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Abstract. A multifocus image fusion method to obtain a single focused image from a sequence of microscopic
high-magnification Papanicolau source (Pap smear) images is presented. These images, captured each in a
different position of the microscope lens, frequently show partially focused cells or parts of cells, which makes
them unpractical for the direct application of image analysis techniques. The proposed method obtains a focused
image with a high preservation of original pixels information while achieving a negligible visibility of the fusion
artifacts. The method starts by identifying the best-focused image of the sequence; then, it performs a mean-shift
segmentation over this image; the focus level of the segmented regions is evaluated in all the images of the
sequence, and best-focused regions are merged in a single combined image; finally, this image is processed
with an adaptive artifact removal process. The combination of a region-oriented approach, instead of block-
based approaches, and a minimum modification of the value of focused pixels in the original images achieve
a highly contrasted image with no visible artifacts, which makes this method especially convenient for the medi-
cal imaging domain. The proposed method is compared with several state-of-the-art alternatives over a repre-
sentative dataset. The experimental results show that our proposal obtains the best and more stable quality
indicators. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this
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1 Introduction
Methods used in microscopic autofocus systems (MAFSs) are
generally based on maximizing a focus measure obtained from a
captured image; such measure is evaluated as a function of the
lens’ Z axis position. There are plenty of works that report algo-
rithms to control the motion of the lens along the Z axis in order
to efficiently find the best position: based on the evaluation of
that focus measure, they obtain the best focused single image.1

In the case of a MAFS applied to cytology observation, when
working with targets of high magnification—around 40×—one
of the principal issues is that in many cases, cells are in fact
located on different Z levels in the slide, even corresponding
to different ranges of the depth-of-field (DoF) of the lens.
In these cases, the best focused image selected by a classical
autofocus method will include unfocused parts, hence missing
important information. A solution is to somehow combine
a set of images captured with different DoFs to obtain a fully
focused image.

Image fusion is the process of combining relevant visual
information (i.e., important, complementary, and redundant)
from multiple input images into a single resulting image. This
should be achieved without introducing artifacts, in a way in
which the resulting image contains more accurate, stable, and
complete information2–4 than the input images, therefore making
it more suitable for human perception and for later processing
operations (e.g., segmentation and feature extraction). For the

autofocus application, this resulting image might be obtained
by applying multifocus image fusion (MFIF) techniques: a set
of N images is captured from a static scene at different focus
levels, and the focused objects in this set of images are fused
together to create a sharp image with all those relevant objects
fully focused.1,3–5 While the reported MFIF methods are gener-
ally applied to fuse two images of a scene, the underlying
techniques can be adapted to fuse a larger set of images, as
we propose.

The context of our work is a project (see ACK section for
details) to help early diagnosis of cervical intraepithelial neopla-
sia in the rural areas of the Coahuila State (Mexico). In these
areas, for cultural reasons, the refusal among women to go
to the capital persists until the symptoms of the disease are
unbearable. The objective of the project is to enable the
Papanicolau test, facilitating through its automation the taking
of tissue samples in the rural area and the telematic sending of
selected images of these samples for diagnosis by specialists.
This requires capturing hundredths of focused images per tissue
sample (see our autofocus contributions in Ref. 6) and analyzing
of these images to identify and segment cervical nuclei (see our
contributions on this area in Ref. 7). In this paper, we target
the enhancement of the captured images via MFIF techniques.

