging system. (1) Laser. (2) Optical scanner. (3) X-ray tube. (4) X-ray detector. (5) Rotational stage. (6) Mouse
holder. (7) CCD camera. (8) Anesthesia machine. (b) The schematic diagram of different components of the system.
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where λp is the regularization parameter and kXkp is the p-norm
of X. When p ¼ 2, Eq. (5) becomes the l2-norm regularization
problem, which is commonly called Tikhonov regularization.
When p ¼ 1, it is the l1-norm regularization problem. The
l2-norm regularization problem can be solved efficiently
using standard minimization methods, like the Newton method
and the conjugate gradient method.22 In the past years, l1-norm
regularization method has received considerable attention due to
the development of a compressive sensing theory, and it can be

solved by primal-dual interior-point, orthogonal matching pur-
suit, iterative shrinkage-thresholding, and so on.23–35

2.2 Imaging Models

Two imaging models of FMT were studied in this paper. The
first imaging model is the reconstruction of fluorophore with
small size, denoted as model A, which is to mimic the early
detection of a tumor. Early detection of a tumor greatly increases
the chances for successful treatment, and it represents one of the
most promising approaches to reducing the growing tumor bur-
den.26 The localization of the early tumor is absolutely crucial to
diagnosis and treatment. Considerable attention has been paid
on the early detection of various diseases.27–31 In the early
stage of tumor, the biological mechanisms of interest are active
in a very small region, which is “sparse” compared to the
reconstruction region, as shown in Fig. 1(a). The second
model is reconstructing the distribution of fluorescent dye in
organs at a specific time point, denoted as model B, which is
a part and parcel of the drug PK.14 It is helpful in the develop-
ment of drug discovery and studying disease treatment. The
reconstruction of concentration of fluorescent dye distributed
in organs usually occurs with a large volume, as shown in
Fig. 1(b), and does not concentrate in a localized region as
model A. The different characteristics of these two models moti-
vate our investigation of a suitable reconstruction algorithm.

Fig. 3 The plane of excitation source. The black dots indicate the loca-
tion of the isotropic point sources. For each excitation source, fluores-
cence is detected at the opposite side with a 120-deg field of view
(FOV).

Fig. 4 Results for three different locations of fluorophore by l1-norm and l2-norm regularization methods. The first column are the different positions of
fluorophore. The second column are the reconstructed results by l1-norm regularization at z ¼ 16.5 mm, while the third column are those by l2-norm
regularization method, with a threshold of 70% of the maximum value. The black circles in the second and third columns denote the real positions of
fluorescent target. The blue solid lines in the fourth column are the real distribution along the yellow dotted lines in the second column, while the red
dash dot line and green dotted line represent the reconstructed distribution by l1-norm and l2-norm regularization methods, respectively.
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In the past years, Tikhonov regularization and sparsity regulari-
zation were developed for reconstruction based on the model of
the early detection of tumor.10,12 To the best of our knowledge,
they have not been performed on model B. This further moti-
vates us to make a comparative study of l1-norm regularization
and l2-norm regularization methods based on the two imaging
models.

2.3 Imaging System

We developed our prototype FMT/micro-CT dual-modality
imaging system for acquiring experimental data and high-
resolution anatomical information. This hybrid system, as
shown in Fig. 2, avoids the issue of anatomical transmogrifica-
tion of coregistration between two separate FMT and micro-CT
scanners. A continuous wave laser source (CrystaLaser, Reno,
Nevada, and Model No. CL671-050-O) with a power of 3 mw
provides an illumination at 670 nm. The laser is a stabilized
compact red laser and the spot diameter of the laser beam is
approximately 0.85 mm. The target is placed on a rotational
stage, which is controlled by the computer. A highly sensitive
charge-coupled device (CCD) camera (Princeton Instruments
PIXIS 2048B, Roper Scientific, Trenton, NJ), which is cooled
to −70°C, is employed to collect fluorescence signals. A Nikon
Micro-NIKKOR 55 mm f∕2.8manual focus lens is mounted on
the CCD camera. A custom-made 35 nm band-pass filter
(HZXD, Beijing, China) centered at 720 nm is used to allow

