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Abstract. Chronic kidney disease (CKD) is characterized by a progressive loss of renal function over time.
Histopathological analysis of the condition of glomeruli and the proximal convolutional tubules over time can
provide valuable insights into the progression of CKD. Optical coherence tomography (OCT) is a technology
that can analyze the microscopic structures of a kidney in a nondestructive manner. Recently, we have
shown that OCT can provide real-time imaging of kidney microstructures in vivo without administering exog-
enous contrast agents. A murine model of CKD induced by intravenous Adriamycin (ADR) injection is evaluated
by OCT. OCT images of the rat kidneys have been captured every week up to eight weeks. Tubular diameter and
hypertrophic tubule population of the kidneys at multiple time points after ADR injection have been evaluated
through a fully automated computer-vision system. Results revealed that mean tubular diameter and hypertro-
phic tubule population increase with time in post-ADR injection period. The results suggest that OCT images of
the kidney contain abundant information about kidney histopathology. Fully automated computer-aided diagno-
sis based on OCT has the potential for clinical evaluation of CKD conditions. © 2017 Society of Photo-Optical Instrumentation

Engineers (SPIE) [DOI: 10.1117/1.JBO.22.12.121706]
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1 Introduction
Chronic kidney disease (CKD) is a medical condition charac-
terized by the progressive loss of the kidney’s function.1

Nowadays, 26 million U.S. patients suffer from CKD condition
while millions more are potentially at risk.2 In estimate,
more than half a million U.S. residents have end-stage renal
disease (ESRD), which is associated with high mortality rates
(163.8 deaths/1000 patients/year) and huge economic burdens
(>30 billion∕year).2 CKD is classified into five stages of
increasing severity.3 ESRD is the last stage of CKD when dialy-
sis or transplant is needed to stay alive. The stages of CKD or
the progressive loss of kidney function is mainly based on
measured or estimated glomerular filtration rate (eGFR).4

eGFR is obtained by blood test, including serum creatinine
level, together with age, sex, and sometimes other information.4

Pathology can provide additional information about the micro-
structure of declined kidney function by viewing tubular
atrophy, glomerulosclerosis, and interstitial fibrosis. However,
there are significant artifacts associated with excision biopsies
and immersion fixation procedures.

Optical coherence tomography (OCT)5–8 has the advantage
of allowing the analysis of the microscopic structure of kidney
in a nondestructive manner. OCT has been used to image
thermal tissue damage to the rat kidney resulting from laser
ablation.9 OCT’s capability to resolve renal corpuscles and uri-
niferous tubules was first demonstrated on rat kidney ex vivo

using high-resolution time-domain OCT.8 With the advent of
high-speed Fourier-domain OCT technology, three-dimensional
(3-D) imaging of renal microanatomy in vivowas enabled.10 The
kidney microstructures prior to, during, and following exposure
to renal ischemia can be observed in real time. In a recent study,
Andrews et al.11 utilized OCT to visualize the characteristic
histopathologic changes on aging rat kidneys in vivo. With
the onset of severe proteinuria at 10 to 12 months of age, OCT
reveals tubular necrosis/atrophy, interstitial fibrosis, tubular
dilation, and glomerulosclerosis.11 With a further deterioration
in kidney function at 16 to 18 months of age as indicated by
rising creatinine levels, OCT reveals more extensive interstitial
fibrosis and tubular atrophy, increased tubular dilation with cyst
formation and more sclerotic glomeruli.11

Wierwille et al.12 investigated the feasibility of Doppler OCT
to image kidney microcirculation, specifically, glomerular blood
flow. Normal blood flow as well as the effects of acute mannitol
and angiotensin II infusion has been observed and quantified.
Using ultrahigh-sensitive optical microangiography, Zhi et al.13

demonstrated highly sensitive imaging of renal microcirculation
in vivo. Normal peritubular capillary microcirculation as well as
the changes in response to renal ischemia and reperfusion can be
monitored and quantified using this method.

