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Abstract. Accurate classification of malignant cells from benign ones can significantly enhance cancer diag-
nosis and prognosis by detection of circulating tumor cells (CTCs). We have investigated two approaches of
quantitative morphology and polarization diffraction imaging on two prostate cell types to evaluate their feasibility
as single-cell assay methods toward CTC detection after cell enrichment. The two cell types have been mea-
sured by a confocal imaging method to obtain their three-dimensional morphology parameters and by a polari-
zation diffraction imaging flow cytometry (p-DIFC) method to obtain image texture parameters. The support
vector machine algorithm was applied to examine the accuracy of cell classification with the morphology
and diffraction image parameters. Despite larger mean values of cell and nuclear sizes of the cancerous prostate
cells than the normal ones, it has been shown that the morphologic parameters cannot serve as effective clas-
sifiers. In contrast, accurate classification of the two prostate cell types can be achieved with high classification
accuracies on measured data acquired separately in three measurements. These results provide strong evi-
dence that the p-DIFC method has the potential to yield morphology-related “fingerprints” for accurate and
label-free classification of the two prostate cell types. © 2015 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI:

10.1117/1.JBO.21.7.071102]
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1 Introduction
Prostate cancer is the most frequent nonskin cancer among men
in the United States and European countries. Active research has
been pursued to develop new surveillance methods with
improved sensitivity and specificity over existing ones such
as the prostate-specific antigen (PSA) test for accurate diagnosis
and effective treatment in clinics.1 Among various approaches,
detection and enumeration of circulating tumor cells (CTCs) in
peripheral blood samples after enrichment present promising
potentials by providing CTC number as the surveillance bio-
marker and prognosis predictor in prostate cancer patients.2,3

Awidely used CellSearch technique approved by the U.S. Food
and Drug Administration employs an approach of immunomag-
netic enrichment before CTC enumeration through immuno-
fluorescence microscopy.2,3 Other methods have been reported
for sample enrichment with microposts or nanosheets coated
with EpCAM antibodies on the microfluid technology platform
and CTC capture by imaging.4 The immuno-based methods to
select cells with EpCAM expression, however, may fail due to
the variation of the targeted expression. It has been shown that
downregulation of EpCAM can occur in CTCs captured from
the blood of prostate cancer patients as a result of epithelial-mes-
enchymal transitions, which could account for the inconsistency
between the small number of CTCs in patients with a confirmed
diagnosis of prostate cancer.5,6 This leads to the desire for

exploration of label-free approaches to analyze and classify dif-
ferent types of prostate cells. The first step in this direction is to
examine the feasibility of any new method, which may prepare
ground to develop practical approaches for detection of CTCs in
enriched samples since the numbers of CTCs are extremely
small in fresh blood samples. In this report, we present a fea-
sibility study of prostate cell classification through diffraction
imaging in comparison to the confocal imaging based three-
dimensional (3-D) morphology characterization.

Light elastically scattered by single cells illuminated with a
laser beam remains highly coherent as well and its spatial dis-
tribution patterns correlate with the 3-D distribution of intracel-
lular refractive index relative to the host medium. Therefore,
investigation of light scattering and its spatial distribution pat-
terns provides a route to rapidly acquire information on the 3-D
morphology of the scatterer and molecular polarization.7–12 A
method of polarization diffraction imaging flow cytometry
(p-DIFC) has been developed to image coherent light scattered
by single particles or cells using a microscope objective at off-
focus positions to increase image contrast and adjust the angular
cone of detection.13–16 With this method, cells of high similarity
in their morphology can be distinguished by the texture param-
eters of the cross-polarized diffraction images extracted with
automated algorithms.17–19 We have also employed a confocal
microscopy based method to quantify 3-D morphology of
cells.14,18,20 An algorithm of a support vector machine (SVM)
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has been applied to map the selected parameters into a high-
dimensional feature space for classifying the two cell types
with the parameters acquired by the p-DIFC method. The results
of classification are presented here with two types of human
prostate cells by acquisition of a 3-D parameter with the con-
focal imaging method and cross-polarized diffraction image
parameters with the p-DIFC method. We conclude with a dis-
cussion on the dependence of the cross-polarized diffraction
image parameters on 3-D morphology and molecular polariza-
tion to understand these initial results and their implications for
potential application on CTC detection.

