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Abstract. Most reconstruction algorithms for photoacoustic tomography, like back projection or time reversal,
work ideally for point-like detectors. For real detectors, which integrate the pressure over their finite size, images
reconstructed by these algorithms show some blurring. Iterative reconstruction algorithms using an imaging
matrix can take the finite size of real detectors directly into account, but the numerical effort is significantly higher
compared to the use of direct algorithms. For spherical or cylindrical detection surfaces, the blurring caused by a
finite detector size is proportional to the distance from the rotation center (spin blur) and is equal to the detector
size at the detection surface. In this work, we apply deconvolution algorithms to reduce this type of blurring on
simulated and on experimental data. Two particular deconvolution methods are compared, which both utilize
the fact that a representation of the blurred image in polar coordinates decouples pixels at different radii from
the rotation center. Experimental data have been obtained with a flat, rectangular piezoelectric detector meas-
uring signals around a plastisol cylinder containing various small photoacoustic sources with variable distance
from the center. Both simulated and experimental results demonstrate a nearly complete elimination of spin blur.
© 2014 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.19.5.056011]
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1 Introduction
In photoacoustic (also known as thermoacoustic or optoacous-
tic) imaging, a sample is illuminated by a short pulse of electro-
magnetic radiation, such as a laser or a microwave pulse. The
electromagnetic radiation is absorbed to different extents in dif-
ferent regions of the sample, and the resulting weak heating and
thermal expansion launch an acoustic wave. This acoustic pres-
sure signal is measured by detectors outside the sample and can
be used for reconstruction of the distribution of the absorbed
electromagnetic energy inside the sample. Therefore, photo-
acoustic imaging is a technique that combines the advantages
of optical methods (good optical absorption contrast between
different types of tissues) and ultrasound (high spatial resolution
due to low ultrasound scattering). Utilizing acoustic detectors
with large aperture that detect signals simultaneously from all
areas of the sample requires tomographic methods for image
reconstruction. This is known as photoacoustic tomography
(good overviews are provided in Refs. 1, 2, and 3).

Mathematically, photoacoustic wave propagation can be
modeled as an initial value problem for the three-dimensional
(3-D) wave equation. Within this mathematical framework,
image reconstruction algorithms have been developed for
detectors so small that they can be modeled as points. Physical
implementations of detector arrays use piezoelectric sensors,
which have the drawback of decreasing signal-to-noise ratio
with decreasing size. Therefore, piezoelectric detector elements
are used with a size in the range of several millimeters, leading

to some blurring artifacts if reconstruction algorithms for point
sensors are applied to measured data. An alternative is to use
linear or planar detectors that integrate the acoustic pressure
over one or two spatial dimensions. Because of pressure inte-
gration over a finite area with known shape, noise is reduced
and signal-to-noise ratio is enhanced. Reconstruction algorithms
have been adapted to handle such special kinds of detectors. For
integrating line detectors, the inversion of the 3-D wave equa-
tion is usually split into the following two steps:4,5 first, for a
given orientation of the line detectors, a two-dimensional (2-D)
wave equation is inverted to recover linear projections of the
initial pressure distribution. Second, multiple projections in
different directions are used to reconstruct the original 3-D
pressure distribution via a 2-D inverse Radon transform.

In this work, we concentrate on the first step of this pro-
cedure, i.e., the inversion of the 2-D wave equation. However,
also in these modified algorithms, the finite size in the remaining
dimensions is usually neglected and artifacts arise in recon-
structed images. Our aim is to explain the particular form of
these artifacts and to study additional signal processing algo-
rithms that can be applied at the image postprocessing stage
to reduce these artifacts. In Ref. 6, two deconvolution methods
were proposed for planar measurement geometry: Wiener
deconvolution and piecewise polynomial truncated singular
value decomposition (PP-TSVD) deconvolution (see Sec. 3).
The latter method was actually implemented. For cylindrical
geometry, it was mentioned7 that the same methods could be
used, but it has not been demonstrated on numerical or exper-
imental data. One of the aims in this paper is to test the assertion
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in Ref. 7 and to compare the two methods in this context. The
implementation as well as the results are different from what
was reported for the planar case, which justifies our careful
re-examination of these methods for cylindrical geometry.

Matrix-model based reconstruction algorithms8 can build
arbitrary shapes and spatial impulse responses of the detectors
directly into the model and are well suited to reduce finite
detector artifacts, but require high numerical effort for the large
matrices, even the application of graphics processing units for
parallel computing.9 In our work, we show that these artifacts
can be effectively reduced in a matter of a second of additional
computation time, at least for some regular geometrical detector
shapes, after using standard reconstruction methods like filtered
backprojection10 or time reversal11 that require, in the 2-D case,
about a minute on a standard PC.

After a short review of photoacoustic tomography, in Sec. 2
we address some issues that arise for image reconstruction if
finite-sized detectors are used. Furthermore, we describe the
theory behind deconvolution algorithms for compensation of
spin-blur artifacts that appear in connection with detectors
that are parts of cylindrical surfaces with finite angular aperture,
or parts of their approximating tangential planes if the aperture is
not too large. The accuracy of this approximation is also dis-
cussed in this section.

In Sec. 3, computer-simulation studies are performed to test
the two proposed deconvolution algorithms on simulated data
from different source profiles located at various distances
from imaging center and recorded with detectors of various
apertures. Section 4 describes real measurements on a cylindri-
cal plastisol phantom with six thin holes filled with OrangeG as
an absorbing liquid. The holes were located on a spiral emanat-
ing from the center of the cylinder. The acoustic signals were
recorded by a piezoelectric detector [Polyvinylidenfluorid
(PVDF) foil] having the form of a narrow long strip. The
time reversal reconstruction shows the expected blurring, and
we demonstrate that the blurring can be almost completely elim-
inated by applying the proposed deblurring algorithms. A pre-
liminary version of this work appeared in Ref. 12.

2 Background

2.1 Photoacoustic Tomography with Finite-Sized
Detectors

In photoacoustic tomography with line detectors, ultrasound
wave propagation of the pressure integrated over the z-direction,
pðx; y; tÞ, is described by an inhomogeneous 2-D wave equation
with a very short initial forcing (see, for example, Ref. 4).