Since OCT has deeper penetration depth than confocal
microscopy, it is able to penetrate the renal capsule surrounding
human kidneys thereby enabling the characterization of
renal tubules, glomeruli, and cortical blood vessels in human
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kidneys.14–16 Using image-processing algorithms, key micro-
structural parameters, such as tubular lumen diameter, can be
automatically quantified.16 In vivo imaging of human kidney
has been reported during kidney transplantation procedures,17

and clinical studies have indicated that the openness of tubular
lumens observed by OCT has a strong correlation with the post-
transplant recovery of renal function.18 These results suggest
that OCT may be a useful tool in intraoperative monitoring
and evaluation of transplant kidneys for predicting postgraft
function after ischemia-reperfusion injury. OCT has been
applied to other clinical studies, including assessing the mor-
phological features of the endothelial and vascular injury
induced by catheter-based renal nerve ablation,19 and differen-
tiating between normal renal parenchyma and renal cell
carcinoma.20,21

Computer-aided diagnosis (CAD) systems can interpret
medical images and provide an advisory diagnosis decision
for medical doctors. Those systems aim to both decrease the
diagnosis error rate and reduce decision making time.22 A
great amount of research in CAD systems has been conducted
for different types of imaging modalities and imaging targets.
CAD computation pipelines often include region proposing, fea-
ture extraction, and classification. Liu et al.23 detected epidural
masses on CT scans by region proposing with K-mean cluster-
ing, extracting a collection of texture features, and trained
a support vector machine (SVM) classifier based on the texture
features. Farag et al.24 detected an entire pancreas organ location
in CT scans by region proposing with simple linear iterative
clustering (SLIC) algorithm, extracted dense scale-invariant
feature transform (dSIFT) features, and trained a random forest
classifier based on dSIFT features. Jerebko et al.25 detected
colonic polyps in CT scans by region proposing with manual
seed selection, extracted 12 hand-coded features, such as area,
sphericity, surface pixel intensity mean, and trained a neural
network classifier based on these 12 features. For OCT-related
CAD system, Wan et al.26 detected and classified breast tissues
in OCT scans using a sliding window technique for region pro-
posing, extracted local binary pattern (LBP) texture, and trained
a neural network classifier based on the LBP texture feature
vector. Qi et al.27 detected and classified dysplasia in Barrett’s
esophagus in endoscopic OCT scans using a semiautomatic seg-
mentation process based on global threshold and extracted six
texture features. They used principal component analysis (PCA)
to obtain the top two significant feature spaces and found
the classification threshold from the receiver operating charac-
teristic curve generated from 100 annotated training images.
Qi et al.28 detected colonic crypt morphology in en-face image
from OCT 3-D scan using semiautomatic marker-based water-
shed segmentation, extracted six region features, such as area,
density, and eccentricity, and used PCA to obtain the top two
significant feature spaces.

In recent years, deep convolutional neural network
(ConvNet) has been increasingly adopted by CAD applications.
With proper ConvNet architecture, the original computation
pipeline of CAD, which consists of region proposing, feature
extraction, and classification, can be condensed into region pro-
posing and ConvNet classification or even simply a ConvNet
that is trained to calculate both the class and bounding box
of the object. Roth et al.29 detected a lymph node from the
CT scan using a preliminary software to generate 3-D lymph
node candidate segments and a five-layer ConvNet to classify
the 3-D segments based on two-dimensional (2-D) image

generated from a random viewpoint of the 3-D segments.
Roth et al.30 detected a pancreas in CT scans using SLIC algo-
rithm for region proposing and deep ConvNet to classify the
SLIC segmentation. Liu et al.31 detected colitis in CT scans
using a “selective search” algorithm for region proposing,
a pretrained Alexnet on PASCAL 2007 dataset (natural images
instead of medical images) for feature extraction, and an SVM
for classification. Esteva et al.32 classified 757 types of skin
cancer captured on an RGB camera using Google Inception
ConvNet architecture that was end-to-end trained on 1.4 million
annotated skin-cancer images.

In this study, we used OCT to evaluate CKD in a murine
model induced by intravenous Adriamycin (ADR) injection
into Munich-Wistar rats.33 We present a CAD system based on
ConvNet to automatically detect and quantify tubular diameter
and hypertrophic tubule population from OCT images at several
post-ADR induction time points.