2 Materials and Methods

2.1 Microscopy Measurement and Three-
Dimensional Reconstruction

We have investigated two prostate cell types that are denoted in
this report as PC3 for the cancer cell line and PCS for the normal
one. A PC3 human prostate cancer cell line of high metastatic
potential (CRL-1435, ATCC) was maintained in RPMI-1640
(Gibco BRL, Life Technologies) supplemented with 10%
fetal calf serum. The culture media were supplemented with
penicillin 100 U∕ml, streptomycin 100 μg∕ml, and glutamine
0.1 mg∕ml. The normal human prostate epithelial cells
(PCS440010, ATCC) were maintained in the prostate epithelial
cell basal medium (PCS440030, ATCC) supplemented with the
prostate epithelial cell growth kit (PCS440040, ATCC). The
adherent cells in their logarithmic phases of growth were
detached from culture plates with trypsin–EDTA solution, resus-
pended in culture medium, and kept on ice before the confocal
and p-DIFC measurements. Viability of the suspended cells was
checked by a trypan blue exclusion test before measurement and
percentages of viable cells were found to be ∼95%. The con-
centrations of the cell suspension samples were adjusted to a
value of about 1 × 106 cells∕mL for p-DIFC measurement.

For confocal imaging, the cells were first double-stained for
nucleus and mitochondria with fluorescent dyes (Syto-61 and
Mitotracker-Orange, Life Technologies) with protocol detailed
in Zhang et al.20 A laser scanning confocal microscope (LSM
510, Zeiss) was used to acquire image stacks with a 63×
water-immersion objective of 1.2 in NA and a 4× digital
zoom option provided by the Zeiss image acquisition software
to reduce pixel size to 0.07 μm. The number of two-dimensional
(2-D) fluorescence image slices in each stack ranges from about
40 to about 70 with 0.5 μm in the translation step in air along the
direction perpendicular to the slices. The acquired confocal
image slices in a stack were segmented using an in-house devel-
oped software.10,14,20 The segmented slices were then used to
add image slices through interpolation to make final slice sep-
aration, after correction due to light refraction, approximately
the same as the pixel size of the image slices to obtain cubic
voxels for 3-D reconstruction. The details of the image segmen-
tation and reconstruction have been provided elsewhere.20 A
total of 29 voxel-based parameters were calculated to quantify
the morphology of the different organelles of cytoplasm,
nucleus, and mitochondria in reconstructed cells. We used
the SPSS software (Version 19, IBM) to perform the two-sample
t-tests of the morphology parameters and assess the statistical
significance of the differences in the 3-D parameters between
the two cell types. The definitions and a table of 29 morphologic
parameters are provided online.21

2.2 Diffraction Imaging Flow Cytometric
Measurement

Design details of the p-DIFC system have been published else-
where for cell positioning through hydrodynamic focusing in a
square flow channel and the imaging of scattered light.13–15,19

Briefly, a continuous-wave solid state laser (MGL-III-532-
100, CNI) was used to produce an incident beam of 532 nm
in wavelength and up to 180 mW in power. A spherical lens
of 75 mm in focal length was used to focus the incident
beam onto the core fluid carrying the cells with a spot diameter
of about 30 μm. The profile of a linearly polarized incident
beam propagating along the z-axis is close to a Gaussian distri-
bution, and the power was measured as P0 before the focusing
lens and adjusted with neutral density filters. The loss of the
optical power by the index-mismatch interfaces from the focus-
ing lens to the imaged cell was estimated to be about 17%.
Figure 1 presents the schematic of the p-DIFC system.

The polarization direction was set to one of the three direc-
tions of horizontal (hor), vertical (ver), or 45 deg from horizontal
with a half-wave plate. The light scatter from flowing cells was
collected by an infinity-corrected 50× objective of 0.55 in NA
(378-805-3, Mitutoyo) within an angular cone, which was cen-
tered at the scattering polar angle θs ¼ 90 deg along the x-axis
and of a cone angle θsm in water. A polarizing beam splitter was
employed to divide the scattered light into the s- and p-polarized
beams for acquisition of two cross-polarized diffraction images
of 640 × 480 pixels and a 12-bit pixel depth by two CCD cam-
eras (LM075, Lumenera). Camera-triggering signals were pro-
duced with a photomultiplier, and the exposure time was set to
0.3 ms to reduce image blurring for the imaged cells flowing at a
speed of about 6 mm∕s.