light transmission at the emission wavelength of 710 nm.
The axial direction of camera lens is vertical to the x-ray central
projection direction. The micro-CT imaging consists of an x-ray
tube (Oxford Instruments series 5000 Apogee X-ray tube, X-ray
Technology Inc., CA) with a focal spot size of 35 μm and a high-
resolution flat panel x-ray detector (Hamamatsu C7921CA-02,
Hamamatsu city, Japan) with a 1032 × 1012 pixel photo diode
array with a 50 μm pixel pitch. It can provide three-dimensional
(3-D) anatomic information.32 When rotating the stage to differ-
ent angles, multiple view measurements can be obtained. The
FMTexperiments were performed in a totally dark environment.
An anesthesia machine (Matrix Medical Inc., Minnesota) is
employed to keep the mouse sedated during the experiment.

3 Experiments and Results
In this section, l1-norm regularization and l2-norm regulari-
zation methods were performed on the two aforementioned
imaging models of FMT, respectively. Numerical and in vivo
experiments have been designed for testing these two methods.
Here, l1-norm regularization is solved by incomplete variables
truncated conjugate gradient method, which has been demon-
strated as an effective sparse regularization method in biolumi-
nescence tomography.33 The l2-norm regularization problem is
solved by conjugate gradient method.22 For each experiment, the
algorithm was tested using a range of regularization parameters,
and the best reconstruction was selected based on visual assess-
ment. All of the reconstructions were conducted on a personal
computer with a 2.66 GHz Intel(R) Xeon(R) CPU E5430 and
8.00 GB RAM. For all the numerical experiments, the fluores-
cent targets were excited by nine point sources at different posi-
tions in sequence, as shown in Fig. 3. For each point source,
the surface data on the opposite side with a 120-deg field of
view were measurable. The fluorescent yield was set to be
0.06 mm−1.

3.1 Model A: Small Fluorophore Reconstruction

3.1.1 Numerical simulation

In this section, a 3-D digital mouse model was considered and
the cryosection data were utilized to provide anatomical infor-
mation.34 We supposed that there was only one small fluoro-
phore to be detected and only the torso section of the mouse
was selected as the region to be investigated, as shown in
Fig. 1(a). The small sphere was to imitate the location of

Table 1 Optical parameters of the mouse organs (units of μa and
μ 0
s : mm−1).

Tissue μax μ 0
sx μam μ 0

sm

Muscle 0.0052 1.08 0.0068 1.03

Heart 0.0083 1.01 0.0104 0.99

Lungs 0.0133 1.97 0.0203 1.95

Liver 0.0329 0.70 0.0176 0.65

Kidneys 0.0660 2.25 0.0380 2.02

Stomach 0.0114 1.74 0.0070 1.36

Table 2 Quantitative results for the three cases by two regularization methods.

Case Method
Real position
center (mm)

Reconstructed
position center (mm)

Location
error (mm)

Reconstructed
fluorescent
yield (mm−1)

Relative error
of yield (%)

FWHM
(mm) Time (s)

1 l1 -norm (19.9, 10.4, 16.4) (20.3, 9.8, 16.3) 0.73 0.050 16.7 2.3 20.9

l2 -norm (19.5, 11.2, 15.9) 1.02 0.015 75.0 4.0 6.63

2 l1 -norm (21.9, 10.4, 16.4) (21.9, 10.2, 16.6) 0.28 0.055 8.3 2.3 36.2

l2 -norm (21.9, 10.7, 16.9) 0.58 0.011 81.7 3.2 5.4

3 l1 -norm (23.9, 10.4, 16.4) (23.9, 11.2, 16.4) 0.80 0.054 10.0 1.4 32.2

l2 -norm (23.0, 11.1, 16.4) 1.11 0.014 76.7 3.2 1.7
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fluorophore. A coarse mesh (3905 nodes and 20,380 tetrahedral-
elements) was used for the inverse problem. Three different
locations of fluorophore were considered, as shown in Fig. 4(a),
4(e), and 4(i). The fluorophore was positioned 10, 8, and 6 mm
off the bound of the left for case 1, case 2, and case 3, respec-
tively. The optical properties for different organs are listed
in Table 1.35,36 The second and third columns are the recon-
structed results at z ¼ 16.5 mm plane by l1-norm and

l2-norm regularization methods, respectively. We defined the
location error (LE) to analyze the results quantitatively.