2 Method

2.1 Animal Models and Experimental Protocols

The animal protocol has been approved by the committee on
animal care and use at the University of Maryland, College
Park. A murine model of CKDwas induced by injection of ADR
(1.5 mg∕kg) into the tail vein of Munich-Wistar rats.33 Once
a week during the entire study protocol of 8 weeks, rats were
weighed. The 24-h urine volumes were collected in metabolic
cages. Fresh urine samples were tested for albuminuria
(Albustix), and blood samples taken from the tail vein were ana-
lyzed for serum creatinine and BUN values (Beckman Coulter
Creatinine and BUN Analyzers). In each week for the 8-week
period, two rats were anesthetized with isoflurane∕O2 (4%
induction, 1.5% during operation, O2 1 L∕min). The abdominal
cavity was opened through a midline incision, and the left
kidney was exposed and imaged using OCT. Following
in vivo OCT evaluation, the kidneys were fixed in situ by flush-
ing with warm (i.e., 37°C) oxygenated saline, followed immedi-
ately by phosphate buffered 2% paraformaldehyde and 0.1%
glutaraldehyde. The fixed kidneys were excised and the rat
euthanized by intracardiac injection of pentobarbital sodium to
induce cardiac arrest. Blocks of fixed kidneys were embedded in
paraffin, sectioned, and stained with hematoxylin and eosin.

2.2 Optical Coherence Tomography

A custom-built Fourier-domain OCT system was used in this
study (Fig. 1).34–37 This system uses a swept-source laser oper-
ating at 1310-nm center wavelength with 100-nm bandwidth.
The axial and lateral resolutions of the system are 12 and
6 μm, respectively. OCT image dimensions are 1024 pixels
(X ¼ 1.4 mm) in lateral direction and 512 pixels (Z ¼ 2.0 mm)
in axial direction. The sensitivity of the system is 90 dB. The
A-scan acquisition speed is 16 kHz. The 2-D image acquisition
speed is 16 frames per second. For each experiment, 3-D OCT
volumes were acquired from 5 to 10 kidney locations. Each
volume consists of 475 consecutive 2-D images.

2.3 Computer-Aided Diagnosis Software

About 3000 to 5000 OCT kidney images have been acquired
each week for eight weeks. To determine CKD condition from
the massive image dataset, an OCT image analysis software is
developed to automatically detect and measure features that are
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related to CKD progression. In our application, possible features
can be the proximal tubule morphology, such as tubular diam-
eter and atrophy/hypertrophy.38 The image analysis software
consisted of four sections: image preprocessing, feature region
proposing, feature region classification, and feature region
measurement.

2.4 Image Preprocessing

Gaussian blur is used to reduce the speckle noise of the OCT
image. Gaussian blur is performed by convoluting the original
OCT image with a 2-D Gaussian kernel. As a low-pass filter,
Gaussian kernel removes high-frequency noise as well as useful
high-frequency information, such as edges. A small Gaussian
kernel (sigma ¼ 2) is used to limit the blur effect and retain
small and fast-varying features as much as possible.

2.5 Feature Region Proposing

To recognize multiple objects in the image, regions of interest
(ROIs) have to be proposed to an image classifier. One of the

easiest ways to propose ROIs is the sliding window algorithm.
Specifying the range of window size and the stride size, a win-
dow slides from the edge of the image and proposes each win-
dow patch as an ROI. This method has been used widely and
successfully in applications such as face recognition.39 How-
ever, as a greedy search method, it proposes a large number of
proposed regions and suffers from “curse of dimensionality.”40

Sliding window method has to be combined with a very fast
image classifier for speed-critical applications.

Another region proposing method is segmentation.
Segmentation divides the image into subimages based on
low-level image properties, such as pixel intensity and texture.
For OCT images, image intensity-based segmentation with a
global threshold cannot recall tubule lumens with high accuracy
due to the nonuniform image brightness. Away to overcome this
issue is to remove the effect of illumination in preprocessing,
such as by the Retinex theory.41 However, in practice, those
enhancement algorithms are very slow. In addition, the illumi-
nation effect may not be removed perfectly. Another way is to
use dynamic local intensity thresholding. “Bradley” adaptive
thresholding technique uses a computationally efficient integral

Fig. 2 Same OCT image processed by (a) dynamic local intensity thresholding and (b) SLIC superpixel.