To vary the angular cone of the imaged light and increased
image contrast, the imaging unit consisting of the objective,
optics, and cameras was translated toward the flow chamber
by a distance of Δx ¼ 150 μm from the focusing position con-
jugate to the imaged cell or core fluid. It has been shown that at
these nonconjugate positions, the acquired images present pat-
terns of diffraction in high-fidelity because of the unique corre-
spondence between the angular positions of the coherent light
scatter and the imager pixel positions.14,16 Furthermore, the
maximum cone angle θsm of the scattered light passing through

Fig. 1 Schematic of an experimental p-DIFC system for acquisition of
s- and p-polarized diffraction images. BE: beam expander; WP: half-
wave plate; M: mirror; ND: neutral density filters; FL: focusing lens;
FC: flow chamber; CL: condenser lens; OB: objective; WF: 532 nm
wavelength filter; PBS: polarizing beam splitter; TL: tube lenses;
BS: beam splitter; PMT: photomultiplier; CCD: camera. The x -axis
and z-axis are labeled by red lines.
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the exit pupil of the objective decreases linearly as Δx increases,
which allows the variation of the angular cone viewed on the
acquired images. At Δx ¼ 150 μm, θsm ¼ 23.3 deg for the
objective used in the imaging unit.16 The throughput of the
p-DIFC measurement was maintained at about 1 cell∕s and
mainly limited by the frame rate of cameras triggered externally.
Before extraction of p-DIFC image parameters, the acquired
image pairs were first filtered with an in-house developed pre-
processing software. The overexposed and underexposed image
pairs were removed, which were defined, respectively, as those
with one image of saturated pixels more than 1% of the total
pixels or both images of average pixel intensities <2% of the
saturated pixel values (¼ 4095 for 12-bit images). Additionally,
image pairs with strip patterns of high symmetry or large speck-
les were also removed, since these have been shown to associate
with spherical particles or aggregated small particles or cellular
debris instead of intact cells.18

The remaining diffraction image pairs were converted lin-
early from the 12-bit images of the acquired data into normal-
ized 8-bit images in which the minimum and maximum pixel
intensities in the 12-bit image were set to 0 and 255. The bit
reduction was designed to speed up the subsequent parameter
extraction by the gray-level-co-occurrence-matrix (GLCM)
algorithm without significant loss of dynamic range.17,22

Using the GLCM algorithm, a total of 38 image parameters
have been extracted as gim with m ¼ 1;2; : : : , 38 to characterize
the texture and pixel intensity of the normalized image pair for
the i’th imaged cell.19 The list of the 38 diffraction image param-
eters and their definitions are provided online.21

2.3 Diffraction Image Analysis and Cell
Classification

With either 3-D parameters from the confocal image data or
parameters of the cross-polarized diffraction image data, the
i’th imaged cell can be represented by a parameter vector
given by ci ¼

PNm
m¼1 gimum, where um are unit vectors defining

a parameter space Σp of Nm-dimension. The set of Nm param-
eters, fgimg, consists of either all or a portion of the 3-D param-
eters with 1 ≤ Nm ≤ 29 or of the GLCM parameters with
1 ≤ Nm ≤ 38. To classify the imaged cells as represented by
their parameter vectors, we chose a statistical learning algorithm
of SVM for its well-recognized balance between training com-
plexity and test performance in comparison to other machine-
learning algorithms such as the neural network method.23,24

Instead of direct classification by ci of the training data in
Σp, the SVM approach maps the input vectors into a high-
dimensional feature space E by a kernel function Kðci; cjÞ
with a training data set consisting of Ntra cells.