MFIF techniques operate on a set of N input images of a
single scene, each with a different DoF. Overall, these images
are first partitioned into generally homologous regions. Regions
sharing a same location in the set of images are then evaluated,
and the region with the highest focus measure is selected;
finally, selected regions, usually from different images, are fused
to compose the final focused image. There are many MFIF
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algorithms reported in the literature; a comprehensive review
can be found in Refs. 8 and 9. The MFIF technique is broadly
used in many application fields, such as microscopy,10 biology,11

and medical imaging.12

In this paper, we analyze and compare with works using
focus measures like those we used in our base autofocus system
(i.e., transformed-domain measures6), for a fair comparison. In
this direction, the work in Ref. 1 applies an 8 × 8 block discrete
cosine transform (DCT) to two input images; then, it compares
homologous blocks of both images using the variance of the
coefficients and selects the block with the highest value; finally,
it applies the inverse DCT to the image composed by the
selected blocks. They also propose a variant which applies a
consistency verification index for block selection, in order to
enhance the resulting image quality. The work in Ref. 4 is sim-
ilar to that in Ref. 1 but using a different measure to compare
blocks. Methods based on blocks generally present artifacts,
because parts of the focused cells in different levels of the
DoF might belong to a same block. Kumar5 uses the discrete
cosine harmonic wavelet transform (DCHWT), a multiscale
technique (three levels, in this case). As these multiscale meth-
ods involve decimation, most pixels in the resulting image do
not keep original pixel values of any of the source images.
Recently, some fusion techniques operating in the gradient
domain have been reported, as that in Ref. 3. This work, also
using a multiscale approach, uses a focus measure based on
the saliency structure of the image, and it is designed to operate
on well-known images (i.e., flower, clock, pepsi, etc.) with just
two objects (one focused and the other unfocused).

Some recent works present similar fusion techniques applied
to combine different sources of information into a single image
but not necessarily due to a multifocus situation. Liu et al.13

described a MFIF method that separates source images into
“cartoon content” and “texture content” via an improved
iterative reweighted decomposition algorithm; fusion rules are
designed to separately fuse both types of content, and finally,
the fused cartoon and texture components are combined. The
technique naturally approximates the morphological structure
of the scene. The work in Ref. 14 presents a medical application

to diagnose vascular diseases; they use a type of wavelet trans-
form combined with an averaging-based fusion model to fuse
osseous and vascular information together; they present a
rapid MFIF algorithm, less complex but still very effective,
with very low memory requirements. For a similar objective,
Dogra et al.15 propose an effective image fusion method also
working on the wavelet domain, along with a preprocessing
of the source images with a selected sequence of spatial and
transformed-domain techniques to create a highly informative
fused image for osseous-vascular 2-D data.

In this paper, we propose an MFIF method that analyzes
sequences of up to 15 microscopy input images corresponding
to different levels of DoF of a same “slide-scene.” We propose
(Sec. 2) an object-based approach, which dramatically reduces
the visibility of fusion-generated artifacts while keeping focused
parts of the input images intact. To evaluate our results, we com-
pare with five different existing techniques (Sec. 3) by testing
over 50 realistic and practical Pap smear sequences of images,
and over the two blurred microscopic images provided by
Ref. 11. Finally, conclusions are presented in Sec. 4.

2 Proposed Multifocus Microscope-Image
Fusion Method

Figure 1 illustrates the general flow of the proposed MFIF
method, which is further detailed in the following subsections.
The starting point is a set of images (15 in our experiments, but 2
in other works we compare to) captured with the lens in a vary-
ing position of the Z axis. The first step, which is not the topic of
this paper, is the selection of the “best-focused image” of the set
(see details in Ref. 6). Let fIi; i ¼ 1: : : Ng be this set of input
images (Fig. 1) and let Ibf be the best-focused image, being
i ¼ bf its index in the set. This image is first coarsely
segmented to identify its main regions or objects, which are
considered the main scene objects, each represented by a binary
mask. Then, for each scene object or segmented region, its mask
is applied to the set of input images, and a focus measure is
obtained for that region in every image of the set. A preliminary
image, which we name “combined image, I_c,” is then generated

Fig. 1 Proposed multifocus image fusion method for a set of microscopic high-magnification Pap smear
images.
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by replacing in the best-focused image each segmented region
with the corresponding best-focused region in the set.
Finally, the removal of the artifacts generated in the contours of
these combined regions is performed by a total variational-based
filter16 to obtain the “final focused image, I_ff.”