Fig. 1 The schematic diagram of the custom-built OCT system used in this study. Inset image shows the
abdominal cavity of a Munich-Wistar rat opened through a midline incision and the exposed left kidney for
OCT imaging.
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image algorithm to determine the local threshold value for each
subimage window.42 In comparison to other dynamic threshold-
ing algorithms, Bradley adaptive thresholding is robust and less
computationally expensive.43 A representative result of an OCT
image segmented by Bradley adaptive thresholding is shown in
Fig. 2(a).

Superpixel is another region proposing method that groups
similar pixels into a “superpixel.” Those superpixels can then
be proposed as ROIs. The state-of-the-art superpixel methods
include graph-based algorithm,44 gradient-ascent-based algo-
rithm,45 and SLIC algorithm.46 A representative result of an
OCT image processed by SLIC superpixel method is shown
in Fig. 2(b). The principle of SLIC superpixel algorithm is
the following: (1) first, N equally spaced pixels are initialized
as cluster centers, (2) each pixel then associates itself with the
most similar neighboring cluster centers, (3) the cluster centers
are updated to be the average pixel location of all its associated
pixels, (4) repeat steps 1 to 3 until the new cluster center and the
old cluster center converges. The number of cluster centers N
controls the granularity of superpixels or the total number of
proposed regions.

Ideally, the region proposing algorithm should have a 100%
recall rate. Recall rate is defined as the percentage of total tubule
lumens being proposed. Another key parameter is the total num-
ber of proposed regions. For example, sliding window algorithm
with a small stride size and a large range of scale would have
a near 100% recall rate, because it can theoretically capture all
tubule lumens in different scales and at different locations.
However, its total number of proposed regions is massive,
which is impractical for many applications.

We compared the ROI recall rate and the total number of
proposed regions between Bradley segmentation and SLIC
superpixel. To determine the recall rate, tubule cross-sectional
regions in test images are manually labeled [Fig. 3(a)]. A tubule

region is correctly recalled if more than 60% of the recall region
overlaps with the manually labeled region [Fig. 3(b)]. The num-
ber of proposed regions can be altered by changing the threshold
level and window size for Bradley adaptive threshold algorithm
or the initial number of cluster centers for SLIC superpixel algo-
rithm. The recall rate versus the number of proposed regions for
each algorithm was measured [Fig. 3(c)]. From the results,
Bradley adaptive thresholding with a window size of 30 pixels
is able to recall more than 80% of the tubule regions with
under 500 proposed regions. SLIC superpixel algorithm under-
performs Bradley adaptive thresholding for this application.
Therefore, we choose Bradley adaptive thresholding with a win-
dow size of 30 pixels in this study.

After candidate regions for proximal convolutional tubule
lumens are chosen, rectangular image patches containing the
candidate regions are cropped for further image classification.
It is unavoidable that the set of proposed images would include
many false positive regions, such as defects in the OCT image.
From the perspective of adaptive threshold, they are similar to
tubule cross sections, which have a relative darker center than
the surrounding regions. Examples of the region-proposed
images are shown in Fig. 4. To differentiate them, an image clas-
sifier is necessary to distinguish the true tubule cross sections
[Fig. 4(a)] from the falsely proposed regions [Fig. 4(b)].

2.6 Feature Region Classification: Convolutional
Neural Network Image Classifier

There are many image classifier models. Some of the well-
known classifiers include hard-coded classifier, eigen features
classifier,47 and artificial neural network,48 etc. A classifier gen-
erated through learning tends to be more accurate due to the
amount of prior information gained through the training process.
In our study, OCT images contain large variations in tubule mor-
phology, kidney condition, image quality, etc. ConvNet49 is

Fig. 3 (a) Manually labeled tubule lumens (green regions), (b) overlaps between proposed regions
(white) and manually labeled true regions (green), and (c) recall rate versus number of proposed regions
for different algorithms.
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eventually chosen as the image classifier due to its larger learn-
ing capacity.