∂2p
∂t2

− c2Δp ¼ p0ðrÞ ·
d

dt
δðtÞ:

Here c is the sound speed, p0ðrÞ is the (integrated) initial
pressure produced by thermoelastic expansion, and δðtÞ is
the Dirac delta function. This is equivalent to an initial value
problem for the homogeneous 2-D wave equation. 5

∂2p
∂t2

− c2Δp ¼ 0 pðr; 0Þ ¼ p0ðrÞ
∂
∂t
pðr; 0Þ ¼ 0:

The goal in photoacoustic tomography is to recover the spa-
tial distribution of absorbed energy density inside the sample,
which is proportional to p0ðrÞ, from acoustic pressure signals

pðrS; tÞ measured outside the sample at the surface S using a
detector D (see Fig. 1). Ideal line detectors (in real 3-D space)
correspond to ideal point detectors for the 2-D wave equation.

A simple and efficient way to solve the 2-D photoacoustic
inverse problem (or analogously the 3-D problem) for point
detectors and to recover the initial pressure distribution is a
time reversal algorithm:11 assume a time T0 > 0 to be large
enough that the pressure satisfies pðr; T0Þ ≃ 0 within the
whole volume R enclosed by the surface S. As the initial pres-
sure distribution outside the surface S is zero, for the 3-D prob-
lem, T0 can be chosen, e.g., as the maximal diameter of R,
divided by c. A 2-D wave propagation does not satisfy a strict
form of the Huygens principle, which implies that the solution
of the wave equation never exactly vanishes after a certain time,
but exhibits an infinite, algebraically decaying tail. However,
using the Abel transform and its inverse, one can see that the
long tail in the 2-D measured signal contains no further infor-
mation about the initial pressure distribution (see Ref. 12). So it
is justified also in 2-D to choose such a time T0 when all pres-
sure transients above a small level of size ε (e.g., 1∕1000 of the
detected pressure maximum) have passed all detection points.
At that time T0, the time evolution of the pressure field is
reversed; we start to “rewind the film.” Mathematically, this
can be accomplished by setting the pressure values on the sur-
face S equal to pðrS; T0 − tÞ, the measured pressure values in
time-reversed order. A finite difference or Fourier transform
scheme for the wave equation is executed on a spatial computa-
tional grid with these time-reversed values as boundary condi-
tions. After another time period T0, we obtain an approximation
to the initial pressure p0ðrÞ. We have recently proposed a pseu-
dospectral variant of time reversal that yields highly accurate
results in 2-D and 3-D.13 This combines an exact time discre-
tization with a Fourier (k-space) approximation to the spatial
derivatives ½pnðkÞ ¼ pðk; nΔtÞ�.

pnþ1ðkÞ ¼ ½2–4 sin2ðckΔt∕2Þ� · pnðkÞ − pn−1ðkÞ: (1)

The time needed for the Fourier transforms (enabling high
accuracy in the spatial derivatives) is offset by the fact that
the Courant-Friedrichs-Lewy condition does not apply here
and, thus, larger timesteps can be taken.

In this work, we will assume the more realistic scenario
that instead of point-wise pressure data we have pressure
values integrated over a spatially extended aperture. In Fig. 2,
we illustrate our strategy of accounting for such a finite detector
size in the simple case of a planar detector array: according to

Fig. 1 Illustration of photoacoustic tomography. D represents a detec-
tor at position rS scanning across a closed surface S enclosing the
initial source p0ðrÞ. R is the volume enclosed by S.
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source-receiver reciprocity for acoustic waves, measuring sig-
nals from a point-like source with a planar detector array is
equivalent to measuring signals from an extended source
with an array of point-like detectors. Hence, we may (almost)
recover the imaging result from a point-like detector array by
deconvolution of the reconstructed image that was obtained
by measuring with an array of finite-size detectors.

A similar compensation strategy can also be applied for
cylindrical or spherical detection geometry: using the transla-
tional and rotational invariance of the wave equation, Haltmeier

and Zangerl show in Ref. 14 that the reconstructed image
becomes blurred with a certain blurring kernel if a finite-
sized detector is used instead of a point (3-D) or line (2-D)
detector. This has been proven in 2-D for a detector extending
to a cylinder of finite radius, which applies to optical detection
by a laser beam15 or an elongated optic fiber sensor.16 In our
case, a piezoelectric detector is used that extends tangentially
to a finite strip (Sec. 4.1). The theory of Ref. 14 can also be
adapted to such a situation as we show in the Appendix.

A different kind of finite-size issue is raised by the fact that
infinite line detectors in reality can only be approximated by
finite lines. In our experiment (Sec. 4.1), we have photoacoustic
sources that are located in an xy-plane, detected at a radial dis-
tance of rS ¼ 16 mm from the coordinate origin. The detectors
are rectangular strips whose long axis points in the z-direction.
To illustrate the influence of the z-extent of the detectors in this
setup, Fig. 3 shows simulated signals from a small ball source
with 1-mm diameter, measured by an integrating strip detector
growing in z-length. For the 3 × 3-mm detector, one gets an N-
shaped 3-D signal similar to a signal observed by a point detec-
tor. For the 10-mm-long detector, the signal initially behaves
like the 2-D signal, but shows a clear deviation from the 2-D
signal after 11 μs. For the 3 × 25-mm detector, one gets the
2-D pressure signal up to a measurement time of 13 μs; then
a small negative peak appears. This peak, which is due to the
arrival of the wave at the ends of the strip, could be shifted
to longer times by taking an even longer strip; but it is apparent
that the signal and, hence, the reconstruction at this z-length, are
already sufficiently close to the ideal 2-D situation. A more
detailed discussion of the required length of such integrating
detectors can be found in Ref. 17. This simulation also demon-
strates the gain in signal amplitude by a factor of ∼1.5 with
increasing integration length of the detector.

2.2 Algorithms for Compensation of Spin Blur

As described in the previous subsection, a narrow strip detector
of sufficient length measures signals governed by the 2-D wave
equation. By rotating the detector along a curve, image
reconstruction can, therefore, be performed by inversion of
the 2-D wave equation. Due to the width of the strip detectors,
application of reconstruction methods designed for ideal line
detectors will result in a blurred reconstruction.