Specifically, SVM constructs a matrix Q of rank Ntra and
defines its elements Qij ¼ titjKðci; cjÞ with the type identifier
of ti and tj (¼ 1 or −1 for two types of cells) and the index i or j
ranging from 1 to Ntra. The mapping from Σp to E allows
classification in E and solves for α as a quadratic optimization
problem by minimizing ð1∕2ÞαT · Qα − eT · α under the
constraints of positive definite α and tT · α ¼ Δ.25 By defining
αT ¼ ðα1; : : : ; αNtra

Þ and eT ¼ ð1; : : : ; 1Þ in E, one can obtain α
together with a bias parameter b from a training data set in terms
of the vectors ci with Nm parameters as components and a kernel
function. These define an SVM model with a decision function
F as the classifier

EQ-TARGET;temp:intralink-;e001;326;752FðcÞ ¼
XNtra

i¼1

tiαiKðci; cÞ þ b; (1)

where c is the parameter vector of an “unknown” cell drawn
from test data. The sign of F determines the type of cell for
c. We have employed an open-source code package of SVM
(LIBSVM 2.86)25 to investigate the classification of the two
prostate cell types with four types of kernel functions:
linear, polynomial, Gaussian radial basis function (RBF), and
sigmoid.

By assessing the performance, we define the following num-
bers to measure the outcomes of the classification according to
the values of F: TP as the number of correctly identified image
pairs acquired from the given PC3 cells with F > 0, TN as the
number of correctly identified image pairs from the PCS cells
with F < 0, FP as the number of image pairs of PCS cells that
are incorrectly identified as PC3 cells with F > 0, and FN as the
number of image pairs of PC3 cells that are incorrectly identified
as PCS cells with F < 0. SVM models were evaluated by their
classification accuracy A on a given data set from the above val-
ues as

EQ-TARGET;temp:intralink-;e002;326;513A ¼ TPþ TN

TPþ TNþ FPþ FN
: (2)

3 Results

3.1 Confocal Measurement and Quantitative
Characterization of Three-Dimensional
Morphology

We have performed confocal imaging and 3-D reconstruction of
the detached PC3 and PCS cells after double-staining of the
nucleus and mitochondria. Following reconstruction, a total
of 29 parameters were obtained.20 Selected confocal image sli-
ces and perspective 3-D views of two PC3 and two PCS cells are
presented in Fig. 2. Table 1 lists the mean values and standard
deviations of 17 key parameters together with the p-values to
test the statistical significance of the difference between the
two prostate cell types. From these data, one can clearly see
that the PC3 cells’ cell and nuclear volumes are larger on aver-
age than those of the PCS cells. Similar morphologic differences
of statistical significance can also be observed in the cell shapes
as indicated by the distribution of the membrane voxels’ distan-
ces Rc to the centroid.

To examine the difference in morphology closely, we provide
in Fig. 3 the scatter plots of the 3-D parameters selected from
Table 1 with p-values <0.05 for the imaged cells. While most of
the cells in each type overlap each other in these scatter plots, the
PC3 cells as a group appear to have significantly smaller spreads
in their values of cellular and nuclear parameters than those of
the PCS cells, which can also be noted from the standard devia-
tions of most of the other parameters in Table 1. Taken together,
the quantitative characterization provides insight into the mor-
phologic differences between the two cell types and demon-
strates that the 3-D parameters alone are not sufficient for
accurate classification, which is confirmed by the SVM classi-
fication results to be presented later.
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Fig. 2 Perspective views of 3-D structures (not to scale) and selected slices from confocal image stacks
acquired from two PC3 and two PCS cells with nucleus and cytoplasm stained and imaged in red (top
rows) andmitochondria and cytoplasm stained in green (bottom rows) channels. The cell type and values
of cell volume in μm3, nucleus-to-cell volume ratio, and mitochondria-to-cell volume ratio are: (a) PC3,
2140, 28.1%, 4.06%; (b) PC3, 2073, 32.4%, 11.3%; (c) PCS, 1185, 46.2%, 22.8%, and (d) PCS, 1451,
40.9%, 6.89%. Bar ¼ 10 μm.

Table 1 Morphologic parameters of the two prostate cell types.