2.1 Mean-Shift Segmentation

We use the mean-shift algorithm17 to obtain a coarse segmen-
tation, I_seg, of the best-focused image, Ibf (Fig. 1) into Nc
regions or clusters. Mean-shift is a nonparametric technique
for analyzing multimodal data that has multiple applications
in pattern analysis,18 including its use for image segmentation.
We start from the observation that cells have a predetermined
size and colors that are always much darker than the back-
ground. We characterize each image pixel by a vector
½L; a; b; x; y� or ½L; x; y�, depending on whether the input images
are RGB or gray: ½L; a; b� describes the pixel color, and ½x; y� its
coordinates. We then run the mean-shift algorithm over this five-
dimensional or three-dimensional distribution with a bandwidth
value h ¼ 20, which was selected so that cell regions and back-
ground are segmented in more than one cluster; this is required
for the next assigning process to be effective. A proper selection
of the h parameter is somehow application dependent: it should
be larger than the smallest nonfocused region. However, if
this requirement is met, its effect on the results is negligible.
Consider that block-based approaches also prefer unfocused
regions to be greater than the block size, but there is usually
no flexibility in the selection of this size.

2.2 Preliminary Image Fusion Based on
the DCT Focus Measure

The next step is to generate a “combined image” (follow this
process in Fig. 2), I_c, which is a merging of the best focused
parts of the set of input images. First, a focus measure is locally
obtained for every image of the set, following the method
described in Ref. 6: in brief, for every image of the input set,
Ii, a 8 × 8 block DCT is performed, the sum of the absolute
value of its 32 lower-frequency AC coefficients is calculated, and
a same-size energy image, Ei, is obtained by assigning each pixel
the calculated energy of its corresponding block. This results in
a set of DCT energy images, fEi; i ¼ 1: : : Ng [Fig. 2(a)].

The topology of the I_c image is the same of that of the seg-
mented image, I_seg. Every cluster or region in I_seg is used to

generate a mask, fMr; r ¼ 1: : : Ncg [Fig. 2(b)]. For every
region, its corresponding mask is applied over every energy
image, fEi; i ¼ 1: : : Ng, and the mean energy of the masked
region is calculated for every such energy image. The index,
i_max, of the energy image showing maximum energy for
that region is obtained; then, the corresponding region of the
I_c image is initialized with the pixel values of the homologous
region of the Ii_max image from the fIi; i ¼ 1: : : Ng set. In par-
allel, in the I_diff image (see Fig. 2), we keep for every region
the absolute difference between the i_max index and the i ¼ bf
index of the best-focused image, which somehow indicates the
degree of out-of-focus of such region, or the object focus level,
ranging from 0 (black-level: the region is best-focused in the Ibf
image) to N (white-level: the region is best-focused in the image
with the worst global focus measure).

As opposed to other methods, such as Refs. 1 and 4, where
the local focus comparison among the set of input images is per-
formed block by block, we propose to compare region by region
using the segmentation of the best-focused image to define such
regions. This avoids highly visible block artifacts appear any-
where. Instead, contour artifacts might appear in the boundaries
of the identified regions, being here much less visible. The vis-
ibility of these contour artifacts depends on the aforementioned
degree of out-of-focus of each combined region. In the next
subsection, we propose to use a total variational-based filter to
eliminate the contour artifacts of the combined image, I_c.

2.3 Artifacts Removal

The next step is to generate the final focused image, I_ff, by
attenuating the artifacts or false contours that may appear in
the combined image, I_c, due to merging regions from different
input images. We propose to attenuate artifacts by applying
a total variational-based diffusion method.16 This method will
only be applied in the artifacts-prone areas, according to the
information in the I_diff image, hence preserving or keeping
intact most of the image pixels. Observe that the method
aims to mitigate these false contours, not real object contours.