Suppose that instead of the pointwise pressure values
pðrS; tÞ, integrals pαðrS; tÞ of the acoustic pressure over an

Fig. 2 For a planar integrating detector array, by source receiver
reciprocity, we can use the well-known reconstruction formulas from
point-like detectors followed by a spatial deconvolution to approxi-
mately reconstruct the initial pressure distribution, which is a point
source in this figure.

Fig. 3 Simulated signals from a small ball with 1-mm diameter as a
source measured at a distance of 16 mm with an integrating detector
of constant x -width (3 mm) and growing in z-length: 3 × 3 mm (solid),
3 × 10 mm (dash), 3 × 25 mm (dash-dot); for comparison infinite strip
detector signal (dotted); the gain in positive peak amplitude by a factor
of ∼1.5 mainly occurs between z-lengths of 3 and 6 mm.

Fig. 4 Initial pressure (a) and two-dimensional (2-D) time reversal reconstruction in Cartesian (b) and
polar (c) coordinates for a circular integrating detector of aperture 2α ¼ 45 deg (bold white arc), which is
rotated in 80 equidistant positions around the sample (white dots). The best resolution is near the rotation
center and blurring increases toward the detector circle.
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arc centered at points rS on a circular recording curve are mea-
sured. Here the superscript indicates that the detector covers
an angle 2α on the recording surface (compare Fig. 5). Then
applying reconstruction methods, such as time reversal or
backprojection, the integrated pressure values pαðrS; tÞ yield
as reconstruction (see the Appendix).

pα
0ðr;φÞ ¼

Zα

−α

p0ðr;φþ α 0Þdα 0

¼
Z2π

0

p0ðr;φ 0Þkαðφ − φ 0Þdφ 0:

Hence, the obtained reconstruction pα
0ðr;φÞ [expressed in

polar coordinates r ¼ ðr;φÞ] is a blurred version of the
unblurred initial pressure distribution p0ðr;φÞ, obtained by con-
volving p0ðr;φÞ with a purely angular blurring kernel given by
the box function

kαðφ − φ 0Þ ¼
�
1 if jφ − φ 0j ≤ α
0 if jφ − φ 0j > α

:

We emphasize that from a mathematical point of view, there
is no restriction of our proposed deconvolution methods to a box
function as blurring kernel. The algorithms can be applied with
minor modifications to a more general kernel, i.e., a general sig-
nal impulse response function describing a variable sensitivity
within the detector foil.

Since the spatial extent of a circular arc with aperture 2α is
proportional to its radius, the blurring effect increases linearly
for increasing distance to the center of the reconstruction
domain and is equal to the detector width close to detection
circle. We refer to the purely angular blurring proportional to
the distance of the center of rotation as spin blurring because
the same type of blurring arises in photographic imaging when
a camera is spinning around the lens axis during exposure.
Figure 4 shows an initial pressure distribution consisting of
four points (smoothed by box function convolution) located
on a spiral emanating from the detection center (left), and the
time reversal reconstruction using signals from an arc-shaped
detector with 2α ¼ 45 deg in Cartesian (center) and polar
(right) coordinates.

While in Cartesian coordinates, pixels are coupled in a very
intricate way by the spin, in polar coordinates, the blurring is
constant in φ and independent of r (Fig. 4, right) and the prob-
lem simplifies considerably, with pixels at a given radius
decoupled from all other pixels. We convert the n × n image,
which is a discrete representation of pα

0ðrÞ, given in Cartesian
pixels, to a polar coordinate image Ypol, using spline interpola-
tion to obtain pixel values at ½n∕2� values of r and 2n values of φ.
Each column of Ypol corresponds to a particular radius, and
therefore, the blur of pixels in that column is independent of
pixels in every other column. Thus, we have ½n∕2� independent
blurring problems, each of size 2n and all involving the same
blurring kernel.

Let us, for the moment, omit the radial variable and write
yðφÞ for the blurred initial pressure pα

0ðr;φÞ and x0ðφÞ for
the desired unblurred version p0ðr;φÞ. We then face the prob-
lem of estimating the signal φ ↦ x0ðφÞ from the data

yðφÞ ¼ ðx0 � kαÞðφÞ þ nðφÞ for φ ∈ ½0; 2π�:
Here nð·Þ is the deterministic or stochastic noise and kαð·Þ is

the blurring kernel. The blurred initial pressure is itself the result
of a reconstruction algorithm, such as time reversal, and there-
fore, the noise will be nonstationary and correlated even if the
noise in the original data is white and Gaussian.

Deconvolution is a typical inverse problem, where the exact
solution may either not exist or the noise is severely amplified.
In order to make the reconstruction process well-posed, regu-
larization techniques have to be applied, where approximate
solutions are constructed that are stable with respect to data
perturbations. The most common technique for solving a linear
inverse problem is Tikhonov regularization. There an estimate
for the unknown is defined as the unique minimizer of the
Tikhonov functional

x ↦ kx � kα − yk2 þ λkxk2:
The minimizer of the strictly convex Tikhonov functional

can be found by setting its gradient to zero. Recalling that
the convolution operation is diagonalized by the Fourier trans-
form, the unique minimizer of the Tikhonov functional is given
by x ¼ y � gα, where the filter gα has the Fourier representation

F½gα�ðωÞ ¼
F½kα�ðωÞ

jF½kα�ðωÞj2 þ λ
:

Here F½h�ðωÞ ¼ ∫ 0

2π

hðφÞ expð−iωφÞdφ is the Fourier trans-
form of some function h and the bar indicates complex conju-
gation. For signal and image deconvolution with additive
random noise, this estimator is also known as Wiener deconvo-
lution. The angular extent of the blurring kernel is given by
2α ¼ 2 arctanðw∕2rSÞ, where w is the detector width and rS
is the radius of the detection circle (Fig. 5). In the context of
angular spin deblurring, Wiener deconvolution works best
when combined with reconstruction algorithms that already
use polar coordinates, such as the Fourier domain algorithms
derived in Refs. 18 and 19. However, it may also be applied
separately on images reconstructed by any other algorithm.