Parameter Symbol Unit

Mean� standard deviation

pa
PC3 (n ¼ 40)a PCS (n ¼ 38)a

Cell surface areab Sc μm2 1135� 226 918.6� 229 7.0 × 10−4

Cell volumec V c μm3 2116� 623 1543� 665 1.9 × 10−4

Cell surface to volume ratio SVrc μm−1 0.5615� 0.123 0.6386� 0.134 0.011

Cell surface irregularity indexd SIic μm−1∕2 242.8� 25.7 231.6� 26.6 0.66

Average distance of cell
membrane voxels to centroid

hRci μm 8.788� 1.19 7.881� 1.015 1.0 × 10−3

Standard deviation of Rc ΔRc μm 2.297� 0.781 2.002� 0.657 0.076

Nuclear surface area Sn μm2 830.5� 231 665.9� 344 0.015

Nuclear volume V n μm3 1022� 383 679.5� 379 1.7 × 10−4

Nuclear surface to volume ratio SVrn μm−1 0.8451� 0.121 1.018� 0.175 2.5 × 10−6

Nuclear surface irregularity index SIin μm−1∕2 254.2� 33.4 245.3� 62.4 0.43

Mitochondrial surface area Sm μm2 546.9� 309 629.4� 347 0.27

Mitochondrial volume Vm μm3 160.7� 108 148.8� 95.7 0.61

Mitochondrial surface to
volume ratio

SVrm μm−1 4.272� 1.93 4.993� 1.59 0.077

Mitochondrial surface
irregularity index

SIim μm−1∕2 441.2� 138 513.3� 136 0.023

Nucleus-to-cell centroid distance Dnc μm 0.1400� 0.0477 0.1552� 0.0475 0.12

Nucleus-to-cell volume ratio Vrnc — 0.4933� 0.135 0.4351� 0.128 0.054

Mitochondrion-to-cell volume ratio Vrmc — 0.0795� 0.053 0.1056� 0.0739 0.076

an = number of imaged cells, p-values were obtained by a two-sample t -test method.
bS = Ns · s0 with Ns as the number of voxels on the membrane of the organelle and s0 as the diagonal plane area of voxel.
cV = Nv · v0 with Nv as the number of voxels inside the organelle of interest and v0 as voxel volume.
dSIi = Ns · a0∕ðV Þ1∕2 with a0 as the side length (¼ 0.07 μm) of voxel.
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3.2 Measurement and Analysis of Diffraction
Images

Cross-polarized diffraction image pairs have been acquired from
cell suspension samples of about 2 mL in volume with the p-
DIFC system shown in Fig. 1 in three measurements carried
out in different weeks to confirm the repeatability of acquired
data and subsequent classification. In each measurement, a small
portion of the PC3 or PCS cell suspension sample was loaded
into the core fluid syringe followed by alignment of the imaging
unit to the same off-focus position of Δx and adjustment of the
incident laser beam power P0. About 1000 to 2000 cells were
imaged from each cell sample for one of the three incident beam
polarizations at the directions of ver, hor, and 45 deg.

Figure 4 shows examples of the normalized 8-bit image pairs
acquired from single PC3 and PCS cells for three incident beam
polarizations. It is clear from these normalized 8-bit images and
the range of pixel values in the raw 12-bit images that both PC3
and PCS cells present stronger s-polarized light scatter for an
incident beam that is also s-polarized (ver). Similarly, stronger
p-polarized scatter can be observed for images acquired with an
incident beam of p-polarization (hor). For 45 deg polarization of
the incident beam, however, both PC3 and PCS cells yield much
stronger scattered light of s-polarization, which can be under-
stood by the fact that molecular dipoles induced by the incident
laser beam within the illuminated cell are of higher efficiency to
emit s-polarized than p-polarized light as scatter along the side
directions. The dependence of scattered light intensity on polari-
zation is shown in Fig. 5.

3.3 Classification of Two Prostate Cell Types and
Comparison

With the 3-D morphology or p-DIFC image parameters, we per-
formed cell classification study by the SVM algorithm to obtain
the best SVM model with the highest value of accuracy A. For
SVM classification with the 3-D parameters, the data were di-
vided into a training data set of 30 cells/type and a test data set
with the rest of cells. The data for GLCM parameters extracted
from diffraction images were similarly divided, and Table 2 pro-
vides the number of cells in the training and test data sets
acquired in three p-DIFC measurements.