2.3.1 Generation of a mask of the artifact-prone areas

In Fig. 3, we show several examples of artifacts generated at the
boundaries of the regions of three I_c images. Our proposal is to
process I_c pixels only at the edges defined by I_diff, i.e., only
at the boundaries between regions with different degree of focus,

Fig. 2 Obtaining the combined image, I_c form the set of input images, fI i ; i ¼ 1; : : : ; Ng.
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in order to obtain an image without artifacts on these boundaries
while keeping original pixels in most of the resulting image. For
this purpose, we first obtain an edges image from I_diff (see
Fig. 4). Then, as the extent of the artifacts between adjacent
regions is expected to be proportional to the difference between
their degrees of focus, we perform an adaptive morphological
dilation over the thresholded edges image, using a structural
element with a size proportional to the intensity of every edge.
The resulting mask, M_artifacts (see Fig. 4), will define where
the following enhancement steps will be applied.

A main contribution of our method is that artifacts removal is
only performed in the areas that may include them, hence pre-
serving original pixels in most of the image, which is critical for
medical imaging applications. Works in Refs. 1 and 4, as they
perform image fusion over DCT blocks, are prone to generate
block-artifacts, which are not later eliminated. In the multiscale
methods, such as Refs. 5 and 3, the original pixels are not usu-
ally preserved in the fused image: the resulting image in Ref. 5
does not present artifacts due to the nature of the method, which
modifies pixels intensity via averaging, resulting in a smoother
image; the method proposed in Ref. 3 eliminates artifacts just in
the “unknown zone,” which is a predefined area in the boundary
generated between the two considered source images with two
different focus levels.

2.3.2 Artifacts removal via total-variation filtering

Let us consider that the combined image I_c, which contains
contour artifacts in the contours defined by the M_artifacts
mask, is a noisy image; let I_ff, the final focused image,
be the desired sharp and clean image. We can then declare that
I_c ¼ I_ff þ n, where n is the aditive noise, which we assume
concentrated in the pixels indicated by M_artifacts. We obtain
I_ff from I_c using a total variation filter. These filters were first
suggested by Ref. 16 and are based on the minimization of an
energy functional, subject to the constraint u − u0 ¼ σ2, where
u, u0, and σ2, for this work, are, respectively, the gradient of the
true image (I_ff), the gradient of observed image (I_c), and the
variance of the noise n ¼ ðu − u0Þ. Then, the iterative equation
to obtain the desired clean image is I_ff t ¼ I_ct − λðu − ut0Þ,
where I_c0 ¼ I_c, and λ is a regularization parameter which
we set to λ ¼ 0.1 to preserve the smallest structures.

In order to obtain u0 for the first iteration, we apply a
Laplacian filter to I_c (Fig. 5). To estimate u, we consider
that its gradient equals that of I_c except for the edge areas
defined by M_artifacts. In these areas, for every pixel, we
assume that u equals the gradient, fui; i ¼ 1: : : Ng, of the
source image showing maximum local variance around such
pixel. The gradients of the source images are also obtained

Fig. 3 Examples of contour artifacts in the boundaries of the merged regions: (a) I_diff; (c) I_c; (b) and
(d) detailed images of the artifacts (see white arrows) generated by the regions merging.

Fig. 4 Example of the generation of the artifactsmask: (a) I_c, (b) I_diff, (c) edges in I_diff, and (d) dilated
and thresholded edges in M_artifacts.

Journal of Biomedical Optics 056005-4 May 2018 • Vol. 23(5)

Tello-Mijares and Bescós: Region-based multifocus image fusion for the precise. . .



Fig. 5 Example of the iterative artifacts elimination process: (a) evolution of the gradients difference
ut
0 − u and (b) comparison of the I_c image and of the I_f f image obtained after the process converges;

white arrows indicate the main removed artifacts.
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applying a Laplacian filter, and the local variance is computed in
3 × 3 windows. Once we get I_fft for this first iteration, i.e.,
I_ff0, we set I_ctþ1 ¼ I_fft and repeat the process until it con-
verges to I_ff. Figure 5 shows an example of the evolution of the
variance of the gradient difference, u − ut0, and of the obtained
image, I_fft, for every iteration.