For our numerical implementation, we use a slightly different
formulation:20,21 the ½n∕2� blurring problems are written in dis-
cretized form as Kxpol ≅ ypol, where ypol is one column of Ypol.
The blur matrix K is a 2n × 2n circulant band matrix with
band size proportional to the blurring angle and has an SVD

Fig. 5 Schematic of curved detector versus flat detector.
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K ¼ UΣVT, where U and V are orthogonal matrices and Σ is
diagonal. We again define regularized solutions as minimizers
on R2n of the Tikhonov function x ↦ kKx − ypolk2 þ λkxk2.
Using the SVD of the matrix K, the minimizer of the
Tikhonov function is given by

xpol ¼ ðKTKþ λIÞ−1KTypol ¼ VðΣ2 þ λIÞ−1ΣUTypol:

Since any circulant N × N matrix has complex eigenvectors

vm ¼
�
1; exp

�
2πim

N

�
; · · · ; exp

�
2πimðN − 1Þ

N

��

for m ¼ 0; : : : ; N − 1;

the SVD in this case essentially amounts to a discrete Fourier
transform. A small difference to Wiener deconvolution as
described above is that here discretization to a finite vector is
done before Tikhonov regularization. In the context of general
least squares problems, the first approach is often referred to
as “solving the normal equations by eigen-decomposition” as
opposed to “solving via SVD.”22 The matrix formulation is
also convenient to apply the standard generalized cross-valida-
tion (GCV) algorithm23 to determine an optimal regularization
parameter λ for each image and to diminish the influence of
noise. The columns xpol give us a matrix Xpol, which we trans-
form back to Cartesian pixels X, again using spline interpola-
tion. Pixels in X outside the circular domain are set to zero.
The image X is then a discrete approximation of the unblurred
initial pressure p0ðx; yÞ in Cartesian coordinates. We note that
with minor modifications, the squared l2-norm kxk2 in the
Tikhonov functional can be replaced by the squared l2-norm
of a solution derivative. However, replacing kxk2 by a nonqua-
dratic penalty makes the minimization of the resulting Tikhonov
functional more difficult.

In Ref. 24, Hansen described such a variant of TSVD that
seeks to regularize with the l1-norm of a solution derivative
(in our case, the first derivative) instead of regularizing with
the l2-norm of the solution. Recall that the l1-norm of a vector
is defined by the sum of the absolute values of all components.
The l1-norm regularization produces a vector of delta functions
(sparse spike train) for the first derivative, and therefore, the sol-
utions will be piecewise constant functions with at most k dis-
continuities, where k is the truncation index in the TSVD. If
higher solution derivatives are used for regularization, piecewise
polynomial solutions are obtained, hence the name PP-TSVD.
Obviously, this deblurring method will work best for images that
are themselves better described by piecewise constant functions
(having sharp edges) than by smooth functions. The method was
reported in the context of photoacoustic imaging with planar
detection geometry in Ref. 6, where it was demonstrated on
a phantom of two cylinders of constant optical absorbance.
In Ref. 7, it is mentioned that it could also be transferred to
a cylindrical detection geometry.

In Ref. 25, Hansen discusses PP-TSVD for deconvolution of
2-D images in the case of a separable 2-D convolution kernel. In
our case, the kernel (when expressed in polar coordinates) is not
only separable, but also independent of r, so that the radial part
after discretization involves only the identity matrix. The exten-
sion to 2-D as described by Hansen (using the Kronecker
product of the two kernel factor matrices), in this case, reads
as follows: apply the deconvolution method using the same
blurring matrix K as for Wiener deblurring; for each column

representing a fixed radius, execute a one-dimensional PP-
TSVD, where the algorithm is taken from Ref. 26. The optimal
choice of the regularization parameter k was not considered in
Ref. 25. In the section on reconstructions from computer-simu-
lated data, we will determine an optimal k empirically by com-
paring reconstruction quality for a sample image and a series of
k-values.

2.3 Approximation of a Curved Detector by
a Flat Detector

For the measurements described in Sec. 4.1, a 3 × 25-mm
PVDF-foil detector was used, which is a good approximation
of an extended integrating line detector (Fig. 3). However,
this detector is not curved but flat. In this section, we investigate
the difference between curved and flat aperture analytically.

Omitting the z-coordinate, the pressure data from the experi-
ment are integrated over a line of length w tangent to a detection
circle of radius rS (Fig. 5). Denoting by l ¼ lðα 0Þ ¼ rS tanðα 0Þ
the distance of a point on the line segment from its center, using
a first-order Taylor approximation of pðr;φ; tÞ in the radial
variable (around the center r ¼ rS), and applying the approxi-
mation

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tan ðα 0Þ2

p
¼ 1þ ½ðα 02Þ∕2� þOðα 04Þ for small α 0,

we obtain

Zw∕2

−w∕2

pðr;φ; tÞdl¼
Zα

−α

p½rS
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tan ðα 0Þ2

q
;φ0 þ α 0; t�

× ½1þ tan ðα 0Þ2�rSdα 0

¼
Zα

−α

pðrS;φ0 þ α 0; tÞrSdα 0

þ
Zα

−α

pðrS;φ0 þ α 0; tÞα 02rSdα 0

þ
Zα

−α

∂p
∂r

ðrS;φ0 þ α 0; tÞα
02

2
r2Sdα

0 þOðα4Þ:

This implies that the difference

Zw∕2

−w∕2

pðr;φ; tÞdl −
Zα

−α

pðrS;φ0 þ α 0; tÞrSdα 0;

between the pressure integrals over curved detector and flat
detector is of order Oðα3Þ. As a consequence, the measured
signals for curved and flat detector shapes agree up to second
order in α. Hence, for small apertures 2α (in our experiment,
2α ¼ 10.7 deg), the measured signals will differ little for the
two detector types and, therefore, also the blurred reconstruc-
tions (which follows, for example, from the stability of the
time reversal algorithm).