ConvNet training requires thousands to millions of labeled
images per detection class depending on the complexity of
the network structure. In general, a large and complex network
is capable of learning to classify more complicated visual
features. However, it would also require a large annotated train-
ing database. Overfitting happens if a large network is trained
with a small database, which leads to low-classification accu-
racy in testing. Therefore, there is a trade-off between learning
capacity (network size) and training database size. In practice,
despite the fact that sufficient image data are usually available,
for a supervised learning model, such as ConvNet, it is usually
the labor cost for annotating the thousands to millions of
images that make creating a large training database a prohibitive
task.

For our application, we built a training database with two
classes: tubule class and nontubule class. To crop and collect
training images, we first created a less-accurate image classifier
based on hard-coded features. Bootstrapping from this classifier,
we were able to collect sufficient images per class easily but
with significant false classification rate. The incorrectly classi-
fied images in both classes were manually removed from the
database by inspection. To keep the manual inspection time min-
imal, we deliberately collected only 2000 training images per
each class. However, 2000 images per class are far from enough
to train a network that has thousands of weights and biases with-
out overfitting. To increase the database size, each of the original
images was duplicated N times. Then, the duplicated images
went through random translation, rotation, scaling, and noise
addition (Fig. 5). The database size was artificially increased
by N times. In our case, N equals to 10 and the final database
size is 20,000 images per class.

We attempted to train two different ConvNets with the data-
base. The first network has a small structure size (less than the
overfitting limit of the database) as shown in Fig. 6(a). The sec-
ond network is the LeNet48 [Fig. 6(b)]. LeNet is chosen, because
it is originally designed for recognizing single channel grayscale
handwritten-digit images (MNIST dataset), which is in the sim-
ilar format as OCT images. Many latest ConvNet architectures,
such as AlexNet, are originally designed for RGB image clas-
sification; therefore, they are not included in this study. The
smaller-sized network was trained end to end from the first
to the last layer with each layer initialized randomly. LeNet
was trained with transfer learning; instead of end-to-end train-
ing, it started from a pretrained LeNet for handwritten-digit rec-
ognition. Only the fully connected layers were fine-tuned using
our training database. Transfer learning enables a large network
to be trained on a smaller dataset without overfitting. The per-
formance of the two networks was benchmarked with a separate
testing database; the testing database contains OCT images ran-
domly chosen from all CKD stages. Locations of the tubules in
the testing database were manually labeled. The bench test result
showed a better tubule recognition rate (90%) from LeNETwith
transfer learning. It is worth noting that whether transfer learn-
ing is a good option can be speculated based on the degree of
visual differences between the original application of the pre-
trained network and the current application.50 The ConvNet
training was performed using MatConvNet51 on MATLAB®

using an Nvidia GTX660 GPU. Once the network was trained,
the network weights were saved. Image classification based on
the weights could be performed on machines without Nvidia
GPU support. In our study, the image classification based on
the trained ConvNet was programmed in C++, with multithread-
ing parallelism using OpenMP, and ran on an Intel 8-core Xeon
Processor. The processing speed is about 10 frames per second.

Fig. 4 Examples of proposed region images: (a) tubule lumens and (b) OCT image artifacts and speckle
noises. The brightness of some images has been increased for the ease of viewing. Sizes of the
proposed region images range from 5 to 60 pixels in width.

Fig. 5 Multiple training images generated by manipulating the original tubule cross-section image
(first on the left). All images are resized to 32 × 32 pixels for ConvNets training.
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2.7 Feature Region Measurement

CKD is defined as the progressive loss of kidney filtration func-
tion in time. Nephrons are the basic filtration unit in the kidney.
A histology study of a rat CKD model has shown that when
nephrons lose their filtration capability, the proximal convolu-
tional tubules of those nephrons shrink and close.52 The rest
of the functional nephrons in the kidney would compensate
the dysfunctional ones. The proximal convolutional tubules
of the functional nephrons enlarge and become hypertrophic.
A histology study has shown that the average convolutional
tubular diameter increases as CKD condition progresses.33