3 Experimental Results
To assess the potential of our approach, we compare the pro-
posed method with the works reported in Refs. 1-1, 1-2, 5, 3
and 4, as we can see in Figs. 6–8 captions, and Tables 1 and 2.
The code to run these reported algorithms was kindly provided
by every author: the software is available together with the
papers. The set of images used for the experimental evaluation,
hereinafter the dataset, consist of the microscopic image pair
from the MFIF reported in Ref. 11 (see Fig. 6) and a set of
50 Pap smear image sequences (320 × 240 pixels in RGB),

each containing 15 images with different DoF and focused
cells in several of them (see examples in Figs. 7 and 8).

3.1 Quality Metrics

The objective evaluation of a fused image is a difficult task
because there is no universally accepted metric to evaluate an
image fusion process.2 A frequent solution is the use of different
metrics to test the fusion results from different viewpoints.19

Quality metrics for MFIF can be classified depending on the
availability of the target image:20 metrics known as full-refer-
ence assume that a complete reference image (distortion-free)
is available; however, in many practical applications, the refer-
ence image is not available; so, “no-reference” or “blind” quality
metrics are used. As our dataset includes images captured in
practical situations, we do not account for reference images.
An alternative to these MFIF-based quality metrics is to evaluate
focus metrics on the resulting fused image, as the aim in this

Fig. 6 Visual results for the first experiment. The top row shows full images and the bottom one shows
the corresponding image in detail. Columns include source images A (I) and B (II); resulting images for
the compared methods 1-1 (a) Haghighat, 2011(1), 1-2 (b) Haghighat, 2011(2), 5 (c) Kumar, 2013, 3
(d) Zhou, 2014 and 4 (e) Phamila, 2014; (f) the resulting image, I_ff.

Fig. 7 Visual results for the second experiment. The top row shows the sequence of input images for
sequence 3 (I). The bottom two rows show full images and the corresponding image detail for the final
fused images obtained by each compared method: 1-1 (a) Haghighat, 2011(1), 1-2 (b) Haghighat, 2011
(2), 5 (c) Kumar, 2013, 3 (d) Zhou, 2014, 4 (e) Phamila, 2014 and (f) the resulting image, I_ff.
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scenario is to obtain a perfectly focused image. We describe
below the metrics we have used.

No-reference metrics—The Petrovic metrics,21,22 based on
gradient information, include three indicators: QAB∕F, which
represents in a normalized way the total information transferred
from the source images ðA; BÞ to the fused image (F); and
LAB∕F and NAB∕F, which evaluate the complement to QAB∕F,
i.e., the loss of information, but just considering locations, where
the gradient of the source images is greater (LAB∕F) or lower
(NAB∕F) than that of the fused image. We have computed the
QAB∕F indicator as an overall quantitative measure of the fusion
quality. For M × N images, QAB∕F is obtained according to

EQ-TARGET;temp:intralink-;e001;63;359QAB∕F ¼
XN;M

∀n;m
QAF

n;mwA
n;m þQBF

n;mwB
n;m∕

XN;M

∀n;m
wA
n;m þ wB

n;m; (1)

where QAF and QBF estimate edges preservation from the A and
B source images, and wA and wB are local perceptual weighting
factors usually corresponding to the gradients of these source
images. A value of QAB∕F ¼ 0 means complete loss of informa-
tion and QAB∕F ¼ 1 represents ideal fusion. This indicator is
defined for the case of two source images (A and B); we have
adapted it to the dataset sequences including 15 source images
(from I1 to I15):

EQ-TARGET;temp:intralink-;e002;63;224Q ¼ QI1: : : I15∕F ¼
PN;M

∀n;m QI1F
n;mw

I1
n;m þ : : : þQI15F

n;m wI15
n;m

PN;M
∀n;m wI1

n;m þ : : : þ wI15
n;m

:

(2)

Focus metrics—These include the standard deviation of the
normalized pixel intensities of the fused image, F, the entropy
of this image, the average gradient magnitude, which indicates
sharpness, etc. We have selected the standard deviation,
because it has been demonstrated to provide the best overall per-
formance in estimating the focus level for nonfluorescence
microscopy applications, including Pap smear and blood smear
samples.23–26

3.2 Experiments and Discussion

The first experiment is conducted over two microscopic images
kindly provided by Ref. 11, each showing different focused
parts of the same object [see Figs. 6(I) and 6(II)]. We have
applied to these source images the aforementioned five fusion
algorithms and our proposed method. Figure 6 shows the result-
ing images along with a detail of each, in order to visually or
qualitatively assess the performance of each method. Table 1
includes data with the quantitative evaluation of this first
experiment.

From a qualitative point of view, we observe that methods
Refs. 1-1 and 4 [Figs. 6(a) and 6(e)] present highly visible
block artifacts; these methods compare the DCT energy in
homologous 8 × 8 blocks, which generates comparison errors
when the images contain nonsquare elements in different depths
of field or when cervical cells are round. The enhancement pro-
posed by Ref. 1-2 [Fig. 6(b)], based on a consistency verification
index to decide which block is selected, removes block artifacts
in this example but at the expense of a poor visual result. The

Fig. 8 Visual results for the second experiment. The top row shows the sequence of input images for
sequence 37 (I). The bottom two rows show full images and the corresponding image detail for the final
fused images obtained by each compared method: 1-1 (a) Haghighat, 2011(1), 1-2 (b) Haghighat, 2011
(2), 5 (c) Kumar, 2013, 3 (d) Zhou, 2014, 4 (e) Phamila, 2014 and (f) the resulting image, I_ff.

Table 1 Quantitative results for the first experiment: performance quality metrics for the final fused microscope image obtained by each method.

1-1 Fig. 6 (a)
Haghighat, 2011(1)

1-2 Fig. 6 (b)
Haghighat, 2011(2)

5 Fig. 6 (c)
Kumar, 2013

3 Fig. 6 (d)
Zhou, 2014

4 Fig. 6 (e)
Phamila, 2014

I_ff
Fig. 6 (f)

SD 0.9877 0.9783 0.9534 0.9957 0.9843 1

QAB∕F 0.8605 0.7629 0.8829 0.8884 0.8436 0.8919
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multiscale approach proposed in Ref. 5 [Fig. 6(c)], which does
not keep original pixel values, presents a noticeable contrast
reduction. The method reported in Ref. 3 and the proposed
method [Figs. 6(d) and 6(f)] yield acceptable visual results.

From a quantitative point of view (see Table 1), an interesting
observation is to contrast the correlation between each measure
of quality and the perceived visual result: the SD measure yields
very good values for images with highly noticeable block arti-
facts [in case of Figs. 6(a) and 6(e)], because these artifacts
increase image variance; the QAB∕F measure seems to be more
in line with the qualitative findings.

Independently of these observations, Table 1 indicates that
the proposed method behaves better in the light of both quality
measures.

The second experiment targets the 50 sequences of Pap
smear images obtained from the autofocus operation of a micro-
scope. While reported works have focused on fusing two blurred
images, many of them have applied their method in an iterative
way to more than two input images, which is our practical con-
text. Figures 7 and 8 show qualitative results for two of these

sequences, and Table 2 and Fig. 9 compile the quantitative
evaluation for the 50 sequences.