LE ¼ ½ðx − x0Þ2 þ ðy − y0Þ2 þ ðz − z0Þ2�1∕2; (6)

where ðx0; y0; z0Þ is the actual center of the fluorophore and
ðx; y; zÞ is the reconstructed coordinate of node with maximum
reconstructed value for that fluorophore. The relative error (RE)

Fig. 5 Results by l1-norm and l2-norm regularization methods for case 2, with a threshold of 70% of the maximum value. The first column are recon-
structed by l1-norm regularization and the second column are recovered by l2-norm regularization. (a) and (b) are coronal views; (d) and (e) are sagittal
views. The black circles in (a), (b), (d), and (e) denote the real fluorophore. The blue solid lines in the third column are the real distribution along the
yellow dotted lines in the first and second columns, while the red dash dot line and green dotted line represent the reconstructed distribution by l1-norm
and l2-norm regularization methods, respectively.

Table 3 Optical parameters of the mouse organs at 670 and 710 nm
(units of μa and μ 0

s : mm−1).

670 nm 710 nm

μax μ 0
sx μam μ 0

sm

Muscle 0.075 0.412 0.043 0.350

Heart 0.051 0.944 0.030 0.870

Lungs 0.170 2.157 0.097 2.093

Liver 0.304 0.668 0.176 0.629

Kidneys 0.058 2.204 0.034 2.021

Stomach 0.010 1.417 0.007 1.340

Table 4 Quantitative analysis of the reconstruction results for simu-
lation experiments of model A with different perturbation levels of opti-
cal parameters.

Perturbation Method
Location
error (mm)

Reconstructed
fluorescent yield (mm−1)

�5% l1 -norm 0.24� 0.02 0.0551� 0.0016

l2 -norm 0.83� 0.22 0.0107� 0.0008

�10% l1 -norm 0.27� 0.06 0.0546� 0.0033

l2 -norm 0.86� 0.29 0.0106� 0.0008

�15% l1 -norm 0.27� 0.07 0.0534� 0.0058

l2 -norm 0.99� 0.34 0.0107� 0.0012
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Fig. 7 Fluorescent yield profiles of in vivo experiment for model A. The blue solid line of (c) is the real distribution along the yellow dotted lines of (a),
while the red dash dot line and green dotted line represent the reconstructed distribution by l1-norm and l2-norm regularization methods, respectively.

Table 5 Comparative results for in vivo experiment of model A.

Method
Real position
center (mm)

Reconstructed
position center (mm)

Location
error (mm)

Reconstructed
fluorescent yield (mm−1)

Relative error
of yield (%)

Real
FWHM (mm)

Reconstructed
FWHM (mm)

l1 -norm (21.1, 27.8, 7.4) (21.4, 29.1, 8.5) 1.73 0.031 22.5 1.2 1.4

l2 -norm (20.2, 29.2, 8.6) 2.05 0.011 72.5 3.4

Fig. 6 Results of in vivo experiment for model A, with a threshold of 70% of the maximum value. The reconstructed images are normalized by the
actual value of 0.0402mm−1. (a) Result of l1-norm regularization method; (b) Result of l2-norm regularization. The red dashed lines denote the real
source center, and the green solid lines represent the reconstructed center.
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of fluorescent yield is also considered to analyze the results by
the following formula:

RE ¼ jYr − Yaj∕Ya; (7)

where Yr is the reconstructed fluorescent yield and Ya is the
actual one. Table 2 gives the comparative results of these two
regularization methods according to LE, RE of fluorescent
yield, and the full width at half maximum (FWHM). For
case 2, the recovered results at coronal and sagittal views are
shown in Fig. 5. It is clear that the solution of l1-norm regulari-
zation is concentrated on a localized region, as depicted in
Figs. 4(b), 4(f), 4(j), 5(a), and 5(d). However, the solution of
l2-norm regularization has a large area than that of l1-norm regu-
larization, as shown in Figs. 4(c), 4(g), 4(k), 5(b), and 5(e).
In Table 2, the LEs of l1-norm regularization under the three
cases are less than 1 mm, which are smaller than that of

Table 6 Reconstruction results with optical properties perturbation for
in vivo experiment of model A.