For each tubule’s cross-sectional region, the circularity of the
region was first measured. Since a 2-D cross-sectional OCT
image could cut the proximal tubule in any random plane,
the circularity of the region indicates whether the tubule
cross section is a perpendicular cut. Only the diameters of tubule
regions with high circularity (>0.8) are chosen for diameter
analysis. The procedure to measure the circularity and diameter
of a lumen is the following. (1) Locate the contour pixels of the
region. The circumference of the region (L) is the total number
of contour pixels. (2) Locate all the pixels that belong to the
region. The area of the region (A) is the total number of pixels
in the region. (3) Circularity of the region is calculated by

dividing the circumference square of the region by 4π times
of region area, i.e., L2∕ð4πAÞ. A perfect circle would have
a circularity equal to 1. (4) Locate the region center by averaging
the coordinates of each pixel inside the region. (5) Distances
from the region center to each contour pixel are measured.
The diameter of the region is 2 times the mean of the distances.
Figure 7 shows the process to determine the circularity and
diameter of tubule cross-sectional region.

3 Results

3.1 Optical Coherence Tomography Imaging of
Chronic Kidney Disease Rats

Visual differences between normal kidneys and CKD kidneys
can be perceived from OCT images of rat kidneys. Images in
Fig. 8 are collected from both healthy rats and rats with mid-
to late-stage CKD conditions. In healthy kidneys, the proximal
tubule lumens are similar in size and distributed uniformly with
a homogeneous distribution pattern [Figs. 8(a)–8(c)]. In kidneys
with late-stage ADR-induced CKD [Figs. 8(g)–8(i)], some
proximal tubules either appear reduced in size or become indis-
cernible to OCT, i.e., atrophic. At the same time, the rest of the
proximal tubules appear increased in size, i.e., hypertrophic.

Fig. 6 (a) An end-to-end trained small ConvNet and (b) LeNet with only the fully connected layer being
trained while the rest (gray) of the layers inherited from the pretrained network trained on MNIST
database.

Fig. 7 Illustration of definitions used in region measurements.
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This is consistent with the published histology study in dysfunc-
tional nephrons.33 These are the two most extreme cases in CKD
kidney morphology. In the midstage CKD (week 2 to 6), the
observed kidney images [Figs. 8(d)–8(f)] can be a mixture of
these two extreme cases, where the hypertrophic tubules are
smaller than those at late-stage and atrophic tubules are more
discernible than those at late stage.

3.2 Individual Image Inspection

While it is possible to determine whether CKD exists, it is
difficult to quantify the severity of the disease. To quantify
the progression, we developed a CAD software to analyze the
OCT images and measure the size of the proximal tubules. The
CAD software was first tested on individual OCT images cap-
tured from different animals at different stages of CKD (Fig. 9).
The software can detect and measure the tubular morphology
and present the statistics instantly as the user navigates through
images. In addition, the software highlights the detection using
color-coded bounding boxes, where yellow, blue, and green
indicate normal-size tubules, hypertrophic tubules (diameter >
50 μm), and atrophic tubules (diameter < 15 μm), respectively.
Figure 9 shows two images examined by the software.
Figures 9(a) and 9(b) are from a healthy kidney and a late-
stage CKD (8 weeks after ADR injection) kidney, respectively.
Visually, it is apparent that tubule lumens in Fig. 9(b) are larger
than those from Fig. 9(a). The software measures the tubule
lumen diameters, and the results from the software show that

tubules from healthy kidneys are mostly within the normal
ranges, which is 20 to 30 μm. While the tubules from late-
stage CKD kidneys are either in the hypertrophic range
(diameter > 50 μm) or in the high end of normal ranges. The
result is consistent with previous reports that the diameters of
the hypertrophy tubules can be 50% larger in mice and nearly
100% larger in human than the diameters of the normal
tubules.33,38 These results verify that the CAD software is
able to detect and measure tubule cross sections accurately,
which can be used to differentiate healthy and nonhealthy
kidneys.

3.3 Automatic Batch Analysis

In addition to individual image inspection, the software is able to
analyze the entire batch of image dataset automatically. The
processing speed is about 10 images per second. It takes
about 10 min to process, measure, and generate statistics of
a dataset containing 5000 images. The software records the
information of each detected tubule, including diameter and
circularity. The OCT image dataset can be quickly analyzed by
the software without supervision of the user.