The search for the best SVM model to classify cells started
by evaluation of the individual performance of 29 3-D param-
eters or 38 p-DIFC image parameters with different kernel func-
tions based on the averaged values of A as Aav using a scheme of
five-fold cross-validation with the training data set. The scheme
divides the data into five equal parts with one part being used as
a test data assembly and the remaining four parts as a training
data assembly. The procedure was iterated five times with A cal-
culated each time to obtain Aav followed by ranking of the single
parameters in the order of decreasing Aav, which depends on the
kernel functions used in SVM calculations. Different SVM
models were then formed by a parameter vector ci for cell i
in the training data, with Nm selected parameters in the same
sequence of ranking as components, and the corresponding ker-
nel function. Each SVM model was trained in the feature space
Ewith the training data and then applied to the test data to obtain
Aav for evaluation.

Fig. 3 Scatter plots of 40 PC3 cells and 38 PCS cells with different combinations of 3-D parameters. See
Table 1 for definitions of the symbols used as axis labels.
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For SVM classification with the 3-D parameters, the single
parameters with highest Aav ¼ 71.7% for the training data set
are the cell’s equivalent spherical radius (ERc) using the kernel
functions of the polynomial or RBF. The corresponding

parameter for a sigmoid kernel function is the nucleus to
cell volume ratio (Vrnc) with Aav ¼ 68.3% and cell volume
(Vc) for linear with Aav ¼ 71.7%. SVM models obtained by
including additional 3-D parameters (Nm > 1) according to

Fig. 4 Examples of normalized 8-bit cross-polarized image pairs of two PC3 and two PCS cells acquired
in measurement #1 for each incident beam polarization with white for pixel intensity 255 and black for 0.
Each image is labeled with the cell type, polarization of the incident beam, polarization of the scattered
light, and maximum, average, and minimum pixel intensities of the acquired 12-bit images.

Fig. 5 Scatter plots of N tot imaged cells with the average pixel intensity of the acquired s-polarized (s-Iav)
versus that of the p-polarized diffraction image (p-Iav) acquired in measurement #1 with different incident
beam polarizations: (a) vertical or s-polarized with N tot ¼ 716 for PC3 cells and N tot ¼ 668 for PCS cells;
(b) horizontal or p-polarized with N tot ¼ 681 for PC3 cells and N tot ¼ 623 for PCS cells; (c) 45 deg with
N tot ¼ 770 for PC3 cells andN tot ¼ 378 for PCS cells. The values of incident beam power P0 are labeled.
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their ranks have been found to produce slightly larger or
smaller values of Aav in comparison to the single parameter
model with the top-ranked one. The performance results of
SVM models with Nm up to 10 are presented in Fig. 6 with

different kernel functions for both training and test data sets.
It is obvious that 3-D morphology parameters extracted
from confocal image stacks of cells with stained nucleus
and mitochondria do not yield accurate markers for

Table 2 Experimental parameters and classification results with diffraction images.

Measurement
group

Incident
polarization

Cell
type N tot

a N tra
a N tes

a

Aav (%)
M and kernel function of

best SVM modelbTraining Test

#1 Vertical PC3 716 500 216 99.1 97.1 10
and linearPCS 668 500 168

Horizontal PC3 681 500 181 93.7 84.5 10
and polynomialPCS 623 500 123

45 deg PC3 770 300 470 80.7 64.8 10
and polynomialPCS 378 300 78

#2 Vertical PC3 998 800 198 76.9 74.8 13
and polynomialPCS 1393 800 593

Horizontal PC3 890 400 490 100 100 6
and linearPCS 578 400 178

45 deg PC3 897 600 297 76.3 78.2 5
and RBFPCS 758 600 158

#3 Vertical PC3 1130 800 330 93.5 93.0 9
and linearPCS 1006 800 206

Horizontal PC3 1104 800 304 99.5 99.5 14
and polynomialPCS 1337 800 537

45 deg PC3 1137 800 337 86.0 89.0 1
and linearPCS 1092 800 292

All data groups
combined

Vertical PC3 2844 2100 744 88.3 87.8 14
and polynomialPCS 3067 2100 967

Horizontal PC3 2675 1700 975 80.1 75.4 8
and polynomialPCS 2538 1700 838

45 deg PC3 2804 1700 1104 73.4 79.2 13
and polynomialPCS 2228 1700 528

aN tot = number of diffraction image pairs of viable cells for extraction of 38 image parameters;N tra = number of diffraction image pairs in the training
data set; N tes ¼ N tot − N tra = number of diffraction image pairs in the test data set.

bM = number of image parameters used in the best SVM model for classification.