Perturbation Method
Location
error (mm)

Reconstructed
fluorescent
yield (mm−1)

�5% l1 -norm 1.98� 0.14 0.0306� 0.0021

l2 -norm 2.71� 1.95 0.0112� 0.0002

�10% l1 -norm 2.40� 1.27 0.0307� 0.0026

l2 -norm 4.13� 3.03 0.0114� 0.0005

�15% l1 -norm 2.79� 1.62 0.0309� 0.0037

l2 -norm 4.12� 3.05 0.0116� 0.0009

Fig. 8 Reconstruction results of two regularization methods for model B. (a), (c), and (f) are the results at slices z ¼ 5.5, 6.5, and 7.5 mm, respectively,
by l1-norm regularization. (b), (e), and (g) are the corresponding results by l2-norm regularization method. The black contour is the boundary of heart.
(d) 3-D view of the three slices.
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l2-norm regularization. In addition, the fluorescent yields of
l1-norm regularization for three cases are 0.050, 0.055, and
0.054 mm−1, respectively, with all REs less than 20%. In con-
trast, l2-norm provides results with larger REs of the fluorescent
yield. The FWHMs by l1-norm are less than 2.5 mm, while the
ones by l2-norm are larger than 3 mm, which are greater than the
actual value of 2 mm. It means l1-norm provides a solution con-
fined in a localized region. The last column of Table 2 displays
the reconstruction time of l1-norm and l2-norm regularization
methods. It is obvious that l2-norm regularization consumed
less time than l1-norm regularization as it was solved by con-
jugate gradient method. It should be noted that the recovered
fluorescent yield values are small than the actual ones. This
may be caused by the absence of a priori knowledge. For quan-
titative fluorescence tomography, Lin et al. showed that the true
fluorophore concentration could be recovered when both func-
tional optical background and structural a priori information,
including the location of the fluorophore, are utilized to
guide the FMT reconstruction algorithm.37 In practical applica-
tions, the location of the fluorescent target is usually unknown.
Our experiments were conducted on this assumption.

The influence of the optical parameters for the reconstruction
has been investigated in this paper. We studied the robustness
of these two regularization methods against inaccurate optical
parameters by adding different perturbation levels (�5%,
�10%,�15%) to absorption and reduced scattering coefficients
at both excitation and emission wavelengths. The perturbation is
added by the following formula:

Ē ¼ Eþ δPE; (8)

where E is the optical parameters in Table 1 or Table 3, namely
μax, μ 0

sx, μam, or, μ 0
smδ is the perturbation level parameter, and it

is set to 5%, 10%, and 15% in this paper. P is a random number
generated by a MATLAB function rand with P ¼ 2 � rand − 1.
We carried out 100 independent reconstructions for each pertur-
bation level. The reconstructed results in Table 4 are the average
of 100 independent reconstructions. It is obvious that the LE
becomes large with the increase of the perturbation levels
of optical parameters for both the regularization methods,
while the recovered fluorescent yield almost has no change.

We have also found that the standard deviations of LE and
fluorescent yield by both methods increase with the raise
of the perturbation levels. It indicates that the reconstruction
results will become more unstable with the increase of pertur-
bation levels.

3.1.2 In vivo implanted fluorophore experiment

All animal studies were performed in accordance with the
Fourth Military Medical University Guide for the Care and
Use of Laboratory Animals formulated by the National
Society for Medical Research. An in vivo implantation
experiment was performed on an adult BALB/C. A glass
tube with 0.6 mm radius and 2.8 mm height, which contains
Cy5.5 solution (with the extinction coefficient of about
0.019 mm−1 μM−1 and quantum efficiency of 0.23 at the
peak excitation wavelength of 671 nm),38 was implanted into
the abdomen of the mouse that was anesthetized beforehand.
The glass tube, with Cy5.5 (Fanbo, Beijing, China) solu-
tion at a concentration of 4000 nM, is the small fluorophore
to be recovered. The actual fluorescent yield of Cy5.5 is
0.0402 mm−1 according to published literature.39 The experi-
mental data were acquired by the dual-modality FMT/micro-
CT system (see Fig. 2). After the optical image acquisition,
the anesthetized mouse was scanned by micro-CT. The CT
slices were segmented into major anatomical components,
including heart, lungs, liver, kidneys, and muscle. The optical

Fig. 9 Fluorescent yield profiles along the yellow dashed lines of Fig. 8. (a) Profiles along the horizontal yellow dashed lines. (b) Profiles along the
vertical yellow dashed lines. The blue solid lines are the real distribution along the yellow dotted lines. The red dash dot line and green dotted line
represent the reconstructed distribution by l1-norm and l2-norm regularization.