The complete OCT image dataset of rat kidneys was ana-
lyzed by the software. The dataset consists of 18 animals in
total: 2 animals per week group for 8 post-ADR-injection weeks
in total and 2 healthy animals for control. 3000 to 5000 2-D
OCT images were collected per rat. In total, the complete dataset
contains more than 70,000 images. The CAD software measures

Fig. 8 (a)–(c) are images captured from healthy kidney, where proximal tubules are uniform in size,
(d)–(f) are images captured from midstage CKD kidney, where certain percentages of proximal tubules
appear shrunk and certain percentages of proximal tubules appear enlarged, (g)–(i) are images captured
from late-stage CKD kidney, where proximal tubules in some cross sections appear further enlarged and
in some other cross sections disappeared due to shrunk to extreme small sizes.

Fig. 9 Individual image analysis shows significant tubular morphological differences between (a) healthy
kidneys and (b) late-stage CKD kidneys.
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and records tubule diameters and generates the statistics, includ-
ing tubular diameter, percentage of hypertrophic tubules, tubule
density, and tubule diameter range for each week.

Tubule diameters are measured directly by the software after
the tubule being detected. Percentage of hypertrophic tubules is
derived by recording the number of detected tubules whose
diameters are larger than 50 μm. Tubule diameter range is
the difference of the tubule diameter at 95 percentiles and
that at 5 percentiles. Tubule density is computed by determining
number of tubules per unit tissue area.

Figure 10 shows representative OCT images for the control
and CKD-induced rat. For the healthy animal, most of the tubule
diameters are within normal range (yellow). One week after
injection, fewer tubules are visible and more atrophic tubules
are present. During the midstages (week 2 to 6), number of
both atrophic tubules and hypertrophic tubules increases.
This is probably due to the fact that functional nephrons
overwork to compensate the loss of atrophic tubules (green).
At the late stages (week 7 to 8), more hypertrophic tubules
(blue) are visible.

Figure 11 shows the statistical results from the analysis of the
complete dataset. The statistics indicates a general trend of
increase for average tubule diameter, diameter range, and per-
centage of hypertrophic tubules. The statistics also shows a fluc-
tuation in these parameters during the midstages (week 2 to 6).
We hypothesize it could be due to either variation of different
rat’s reaction to ADR injection, sampling bias, or the recovery of
the organ before late-stage CKD (week 7 to 8). Previous studies
have observed renal function recovery in drug-induced acute
kidney injury.53 Tubular density shows an initial increase
(week 2 to 4) compared to normal, followed by a decrease in
week 5 to 7. This could be explained by the closure of some
atrophic tubules.

4 Discussion
It is crucial that CKD is detected and treated at early stages.54

Currently, measuring glomerular filtration rate (GFR) score and
observing the visual presence of kidney damage are the two
commonly established CKD diagnosis methods in clinical
nephrology.55

GFR score is a scoring system that describes kidney filtration
capability. GFR score is calculated in terms of blood serum cre-
atinine level test in addition to patient’s age, weight, and gender.
Serum creatinine is a chemical waste produced by the body that

is mainly filtered out by the kidneys. However, despite the wide
use of GFR as the gold standard to estimate kidney function,
studies have suggested that it is not sensitive to early-stage
CKD. It has been shown that a significant change of serum
creatinine concentration in blood does not occur until nearly
50% of the kidney is nonfunctional. It is because the rest of
the functional nephrons can adapt and compensate the loss of
filtration units.38

Examining the morphology of the kidney structures,
including glomerulus and proximal convoluted tubules, using
histology images is a more direct and accurate way to detect
CKD. The correlation among nephron tubule morphology,
nephron function, and CKD progression has been discussed
extensively and been corroborated with histology images in
literature.33,38,52,56–58 If a nephron loses its filtration capability
due to injury or diseases, its tubules would appear reduced
in size. Meanwhile, remaining functional nephrons become
enlarged to compensate the loss of filtration capability.38

Although observing kidney morphology is an effective way
to detect CKD in early stages, the current procedure requires
a biopsy to acquire a slice of renal tissue for histology. Such
procedure has many disadvantages. (1) It requires the removal
of a certain amount of kidney tissues. Due to its invasiveness,
only a small percentage of CKD patients receive diagnosis based
on morphology images. (2) The histology sample size is
restricted because of the limit amount of kidney tissue that
can be sampled. The morphology observed with such technique
is highly localized. Therefore, the observed condition may
not accurately represent the condition of the entire organ.
(3) It is a demanding and time-consuming task to acquire
and prepare kidney biopsy samples. Such process includes
delicate surgery procedure to acquire the sample, careful sample
preservation with correct storage temperature and solutions, and
sample staining for microscopy imaging. (4) Similar to many
imaging-based diagnosis procedures, histology image assess-
ment is a meticulous and time-consuming task that requires two
experienced histopathologists to reduce the diagnosis errors.