However, if the aperture gets larger (>20 deg), a blur that
was of constant width in the radial coordinate will split up at
both ends for the flat detector. In fact, the ends look like a
pair of tongs grasping two balls with radii proportional to the
largest deviation of the flat detector from the detection circle
[Fig. 6(b)].
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3 Computer-Simulation Studies
For testing the two deconvolution methods described in the pre-
vious section, we use a phantom similar to the four-point phan-
tom shown in Fig. 4. The points are refined in their structure
and described by spatial profiles that are either hollow cylinders
(HC) or Gaussians (G). The HC profile type was slightly
smoothed by convolving with a box function to make it look
more realistic and to make it more interesting for PP-TSVD.
We want to examine reconstruction quality in dependence of
source distance from center and of detector aperture. Quality
will be assessed by visual inspection of 2-D profiles; after visual
inspection, it will become apparent which quantitative measures
are additionally useful.

In all numerical studies, the solution of the 2-D wave
equation has been computed by numerically solving the wave
equation. The image reconstruction (prior to deconvolution) has
been performed by time reversal. The computational domain
for the simulations is 2 × 2 mm, the detection circle radius
rS ¼ 0.8 mm, and the spatial grid size Δx is 2∕500 mm for
the forward computation and 2∕441 mm for time-reversed com-
putation. Also, the timestep size Δt as well as the ending and
starting times T0 in the forward and time-reversed computa-
tions are chosen somewhat different to avoid an inverse crime.
Both the forward computations (using pðk; nΔtÞ ¼ pðk; 0Þ ·
cosðcknΔtÞ, Δt ¼ 1.33 ns, sound speed c ¼ 1500 m∕s) and
the time-reversed computations [using Eq. (1) and Δt ¼
1.68 ns] are performed in k-space. Pressure signals are recorded
at 720 equidistant points around the detection circle. A curved
integrating detector of aperture 2α degrees is simulated by sum-
ming the recorded signals of consecutive measurement points
lying within the designated aperture and dividing by the number
of these points (in order to make signal sizes comparable to the
point detector case, although physically a summation and not

an averaging is done). The detector aperture 2α (in degrees) is
chosen in a way that 2α∕360 · 720 ¼ 4α is an integer, which
is the case for selecting 2α ¼ 10 deg or 2α ¼ 20 deg. After
image reconstruction, we present profiles through the center of
a point object of the phantom. These profiles are drawn over
abscissas representing a pixel sequence in either the radial or
tangential direction. Note that the profiles in the radial and tan-
gential direction are equal for the initial pressure, but will be
different for the reconstructions. For demonstrating the effect
of source distance from center, we display the profiles for the
first and the fourth point on the spiral (counted from center).
The effect of detector aperture is shown by displaying the results
for 2α ¼ 10 deg and 2α ¼ 20 deg. In summary, our tests with
simulated data include 32 simulations (two choices for methods,
points, profiles, apertures, and directions).

At this point, we want to determine an optimal parameter k
for PP-TSVD deconvolution. The effect of k on deconvolution is
examined using k ¼ 80, k ¼ 200 k ¼ n ¼ 442 (the recon-
structed image is n × n pixles), and k ¼ 850. In Fig. 7, a
close-up of the third and fourth point reconstructions for the
HC profile is provided. For the annular xy-profiles of the HC
sources, the reconstruction quality is distinctly better along
a cross-section in radial direction than along a cross-section in
tangential direction. This feature can be observed in all deblurred
reconstructions, including those using Wiener deconvolution.
However, with PP-TSVD the shape of the reconstruction is
more sharp-edged for k ¼ 80, and is smoother for the higher-k
reconstructions. On the other hand, computing time increases
about linearly with k (ranging from 30 min for k ¼ 80 to >3 h

for k ¼ 850); moreover, the background noise level increases
somewhat with k, becoming intolerable when k approaches
2n. Inspecting Fig. 7, we decided to use k ¼ n ¼ 442 in our
simulations. In any case, choosing k ¼ n, i.e., truncating at half
matrix size, seems to be reasonable for the other images as well in
our scenario if no additional noise is added.

For the visual inspection, we display the results on four
4-subplot figures. Each four-subplot figure shows four curves
corresponding to initial pressure (solid), reconstruction without
deconvolution (dash-dotted), reconstruction after Wiener decon-
volution (dashed), and reconstruction deconvolved with PP-
TSVD (dotted). The four subplots in each figure show the
profiles through the two chosen points in the two directions.
The amplitude range for display is always [−0.1 1.1], assuming
that the initial pressure is normalized to [0,1]. The following
general observations pertain to reconstructed amplitudes: with
point detectors, our algorithm returns amplitude values in the
range [−0.12, 0.90] for our phantoms. The values returned
with the integrating (here averaging) detectors lie in the range
[−0.08, 0.78] because they are smeared over a larger area.

Fig. 6 Reconstruction of a ball of 1-mm diameter located 12 mm from
detection center (r S ¼ 16 mm) from a flat strip detector with aperture
20 deg (a) and 40 deg (b). The bold white bar indicates a flat detector
that is tangent to the detection circle (dashed white). In both cases, we
applied a reconstruction algorithm that is theoretically exact for point-
like data.

Fig. 7 Comparison of reconstructions for third and fourth point [hollow cylinders (HC) profile] for varying
piecewise polynomial truncated singular value decomposition (PP-TSVD) regularization parameter:
(a) k ¼ 80, (b) k ¼ 200, (c) k ¼ 442, and (d) k ¼ 850.
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Deconvolution provides partial amplitude compensation: values
lie in the range [−0.13, 0.83]. Note that these numbers apply
only to the point closest to the center that is reconstructed
best; for the other three points, the amplitude degradation is
even higher.

The inspection of Figs. 8 and 9 yields two surprising insights:
both the deconvolution method and the detector aperture hardly
have any influence on the deblurred results. There is some
amplitude decrease between the first and fourth point as men-
tioned before, and the difference of reconstruction quality in
radial and tangential directions is very pronounced and affects
both amplitude and full width at half maximum (FWHM) of the
profiles. A distinctive feature is also the much stronger smooth-
ing of the hollow interior of the HC profile for the fourth point,
compared to the first point. In Figs. 10 and 11, the same sim-
ulations were performed for Gaussian (G) initial profiles. The
two insights gained with the HC profiles are confirmed once
more: there is virtually no difference among (deblurred) results
for the two deconvolution methods and two detector apertures.
The amplitude decrease from first point to fourth point is as
expected and the difference between radial and tangential pro-
files is again pronounced, but here it mainly affects the width of
the Gaussian profile.