Table 7 Full width at half maximum of simulation experiment for
model B.

Method
Real

FWHM (mm)
Reconstructed
FWHM (mm)

Horizontal lines l1 -norm 7.8 1

l2 -norm 7.2

Vertical lines l1 -norm 5.0 1.2

l2 -norm 3.4
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properties at both the excitation and emission wavelengths for
the main organs were calculated based on the literature as listed
in Table 3.35 A landmarks-based rigid-body registration method
was adopted to make the CT data registered with the fluores-
cence imaging.33 After the registration, the absolute irradiance
distribution in two-dimensional (2-D) fluorescence images was
mapped on the 3-D mouse surface.40 The segmented mouse
torso was discretized into 18,504 tetrahedral-elements and
3823 nodes for reconstruction. Figure 6 shows the results by
l1-norm and l2-norm regularization methods, which are com-
pared with the corresponding CT slices. The recovered center
deviation is 1.73 mm using l1-norm regularization, while
using l2-norm regularization method, the recovered center
deviation is 2.05 mm. Figure 7 provides the fluorescent yield
profiles of in vivo experiment and Table 5 provides the quanti-
tative results. From Figs. 6 and 7, it is clear that the solution of
l1-norm regularization is still confined in a small region with
clean background, while the one of l2-norm regularization

has a large area, which is consistent with the numerical experi-
ment results. Furthermore, l2-norm regularization generated
spurious small elements in Fig. 6(b), which also appear in
Fig. 4(c) and 4(k). The green solid lines in the longitudinal
of Fig. 6(a) are closer to the red dashed lines than that of
Fig. 6(b), which indicates that l1-norm regularization provides
a better location of fluorophore than l2-norm regularization
method does.

The optical parameters for the main organs are calculated
according to literature,35 not experimentally measured. How-
ever, the tissue optical parameters of the mouse in our experi-
ments may be significantly different from the literature data.
So we have also studied the influence by changing the optical
parameters for reconstruction. Table 6 provides the quantita-
tive analysis for each perturbation level. From Table 6, we
have found that the LE by two methods increases with the
raise of the perturbation levels of optical parameters, while
the recovered fluorescent yield increases slightly. It is clear

Fig. 10 Results of simulation experiments for model B with optical parameters perturbation at �5%, �10%, and �15%. The first column is recovered
by l1-norm regularization, and the second column is reconstructed by l2-norm regularization. The third column is the profiles along the yellow dotted
lines in the first and second columns. The blue solid lines are the real distribution along the yellow dotted lines. The red dash dot line and green dotted
line represent the reconstructed distribution by l1-norm and l2-norm regularization.
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that the standard deviation increases with the raise of the per-
turbation levels, which indicates that the reconstruction results
are very unstable when the perturbation level of optical param-
eters is large. This conclusion is consistent with the numerical
experiment.

3.2 Model B: Reconstruction of Fluorescent Dye
Distribution in Organs

3.2.1 Numerical simulation

In the numerical experiment, the mouse chest region is consid-
ered instead of the torso section, as shown in Fig. 1(b). The heart
was considered as an entirety, and the atriums, ventricles, and
vessels were not considered. Our aim was to recover the fluo-
rophore distribution in the heart. The fluorescence yield was set
to be 0.06 mm−1. The optical parameters for major organs are
shown in Table 1. A coarse mesh (2292 nodes and 11,737 tetra-
hedral-elements) was used for the inverse problem. Figure 8
presents the recovered results by l1-norm and l2-norm regulari-
zation methods. For clarification, we display the results at slices
z ¼ 5.5, 6.5, and 7.5 mm, respectively. It seems that the solution
of l1-norm regularization is confined in small regions. On the

Table 8 Average fluorescent yield in the organ for simulation experi-
ment and in vivo experiment of model B.