OCT imaging can observe nephron tubular morphology
without the need of acquiring tissue sample. This imaging
method can examine the kidney structure in a similar fashion
as histology reduces the invasiveness of such procedure. In addi-
tion, since it does not require tissues to be removed from the
organ for observation, OCT imaging is able to image multiple
locations in the kidney or even a full surface scan without

Fig. 10 Sample kidney OCT images from healthy control rats and from CKD rats at each week after ADR
injection. Bounding box color indicates the condition of the tubule, yellow color indicates normal tubule,
green color (labeled with “A”) indicates atrophy tubule, and blue color (labeled with “H”) indicates hyper-
trophy tubule.
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altering the condition of the organ. Being able to image multiple
locations in the kidney can provide a much more comprehensive
view of the overall health condition of the organ compared to
biopsy/histology, which uses a very small percentage of the
organ tissue to assess the condition of the entire organ.

A detailed multilocation imaging of the kidney drastically
increases number of images to inspect per patient for a more
accurate diagnosis. Being able to process such large quantity
of information on time has a significant impact on the diagnosis
workflow. The presented CAD software showcases how to
detect, measure, and statistically quantify kidney function based
on OCT images. The software is not developed with the goal to
replace the role of medical doctors; instead, it is developed as
a useful tool for medical doctors to quickly scan through the
large image database and compare their results with the statistics
report generated by the software. The ultimate goal for such
software is to decrease diagnosis time span, decrease diagnosis
error rate, and improve the day-to-day workflow efficiency of
medical doctors.

The current methods have limitations and room for improve-
ment in several areas. (1) The animal experiment design to
observe the progression of CKD can be improved. The current
method can observe a single animal only once because it is very
difficult to perform surgery on the same rat repeatedly for

consecutive weeks. Therefore, the statistical results derived
from this experiment design cannot avoid the biological varia-
tion between animals. Continuous monitoring of the kidney
morphology of the same animal would definitely present a better
picture of the morphology development with the CKD progres-
sion, especially at week 2 to 6. This will require an abdominal
window.59 (2) The selection of imaging locations on the kidney
can be biased by the operator. The bias induced by imaging loca-
tion selection could also have an impact on the accuracy of the
statistical results. The OCT instrument in use is a stationary
microscope that performed scanning in a predefined rectangular
region. Despite the fact that multiple locations (rectangular
regions) have been scanned per each kidney, a scan covering
the entire organ surface will provide the most unbiased descrip-
tion of the kidney condition. (3) The OCT probe needs to be
held closely to the kidney surface to image the subsurface struc-
tures of the organ. To reduce the invasiveness of such procedure,
laparoscope- or needle-based OCT probe would produce
much smaller incision size and shorten the recovery period
postsurgery.60

5 Conclusion
We demonstrated that OCT is able to evaluate living kidney
microstructure and function in CKD models of Munich-

Fig. 11 The trends of mean tubule diameter, percentage of hypertrophic tubules, tubule diameter range,
and tubule density as CKD progression. Matrix of t -test between each week is attached to the upper right
corner of each plot. The dark regions indicate the t -tests between two weeks produce p value above 0.05
(insignificant), and the bright regions indicate t -tests between two weeks produce p value below 0.05
(significant).
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Wistar rats. The preliminary results show that OCT can provide
more information beyond proteinurea and serum creatinine. In
addition, we presented a CAD software that can automatically
detect, measure, and quantify features in the kidney images that
are related to CKD progression. The software is necessary to
process a large number of OCT images in a short period of
time. Our ability of discern pathological changes in rat models
of CKD is important in view of our recent studies showing that
OCT can be used to evaluate the status of human kidneys in the
operating room and its potential use in conjunction with renal
biopsies to evaluate kidney histopathology in patients.
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