From a qualitative point of view, we clearly observe in Fig. 7
that the methods based on 8 × 8 DCT blocks [Figs. 7(a), 7(b)
and 7(e), 8(a), and 8(e)] cannot avoid generating block artifacts.
We can also observe that the multiscale approaches [Figs. 7(c),
7(d), 8(c), and 8(d)], which somehow process original pixels so
that their value is never directly transferred to the final image,
suffer from a severe loss of definition when the technique is
applied to a large number of source image (15 images, instead
of 2, for this experiment): several of the objects of interest are
averaged, resulting in a loss of information and even the loss of
complete cells. This is the situation for the method proposed in
Ref. 3 [Figs. 7(d) and 8(d)], which, while losing very few infor-
mation and objects of interest, sometimes loses full objects
because it only compares two areas or regions in the image
(focused and unfocused).

From a quantitative point of view, Table 2 indicates that the
proposed method also behaves better for this part of the dataset
including 50 image sequences. Apart from the mean values of

Table 2 Quantitative results for the second experiment: performance quality metrics (mean and deviation) for the final fused microscope images
obtained by each method applied to the 50 image sequences.

1-1 Haghighat, 2011(1) 1-2 Haghighat, 2011(2) 5 Kumar, 2013 3 Zhou, 2014 4 Phamila, 2014 I_f f

SD 0.9632� 0.0187 0.9832� 0.0134 0.8397� 0.0726 0.9424� 0.0359 0.9785� 0.0106 0.9987� 0.0045

Q 0.9920� 0.0072 0.9897� 0.0152 0.8941� 0.1011 0.6630� 0.0678 0.9940� 0.0081 0.9974� 0.0041

Fig. 9 Quantitative results for the second experiment. Performance quality metrics SD andQ for the final
fused microscope images obtained by each method for every image sequence.
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the quality indicators, Table 2 includes their standard deviation,
which proves that the results obtained by the proposed method
are also the most stable. Finally, Fig. 9 intends to further
illustrate the stability of the tested methods that obtained better
global results. We observe that the proposed method systemati-
cally outperforms other approaches in the light of these quality
indicators.

4 Conclusion
This paper presents an object-oriented approach to the problem
of obtaining a single focused image from a set of microscopic
images captured from a single slide including objects that hap-
pen to be focused each in a different image of the set. The pro-
posed MFIF method shows several specific advantages respect
to other state-of-the-art methods: first, it is driven by a region-
based segmentation, which prevents for the highly visible arti-
facts that may appear in block-based methods; second, it does
not apply any kind of image transform, hence respecting the
pixel-values of all focused regions, which is crucial for medical
imaging applications; and finally, it includes a artifacts-removal
technique, which only operates were required and adapts to
the expected extent of the fusion-generated artifacts. Results,
obtained over a representative dataset and compared to other
published approaches, prove the validity of our proposal.

Appendix A: Pap Smear Images Sequences
Dataset for Multifocus Image Fusion

A.1 Extra Material for Download
The extra materials are available for download (Ref. 27) and
contain the following: the entire 50 cervical cells images
sequences dataset; the region-based MFIF method proposed
for comparison with the other MFIF methods (as a MATLAB
interface); and the entire fusion results.
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21. C. S. Xydeas and V. Petrović, “Objective image fusion performance
measure,” Electron. Lett. 36(4), 308–309 (2000).

22. V. Petrovic and C. Xydeas, “Objective image fusion performance
characterization,” in Tenth IEEE Int. Conf. on in Computer Vision
(ICCV ’05), Vol. 2, pp. 1866–1871 (2005).

23. A. Santos et al., “Evaluation of autofocus functions in molecular cyto-
genetic analysis,” J. Microsc. 188(3), 264–272 (1997).

24. Y. Sun, S. Duthaler, and B. J. Nelson, “Autofocusing in computer
microscopy: selecting the optimal focus algorithm,”Microsc. Res. Tech.
65(3), 139–149 (2004).

25. X. Y. Liu, W. H. Wang, and Y. Sun, “Autofocusing for automated micro-
scopic evaluation of blood smear and pap smear,” in 28th Annual Int.
Conf. of the IEEE In Engineering in Medicine and Biology Society
(EMBS ’06), pp. 4718–4721 (2006).