Perturbation Method

Simulation experiments In vivo experiments

Average fluorescent
yield (mm−1)

Average fluorescent
yield (mm−1)

0 l1 -norm 0.0207� 0 0.0022� 0

l2 -norm 0.0216� 0 0.0033� 0

±5% l1 -norm 0.0220� 0.0006 0.0022� 0.0003

l2 -norm 0.0222� 0.0005 0.0032� 0.0002

±10% l1 -norm 0.0219� 0.0009 0.0022� 0.0006

l2 -norm 0.0224� 0.0013 0.0032� 0.0004

±15% l1 -norm 0.0221� 0.0017 0.0022� 0.0009

l2 -norm 0.0224� 0.0014 0.0033� 0.0005

Fig. 11 Results of reconstruction of Cy5.5 solution in the bladder of the mouse by l1-norm and l2-norm regularization methods. The reconstructed
images are normalized by the maximum value of l2-norm. (a) XCT coronal slice. The red dot lines represent the positions of investigated slices. (c), (f),
and (i) are the results by l1-norm and (d), (g), and (j) by l2-norm regularization method.
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contrary, the solution of l2-norm is smooth and has a large area.
This indicates that l1-norm regularization still provides a solu-
tion with a localized region, while l2-norm regularization gives a
reasonable solution. This is because l1-norm regularization
tends to find sparse solutions, while l2-norm regularization
tends to penalize large elements. The profiles along the yellow
dotted lines in Fig. 8 are shown in Fig. 9. Figure 9(a) is a profile
of horizontal lines and Fig. 9(b) is one of vertical lines. Table 7
provides the FWHM for simulation experiments of model B.
From Fig. 9 and Table 7, the FWHM of either horizontal or ver-
tical lines, it is clear that the FWHM of l2-norm is much closer to
the actual FWHM. It means the solution provided by l2-norm
has large volume and is more approximated to the actual one.

We have also investigated the influence by changing optical
parameters on the recovered results for model B. Figure 10
shows the recovered results for perturbation levels at �5%,
�10%, and �15%. The third column is the profiles along
the yellow dotted lines in the first and second columns. The
blue solid lines are the real distribution along the yellow dotted
lines. The red dashed lines and green solid lines represent
the reconstructed distribution by l1-norm and l2-norm regu-
larization. There is a slight variation in the distribution, as
shown in Fig. 10(c), 10(f), and 10(i). In order to show the
reconstruction results clearly, we have introduced the average
fluorescent yield, which is the ratio of total fluorescent yield
to the total volume of the organ. The average fluorescent yields
of the heart by two methods for each perturbation level are
shown in the third column of Table 8. There is little variation
in the average fluorescent yield by the two methods, but the
standard deviations of average fluorescent yield increase with
the increase of perturbation levels.

3.2.2 Reconstruction of Cy5.5 solution distribution in the
bladder of mouse

The Cy5.5 solution of 0.12 ml, with a concentration of 4000 nM,
was injected to an adult BALB/C mouse via tail vein. We con-
sidered the lower body of the mouse as the reconstruction
region, and the problem was to recover the distribution of
Cy5.5 in the bladder. After 6 h, we acquired the data using

our prototype FMT/micro-CT dual-modality imaging system
for reconstruction. The optical properties of main organs are
listed in Table 3. The segmented mouse torso was discretized
into 14,500 tetrahedral-elements and 3085 nodes for recon-
struction. The actual concentration of Cy5.5 in the bladder
is unknown, and the recovered results are normalized by the
maximum value of l2-norm for comparison. Figure 11 shows
the results, which are compared to the corresponding CT slices.
It is clear that the solution of l1-norm regularization concentrates
on some small regions, while the solution of l2-norm regulari-
zation has a large area and is smooth, which are consistent with
the results in the numerical experiments. Figure 12 is profiles
along the yellow dotted lines in Fig. 11, and Table 9 is the
FWHM of in vivo experiment.