Fig. 6 Averaged accuracy Aav versus the maximum number of 3-D parameters Nm used for SVM clas-
sification with four different kernel functions for: (a) training data set and (b) test data set. The lines are for
visual guide.
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classification of the two prostate cell types, which is consistent
with the data shown in Fig. 3.

To investigate classification with the p-DIFC image param-
eters, an SVM model was first optimized with the training data
set. Table 2 includes the values of Aav, Nm, and kernel functions
of the best SVM models established for the diffraction image
pair data acquired with three different incident beam polariza-
tions in three measurements. One can clearly see that the p-
DIFC parameters provide a much improved performance in
comparison to the 3-D parameter for classifying the two prostate
cell types. However, Aav decreases significantly if we combine
all data from the three measurements together as shown by the
bottom section of Table 2. Similar decreases were observed by
applying the best SVM model trained by the data of one meas-
urement to the data of different measurements (not shown).

To demonstrate the effectiveness of the SVM algorithm with
the p-DIFC image parameters, scatter plots of the training results
are presented in Fig. 7 for three cases of cell classification with
the best SVM model in each case on data acquired in the same
measurement. The data show clearly that the SVM algorithm
provides a powerful tool to improve cell classification with
extracted image parameters by mapping them from the param-
eter space Σp into the feature space E using a kernel function. In
the case of Fig. 5(a), the top two ranked single GLCM param-
eters of dissimilarity and sum average22 extracted from p-polar-
ized images yield, respectively, classification accuracies Aav of
91.0% and 87.7% for the training data. These values of Aav with
single parameter values are significantly smaller than the

accuracy of 99.1% that can be achieved with the best SVM
model of Nm ¼ 10 parameters and the linear kernel function.
A similar improvement in classification can be observed in
the other two cases: the values of Aav were found to increase,
respectively, from 77.9% for s-IDM and 74.4% for s-DIS alone
to 93.5% with Nm ¼ 9 and a linear kernel function in the case of
Fig. 5(b) and from 61.3% for s-DIS and 61.2% for s-DEN alone
to 91.3% with M ¼ 10 and a polynomial kernel function in the
case of Fig. 5(c). The GLCM parameters extracted from the nor-
malized diffraction image pairs are available online for readers
to investigate other classification methods.26

4 Discussion
Accurate classification of biological cells of the same tissue of
origin is fundamentally challenging and also of practical interest
in clinical applications, such as detection of CTCs.27 In this
report, we focus on the feasibility of diffraction imaging for
accurate classification of the prostate epithelial cells of PC3
and PCS by comparison to the conventional morphology meas-
urement through confocal imaging. Despite the statistically sig-
nificant differences in the cell and nuclear volumes and other
parameters as indicated by the p-values smaller than 0.05 in
Table 1, the scatter plots of the imaged cells by these parameters
in Fig. 3 and the SVM classification results in Fig. 6 show
clearly that the 3-D parameters alone cannot yield accurate
markers for classification, which stands in stark contrast to
the use of arrangement patterns of the carcinoma cells in a

Fig. 7 Scatter plots of training data with values of decision function F versus the top two ranked p-DIFC
image parameters used by the best SVM model established for: (a) data acquired in measurement #1
with vertical incident beam polarization and N tra ¼ 500 for each of the two cell types, p-DIS: dissimilarity
of p-polarized images, p-SAV: sum average of p-polarized images; (b) data acquired in measurement #3
with vertical incident beam polarization and withN tra ¼ 800, s-IDM: inverse difference moment of s-polar-
ized images; (c) same as (b) except with horizontal polarization, s-DEN: difference entropy of s-polarized
images. The cells with F > 0 (above the line of F ¼ 0) are classified by the SVM model as PC3 cells and
those with F < 0 (below the line) as PCS cells. The values of TP, FN, TN, FP,Nm , kernel function, andAav
of the best SVM model are labeled.
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stained tissue section as a part of the evidence for prostate cancer
staging.28