As a quantitative measure we list in Table 1 the FWHM of all
the Gaussian-like profiles in Figs. 10 and 11. The measures are
given in pixel units Δx (spatial step size of the time-reversed
grid). Linear interpolation was done between the integer pixel
grid, so that accuracy is �0.05Δx. As can already be seen
from visual inspection, the deconvolved reconstruction signifi-
cantly improves resolution compared to the blurred image in
terms of reducing the FWHM in φ-direction of isolated objects.
However, there are other aspects of degraded image quality,
such as the filling up of holes, which can be seen in Figs. 8(c),
8(d), 9(c), and 9(d), that cannot be avoided even with deconvo-
lution and that are strongly dependent on source distance from
center.

An explanation of the similarity between PP-TSVD and
Wiener deconvolution is that the high number (442) of possible
discontinuities produces quasi-smooth solutions in the PP-
TSVD case also (note that our plots show only 27 or 33 pixel
values) so that the different regularizers produce very similar
results. The constancy in results for varying aperture could
be confirmed for much higher apertures also. The noticeable
amplitude degradation for an increased distance of the source
from the center may result from the fact that a uniform grid spac-
ing in polar coordinates transforms to a grid spacing in Cartesian

Fig. 8 Detector aperture 2α ¼ 10 deg: four subplots, each showing profiles of initial pressure HC (blue,
solid), reconstruction before deblurring (green, dash-dot), reconstruction after Wiener deblurring (red,
dashed), and reconstruction after PP-TSVD deblurring (black, dotted), all for first point r -direction (a),
first point φ-direction (b), fourth point r -direction (c), and fourth point φ-direction (d).

Fig. 9 Detector aperture 2α ¼ 20 deg: four subplots, each showing profiles of initial pressure HC (blue,
solid), reconstruction before deblurring (green, dash-dot), reconstruction after Wiener deblurring (red,
dashed), and reconstruction after PP-TSVD deblurring (black, dotted), all for first point r -direction (a),
first point φ-direction (b), fourth point r -direction (c), and fourth point φ-direction (d).
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coordinates that decreases in density with distance from center.
Since our algorithms work separately on each radius, using
a denser angular grid for large radii might reduce this effect.
Such an investigation is beyond the scope of our present work.

Computation time for Wiener deblurring is 1 s; for PP-TSVD
deblurring with an appropriate k, it is at least an hour if the code
pptsvd.m from Ref. 26 is used. The documentation for this algo-
rithm (see Ref. 25, Sec. 5) reveals that it was written especially
for large-sized problems. For our small-sized problems, the fol-
lowing measures would make the algorithm faster: (1) instead of
MATLAB® function svds, use svd to perform SVD; (2) opti-
mize the function l1c to solve a discrete l1 linear optimization.
We estimate that with these measures, the algorithm for 442 ×
442 pixel reconstruction in this section and for 251 × 251 pixel

reconstruction in Sec. 4.2 could be made as fast as a few sec-
onds. Still, the Wiener deconvolution is faster and provides
the same image quality.

So we can currently recommend the Wiener deblurring for
problems of the type presented in this work. It must be stressed,
however, that image-specific regularization parameter optimiza-
tion via GCVor a similar algorithm is essential for this excellent
quality of Wiener deblurring. With these provisions, we were
not able to observe any instabilities or oscillations as was
reported for planar geometry in Ref. 6. Further numerical studies
shown below demonstrate that these conclusions are also valid
in the case of noisy data.

It is well known that the performance of deblurring algo-
rithms often strongly depends on the noise statistics in the
data. For our algorithms, we investigated this issue numerically
by adding Gaussian white noise to the numerically computed
solution of the 2-D wave equation and applying time reversal
to the noisy data. The results of Wiener deblurring and
the PP-TSVD deblurring algorithm on the intermediate images
are shown in Fig. 12. For Wiener deconvolution, the regulari-
zation parameter has again been computed in a data-driven
way by applying the GCV algorithm. Note that the regulariza-
tion parameter computed by GCV increases with increasing
noise level. The result is λ ¼ 9.2 × 10−4 for the simulated data
without noise, λ ¼ 2.5 × 10−3 for 3% noise, and λ ¼ 2.7 × 10−3

for 10% noise. Such a behavior is expected for an ill-conditioned
problem since the regularization parameter acts as trade-off
between accuracy for exact data and stability with respect to
noise. For the PP-TSVD algorithm, the parameter 1∕k acts as
regularization parameter, and therefore, k should be chosen
smaller for higher noise levels. Optimal values for k depending
on the noise level have been found empirically by performing
similar experiments as in the case of noise-free data. For the
result shown in Fig. 12, we found k ¼ 300 to be optimal for
3% noise and k ¼ 120 for 10% noise.

It can be seen that both deblurring algorithms still provide
a comparable image quality. Since time reversal is a linear algo-
rithm, the noise in the blurred intermediate images is still

Fig. 10 Detector aperture 2α ¼ 10 deg: four subplots, each showing profiles of Gaussian initial pressure
(blue, solid), reconstruction before deblurring (green, dash-dot), reconstruction after Wiener deblurring
(red, dashed), and reconstruction after PP-TSVD deblurring (black, dotted), all for first point r -direction
(a), first point φ-direction (b), fourth point r -direction (c), and fourth point φ-direction (d).

Fig. 11 Detector aperture 2α ¼ 20 deg: four subplots, each showing profiles of Gaussian initial pressure
(blue, solid), reconstruction before deblurring (green, dash-dot), reconstruction after Wiener deblurring
(red, dashed), and reconstruction after PP-TSVD deblurring (black, dotted), all for first point r-direction
(a), first point φ-direction (b), fourth point r-direction (c), and fourth point φ-direction (d).
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Gaussian but neither uncorrelated nor stationary. However,
because of the rotational invariance of the image reconstruction
problem, the noise is stationary in the angular direction (i.e.,
long the angular direction, the variance of the noise is constant
and the correlation depends only on angular spacing). This may
be exploited to further improve the performance of the Wiener
deconvolution algorithm. A precise analysis of the noise statis-
tics, however, is beyond the scope of this paper.