26. X. Y. Liu, W. H. Wang, and Y. Sun, “Dynamic evaluation of autofocus-
ing for automated microscopic analysis of blood smear and pap smear,”
J. Microsc. 227(1), 15–23 (2007).

27. S. Tello-Mijares, “Multi focus image fusion,” 2018, https://drive.google.
com/drive/folders/1bcrJM8Kw0mzKF8VKpHg1WVlOxWGulwdj.

Santiago Tello-Mijares Received his BS degree in electronic engi-
neering in 2006 and his PhD degree in electrical engineering science
in 2013, from Instituto Tecnológico de la Laguna, Torreón, México;
and in 2017, the PhD degree in telecommunications and informatics
engineering at Universidad Autonóma deMadrid, Madrid, Spain. He is
actually titular professor at Postgraduate Department in Instituto
Tecnológico Superior de Lerdo, Lerdo, Mexico. His research interests
are biomedical image, artificial intelligence, and robotics.

Jesús Bescós received his BS degree in telecommunications engi-
neering in 1993 and the PhD degree in the same field in 2001 from
Universidad Politécnica de Madrid, Spain. He is a professor (since
2003) at the Universidad Autonóma de Madrid, where he codirects
the Video Processing and Understanding Lab. His research interests
include the analysis of video sequences, video indexing based on
content, 2-D and 3-D machine vision.

Journal of Biomedical Optics 056005-9 May 2018 • Vol. 23(5)

Tello-Mijares and Bescós: Region-based multifocus image fusion for the precise. . .

https://doi.org/10.1016/j.compeleceng.2011.04.016
https://doi.org/10.1016/j.compeleceng.2011.04.016
https://doi.org/10.1016/j.patcog.2012.09.012
https://doi.org/10.1016/j.inffus.2013.11.005
https://doi.org/10.1016/j.sigpro.2013.09.001
https://doi.org/10.1007/s11760-012-0361-x
https://doi.org/10.1007/s11760-012-0361-x
https://doi.org/10.3788/COL201311.121102
https://doi.org/10.3788/COL201311.121102
https://doi.org/10.1166/jmihi.2016.1750
https://doi.org/10.1364/OE.21.005182
https://doi.org/10.1016/j.inffus.2017.10.010
https://doi.org/10.1016/j.inffus.2017.10.010
https://doi.org/10.1117/1.3662456
https://doi.org/10.1016/j.sigpro.2012.01.027
https://doi.org/10.1364/OE.9.000184
https://doi.org/10.1016/j.inffus.2016.09.007
https://doi.org/10.1016/j.jocs.2016.10.009
https://doi.org/10.1016/j.patrec.2017.03.002
https://doi.org/10.1016/0167-2789(92)90242-F
https://doi.org/10.1109/TIT.1975.1055330
https://doi.org/10.1109/TIT.1975.1055330
https://doi.org/10.1109/34.1000236
https://doi.org/10.1016/j.patrec.2014.03.018
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1049/el:20000267
https://doi.org/10.1109/ICCV.2005.175
https://doi.org/10.1109/ICCV.2005.175
https://doi.org/10.1046/j.1365-2818.1997.2630819.x
https://doi.org/10.1002/jemt.20118
https://doi.org/10.1109/IEMBS.2006.259263
https://doi.org/10.1109/IEMBS.2006.259263
https://doi.org/10.1109/IEMBS.2006.259263
https://doi.org/10.1111/j.1365-2818.2007.01779.x
https://drive.google.com/drive/folders/1bcrJM8Kw0mzKF8VKpHg1WVlOxWGulwdj
https://drive.google.com/drive/folders/1bcrJM8Kw0mzKF8VKpHg1WVlOxWGulwdj
https://drive.google.com/drive/folders/1bcrJM8Kw0mzKF8VKpHg1WVlOxWGulwdj
https://drive.google.com/drive/folders/1bcrJM8Kw0mzKF8VKpHg1WVlOxWGulwdj