With the p-DIFC method, we have shown that detection of
the diffraction patterns of the coherent light scattered by single
cells through polarization diffraction imaging can provide an
accurate and effective approach to classify the two cell types
for data acquired in the same measurement. By imaging the
coherent side scatter, the diffraction image parameters ci
obtained with an optimized SVM model can serve as the mor-
phology-related “fingerprints” of the cell i impressed by the
coherent electromagnetic wavefields of the incident laser
beam. Even though the fingerprints as a result of diffraction
have been known to correlate strongly with cell morphology,
they are formed through the complex interaction of the incident
wavefields with the molecules inside the illuminated cell.
Because of the unknown intracellular distribution refractive
index, the detailed relations remain to be investigated between
ci extracted from a pair of 2-D cross-polarized diffraction
images and the cell’s 3-D morphology. Still the results presented
here provide strong evidence that the p-DIFC method has the
capacity to establish an empirical approach for accurate classi-
fication of normal and cancerous human prostate epithelial cells.
With the powerful data mining tools like the SVM algorithm, the
diffraction image data can be used to construct a high-dimension
feature space E defined by the training data and a kernel func-
tion for significantly improved classification as shown by the
results in Fig. 7. From the last part of Table 2, it is also clear
that the diffraction images or their texture parameters are sen-
sitive to the positioning of the flowing cell relative to the focused
incident beam and the imaging unit on the scales of 10 μm.
Since these positionings could not be accurately controlled
with the current experimental system, the SVM model has to
be retrained between measurements to achieve accurate classi-
fication. System improvement is underway to use two laser
beams and forward scatter signals and improve the positioning
of the cells carried by the core fluid.

Careful examination of the average pixel intensity data in
Fig. 5 demonstrates that the incident beam polarization mark-
edly affects the detection efficiency of side scatter. The same
sensitivity to the incident polarization can also be observed
in the values of Aav presented in Table 2. These data indicate
clearly that the p-DIFC image parameters could provide “finger-
print” makers carrying rich information on intracellular biomo-
lecules in terms of their ability to polarize in the wavefields of
the incident beam. It is interesting to note further that among the
three polarization directions, cell classification with data
acquired at 45 deg tends to produce smaller values of Aav for
each of the three measurements. Similar results have been
observed in our previous classification study of the Jurkat T-
cell line and Ramos B-cell line derived from cancerous white
blood cells.19 The less ability of the p-DIFC method with a
45-deg polarized incident beam to separate different cell
types of highly similar morphology could be understood by
the following considerations. For the incident beam propagating
along the z-axis with polarization at 45 deg, the intracellular
molecules can have induced dipoles to oscillate along both
the x-axis and the y-axis. The equal probability of induced
molecular dipoles reduces the selectivity of the p-DIFC method
to contrast the differences among cells with different molecular
responses to the incident wavefields. These considerations are
corroborated by a visual inspection of the cross-polarized dif-
fraction images, with limited but randomly selected examples

presented in Fig. 4, in which the two images in each pair
acquired with 45 deg polarization exhibit diffraction patterns
of higher similarity than those acquired with vertical or horizon-
tal polarizations.

5 Conclusion
A classification study of two types of prostate epithelial cells has
been performed, and it has been shown that the cancerous cells
can be accurately distinguished from the normal cells with the
measured cross-polarized diffraction image pair data using the
data acquired in the same measurement. The classification abil-
ity of the label-free p-DIFC method suggests strongly that dif-
fraction imaging senses the molecular differences among the
two different cell types in addition to the morphologic
differences, which have been quantified by confocal imaging
and 3-D reconstruction. The employment of the SVM classifi-
cation algorithm allows significantly improved classification in
comparison with the direct approach in the parameter space
defined by the GLCM parameters. It should be pointed out
that the p-DIFC method remains to be further enhanced in
terms of the acquisition of high-contrast diffraction images at
a faster rate, accurate positioning of the flowing cells, and devel-
opment of superior algorithms for characterization of image tex-
tures with less sensitivity to image noises.
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