4 Experimental Results

4.1 Experimental Setup

Top and front views of the measurement setup are shown in
Fig. 13. A homemade piezoelectric ultrasound detector was
used to record the acoustic signals. The detector was made
of a strip of PVDF-foil with a thickness of 28 μm, with electro-
des deposited on either side attached on a polymer substrate

(backing material). The width w and the length L of the stripe
(sensitive area) were 3 and 25 mm, respectively. The signals
were recorded by connecting the detector with an active probe
to the digital storage oscilloscope. To improve the SNR, the sig-
nals were recorded with bandwidth limitation (dc up to 20 MHz)
by the oscilloscope. This is the only limitation to the bandwidth
of the ultrasonic transducer.

The cylindrical phantom sample (D ¼ 20 mm) was made of
plastisol with six channels oriented along z-direction, distributed
along a spiral curve in the cross-section area (see top view in
Fig. 13). The sound speed of plastisol is ∼1400 m∕s; further
acoustic properties can be found in Ref. 27. The channels,
each with a diameter of 1 mm, were filled with a light-absorbing
dye solution (OrangeG, absorption coefficient ∼100 cm−1).

For photoacoustic excitation, the sample was illuminated by
10-ns laser pulses from a frequency-doubled, Q-switched Nd:
YAG laser with a repetition rate of 10 Hz. The output beam
had a wavelength of 532 nm and was split into two beams to
illuminate the sample from two opposite sides parallel to the
y-direction. Furthermore, the beams were focused with cylindri-
cal lenses to narrow the extension of the illumination along
z-direction (∼1.5 mm), forming a line-shaped illumination
pattern on the surface of the sample (see front view in Fig. 13).
The rotation axis of the sample was positioned at a normal dis-
tance rS ¼ 16 mm to the detector and was oriented parallel to
the z-direction. The z-position of the line-shaped illumination
was fixed to the height of the center of the z-extension of
the detector. Signals were acquired while rotating the sample
over five full rotations with an angular increment of 0.9 deg.
The five times averaged temporal signals are shown for the
400 orientations over 360 deg in Fig. 14. The dye solution in
the holes is strongly absorbing, so the absorbed energy density
decreases rapidly inside the holes. This can already be seen from
the sinogram in Fig. 14 (signals are generated only near the
boundaries of the absorbers), but more clearly in the recon-
structed images in Sec. 4.2.

4.2 Reconstruction and Deblurring Results

The sinogram in Fig. 14 shows data measured over 400
equidistant angular positions using a sampling interval of

Table 1 Full width at half maximum (FWHM) in pixel units of the pro-
files displayed in Figs. 10 and 11.

FWHM in pixels

Fig. (a)
P1 - r

Fig. (b)
P1 - φ

Fig. (c)
P4 - r

Fig. (d)
P4 - φ

2α ¼ 10 deg, initial 11.45 11.45 11.45 11.45

2α ¼ 10 deg, blurred 10.60 14.20 11.75 19.10

2α ¼ 10 deg, Wiener 10.50 13.20 11.80 15.50

2α ¼ 10 deg, PP-TSVD 10.50 13.20 11.40 15.50

2α ¼ 20 deg., initial 11.45 11.45 11.45 11.45

2α ¼ 20 deg., blurred 11.05 18.30 11.60 >40

2α ¼ 20 deg, Wiener 10.55 12.50 12.00 16.25

2α ¼ 20 deg, PP-TSVD 10.55 12.50 11.65 15.75

Note: PP-TSVD, piecewise polynomial truncated singular value
decomposition.

Fig. 12 Reconstruction results using detector aperture 2α ¼ 10 deg after adding 3 and 10% Gaussian
white noise, respectively, to the solution of the 2-D wave equation. (Here by p% noise we mean that the
standard deviation of the added random variable is p% of the maximal data value.) The regularization
parameters for the Wiener deconvolution (red, dashed) have been determined by the generalized cross-
validation. For PP-TSVD deblurring (black, dotted), we have taken k ¼ 300 in the case of 3% noise and
k ¼ 120 in the case of 10% noise, compared to k ¼ 442 (half dimension of the matrix) without noise in
Figs. 10(c) and 10(d).
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Δt ¼ 10 ns. Note that the y axis displays r ¼ ct (time multi-
plied by sound speed in water). Beginning at r0 ¼ 7 mm,
1210 samples were recorded, ending at ∼r1 ¼ 25 mm. The
computational domain was 33.6 × 33.6 mm, and the spatial
grid size was 33.6∕400 mm. A 2-D time-reversal reconstruction
was performed using Eq. (1). The acoustic properties of the plas-
tisol27 were considered to be similar enough to those of water
so that the two media were not modeled separately.

For closer inspection of the reconstructed sources, which are
located in the inner half of the detection area (rS ¼ 16 mm),
only the inner 251 × 251 pixel square was cut out of the original
401 × 401 pixel reconstructed image; then the deblurring algo-
rithms were applied to this inner square. Computation time is
0.5 s for Wiener deconvolution and ∼10 min for PP-TSVD
deconvolution with pptsvd.m. The choice for the regularization
parameter k ¼ n is also a reasonable one here.

In Figs. 15 and 16, we see cross-sections through the centers
of the six holes in the plastisol phantom in the radial and tan-
gential directions, respectively. Again, the similarity between
the results from the two deblurring methods is remarkable,

although there are more differences from the simulated data
(see fifth hole in Fig. 15, for instance). Amplitude compensation
by deblurring is somewhat better in the radial direction than
in the tangential direction, whereas FWHM compensation
and, thus, resolution is similar for the two directions. In the
reconstructions from our experimental data, we observe some
unusually large negative pixel values. Reasons that this
occurs may be as follows: modeling the plastisol medium the
same as water, modeling the temporal impulse response of
the piezoelectric detector as a delta function, disturbances or
feedback during electronic acquisition. However, looking at
the 2-D reconstructed images (Fig. 17, where negative pixel
values were set to zero), we conclude that these imperfections
do not seriously affect the overall quality of the information
about the optical absorbance of the dye solution in the holes.
The reconstructions show that most of the absorption
occurs near the boundaries of the holes, which is in agreement
with the absorption properties of Orange G given in Sec. 4.1
and with the images of the original phantom drawn in
Fig. 13.