Figure 13 shows the reconstructed results under the optical
parameters perturbation at 0, �5%, �10%, and �15%. All of
the results are normalized by the maximum value recovered by
l2-norm regularization with no optical properties perturbation.
The third column is the profiles along the yellow dotted lines
in the first and second columns. The blue solid lines are the
real distributions along the yellow dotted lines. The red dash-
dot lines and green solid lines represent the reconstructed dis-
tribution by l1-norm and l2-norm regularization. The first row is
results with no optical parameters perturbation, and the second
row is for perturbation at �5%, the third row is for �10%, and

Fig. 12 Profiles along the yellow dashed lines of Fig. 11. (a) Profiles along the horizontal yellow dashed lines. (b) Profiles along the vertical yellow
dashed lines. The blue solid lines are the real distribution along the yellow dotted lines. The red dash dot line and green dotted line represent the
reconstructed distribution by l1-norm and l2-norm regularization.

Table 9 Full width at half maximum of in vivo experiment for
model B.

Method
Real

FWHM (mm)
Reconstructed
FWHM (mm)

Horizontal lines l1 -norm 9.2 1.4

l2 -norm 6.0

Vertical lines l1 -norm 9.4 2.0

l2 -norm 7.0
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Fig. 13 The recovered results for in vivo experiments of model B with optical parameters perturbation at 0, �5%, �10%, and �15%. All of the results
are normalized by the maximum value recovered by l2-norm regularization with no perturbation. The first row is the results with no perturbation, the
second row is for �5%, the third row is for �10%, and the fourth row is for �15%. The first column is reconstructed by l1-norm regularization and the
second column by l2-norm regularization. The third column is the profiles along the yellow dotted lines in the first and second column. The blue solid
lines are the real distribution along the yellow dotted lines. The red dash dot line and green dotted line represent the reconstructed distribution by l1-
norm and l2-norm regularization.
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the fourth row is for �15%. The average fluorescent yield of the
bladder is shown in the fourth column of Table 8. We have found
that there is almost no change in the average value, but the stan-
dard deviations of average fluorescent yield by two methods
increase with the raise of perturbation levels.

4 Discussion and Conclusion
In this paper, we make a comprehensive comparison between l1-
norm and l2-norm regularization methods based on two imaging
models of FMT. For the early detection of tumor model, numeri-
cal experiments and in vivo experiments were conducted to test
the two methods. The experiment results indicate that l1-norm
regularization produced the solution confined in a localized
region with clean background, while l2-norm regularization cre-
ated a smooth solution with a large volume and generated spu-
rious small elements. It should be noted that the recovered LEs
of in vivo experiment were larger than that of the numerical
experiments. This may be caused by many factors: (1) the pho-
ton propagation was described by diffusion approximation,
not the radiative transfer equation,41 (2) the optical properties
for major organs were using the published values, not using
DOT,7,9 (3) experimental operations may also affect the
reconstruction results. In the model of reconstructing the distri-
bution of fluorescent dye in organs, l1-norm regularization
shrunk the support of the fluorescent and still provided the sol-
ution with small volume, while l2-norm regularization produced
a smooth solution with a large volume. The FWHM of fluores-
cent yield profiles by l2-norm is more close to the actual one
than that of l1-norm. We infer that for these two imaging models
of FMT, the l1-norm regularization is a more suitable choice for
the reconstruction of small fluorophore as it fully takes advan-
tage of the sparse characteristic of the fluorophore; l2-norm
regularization is more accurate for reconstructing the distribu-
tion of fluorescent dye in organs since it tends to penalize
large elements.

It should be noted that the size and shape of fluorescent target
cannot be accurately recovered by either l1-norm or l2-norm
regularization. It is desirable to design more appropriate regu-
larization methods for this problem. Gao et al. have developed
total variation and l1 data fidelity for bioluminescence tomog-
raphy based on radiative transfer equation. 42 This algorithm
showed good performance for 2-D numerical simulation experi-
ments, especially on preserving the boundary of the object. The
extensive clinical applications could encounter difficulties for
the complex 3-D reconstruction. This is our future research.

In conclusion, we have made a detailed comparison between
l1-norm and l2-norm regularization methods based on two
imaging models of FMT. Some interesting conclusions were
obtained in this paper, which would provide useful information
for the researcher in selecting and designing algorithms for FMT
reconstruction.
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