Fig. 13 Top and front view of the experimental setup.

Fig. 14 Measured pressure signals (sinogram) as a function of the rotation angle (x axis) and the time;
on the y axis, the time has been multiplied by the sound speed in water (c ¼ 1500 m∕s). Already in
the sinogram it can be seen that the laser light is strongly absorbed by the dye solution in the holes.
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5 Conclusion
The mathematical model of photoacoustic wave propagation is
the 3-D linear wave equation. If line detectors are used that
extend to infinity in one direction (or are at least sufficiently
long), the reconstruction process typically involves the inversion
of a 2-D wave equation for the pressure projections onto the
remaining dimensions, followed by a 2-D inverse Radon trans-
form. Considering only the first problem, we are confronted

with a cylindrical geometry. Then the ideal 2-D model still is
an abstraction from reality if (piezoelectric) detectors have size-
able extent in angular coordinates.

If the detector size is increased from an (idealized) line detec-
tor to a finite width, the resolution starts to deteriorate in parts of
the image. Xu and Wang have first quantified this effect of the
detector size on the spatial resolution in Ref. 28. Haltmeier and
Zangerl have explained these effects as a consequence of the

Fig. 15 Slices through the six reconstructed holes in ðr ; zÞ-direction with hole distance from center
increasing from left to right: before deblurring (blue, solid), after Wiener deblurring (red, dashed), and
after PP-TSVD deblurring (black, dotted).

Fig. 16 Slices through the six reconstructed holes in ðφ; zÞ-direction with hole distance from center
increasing from left to right: before deblurring (blue, solid), after Wiener deblurring (red, dashed), and
after PP-TSVD deblurring (black, dotted).

Fig. 17 Reconstructed xy -profiles of the entire six-hole phantom: before deblurring (left), after Wiener
deblurring (center), and after PP-TSVD deblurring (right).
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rotational and translational invariance of the wave equation.14

They have described the effect of the finite detector size in
terms of a blurring kernel that has to be convolved with the
image obtained from point or line detectors. This suggests
the use of deconvolution methods to reverse the effect.

We have demonstrated with computer simulations and with
an example on experimental data that both the Wiener and the
PP-TSVD deconvolution methods yield an excellent compensa-
tion of the blurring. The computational cost of Wiener deblur-
ring is very small (<1 s); the cost for PP-TSVD deblurring is
significantly larger, but still in the range of a few seconds
(assuming image sizes of a few hundred pixels squared). So
there is every reason to apply Wiener deblurring, together with
appropriate optimization of the regularization parameter, for any
blurring kernel that is explicitly known. We did not observe any
of the problems with Wiener deblurring that were reported in
Ref. 6. If a 3-D object is to be imaged, this deconvolution
can be applied at the first step that involves the inversion of
the 2-D wave equation. After correction of the 2-D projections,
the final step using the inverse Radon transform can be applied
as usual for obtaining a full 3-D image.

Matrix-model based reconstruction algorithms8,9 (or Refs. 29
and 30, using a different model) have the capability to incorpo-
rate arbitrary detector shapes and spatial impulse responses into
the imaging model and, thus, into the reconstruction algorithm
itself. However, such approaches require solving optimization
algorithms working iteratively with very large-sized matrices
and entail high computational effort. The conclusion of Ref. 9
states that “current implementations of (3-D) iterative image
reconstruction algorithms still require several days to process
a densely sampled data set.” In Ref. 29, we read “the run
time for constructing and inverting the (2-D) model matrix
for a 81 × 81 grid was approximately one hour.” While this
cannot be avoided for more complicated ultrasonic transducer
shapes, we demonstrated that effective reduction of imaging
artifacts in 2-D caused by the finite size of some regular-shaped
detectors is possible in the framework of traditional recon-
struction algorithms (like time-reversal or filtered backpro-
jection) and takes only a fraction of the time needed with
matrix-model algorithms.

Appendix: Derivation of the Blurring Kernel
Let pðr;φ; tÞ denote acoustic pressure expressed in polar coor-
dinates, which is the unique solution of the two-dimensional
wave equation ∂2∕∂t2pðr;φ; tÞ ¼ c2Δpðr;φ; tÞ, with initial
conditions pðr;φ; 0Þ ¼ p0ðr;φÞ and ∂∕∂tpðr;φ; 0Þ ¼ 0. If we
know all pointwise values pðrS;φ; tÞ on a detection circle of
radius rS, then we can uniquely recover the initial pressure
p0ðr;φÞ by either time reversal, Fourier domain algorithms,
or filtered backprojection algorithms. Suppose now that we

observe integrated values pαðrS;φ; tÞ ¼ ∫ −α

α

pðrS;φþ α 0; tÞ
kαðα 0Þdα 0 of the pressure over a finite angular region, with
kαðα 0Þ denoting some angular function. Any reconstruction
method R0 that is exact for data pðrS;φ; tÞ will result in blurred
reconstruction when applied to the data pαðrS;φ; tÞ. In this
appendix, we show that R0½pα�ðr; αÞ ¼ pα

0ðr; αÞ with

pα
0ðr; αÞ ≔

Z
−α

α

p0ðr;φþ α 0Þkαðα 0Þdα 0:

In fact, this identity is an easy consequence of the rotational
invariance of the wave equation. To see this, one considers the
function ðr;φ; tÞ ↦ pαðr;φ; tÞ ¼ ∫ −α

α

pðr;φþ α 0; tÞkαðα 0Þdα 0.
Then the rotational invariance and the linearity of the wave
equation imply that pαðr;φ; tÞ satisfies the wave equation
∂2∕∂t2pαðr;φ;tÞ¼c2Δpαðr;φ;tÞ. Further, we have pαðr;φ;0Þ ¼
pα
0ðr;αÞ and ∂∕∂tpαðr;φ; 0Þ ¼ 0. So the data pαðrS;φ; tÞ is

the same as the signal that would be measured from the initial
pressure pα

0ðr; αÞ. Hence, as claimed, application of any
reconstruction method R0 to the data pαðrS;φ; tÞ yields
R0½pα�ðr; αÞ ¼ pα

0ðr; αÞ.
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