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Abstract

Significance: In order to elucidate therapeutic treatment to accelerate wound healing, it is cru-
cial to understand the process underlying skin wound healing, especially re-epithelialization.
Epidermis and scab detection is of importance in the wound healing process as their thickness
is a vital indicator to judge whether the re-epithelialization process is normal or not. Since optical
coherence tomography (OCT) is a real-time and non-invasive imaging technique that can per-
form a cross-sectional evaluation of tissue microstructure, it is an ideal imaging modality to
monitor the thickness change of epidermal and scab tissues during wound healing processes
in micron-level resolution. Traditional segmentation on epidermal and scab regions was per-
formed manually, which is time-consuming and impractical in real time.

Aim: We aim to develop a deep-learning-based skin layer segmentation method for automated
quantitative assessment of the thickness of in vivo epidermis and scab tissues during a time
course of healing within a rodent model.

Approach: Five convolution neural networks were trained using manually labeled epidermis
and scab regions segmentation from 1000 OCT B-scan images (assisted by its corresponding
angiographic information). The segmentation performance of five segmentation architectures
was compared qualitatively and quantitatively for validation set.

Results: Our results show higher accuracy and higher speed of the calculated thickness com-
pared with human experts. The U-Net architecture represents a better performance than other
deep neural network architectures with 0.894 at F1-score, 0.875 at mean intersection over union,
0.933 at Dice similarity coefficient, and 18.28 μm at an average symmetric surface distance.
Furthermore, our algorithm is able to provide abundant quantitative parameters of the wound
based on its corresponding thickness maps in different healing phases. Among them, normalized
epidermal thickness is recommended as an essential hallmark to describe the re-epithelialization
process of the rodent model.

Conclusions: The automatic segmentation and thickness measurements within different phases
of wound healing data demonstrates that our pipeline provides a robust, quantitative, and accu-
rate method for serving as a standard model for further research into effect of external pharma-
cological and physical factors.
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1 Introduction

The skin is the largest organ of the human body and provides essential functions to maintain
homeostasis of the body. One of the most important roles of the skin is to protect the body against
harmful pathogens which exist in the external environment. Any form of injury initiates a rapid
response to restore the integrity of the skin and remove potential invading pathogens. The proc-
ess of tissue repair following injury is a fundamental process of all living organisms and can even
be observed in primitive multi-cellular organisms. Despite species and tissue specificity to the
tissue repair process, there are four canonical overlapping phases involved in the wound healing
process: hemostasis, inflammation, proliferation, and remodeling.1

Impaired wound healing can be life-threatening,2,3 especially for sufferers of diabetes
mellitus who can be at an elevated risk of developing chronic, non-healing wounds.4 Re-
epithelialization is a critical procedure of wound healing that occurs during the proliferation
and migration phases of wound healing. In short, all the wounds are covered by an epithelium
(as an obstacle) administered by several complex events emanating from the epithelium itself and
by the temporal recruitment into the wound bed for immune cells.5,6 Inability to re-epithelialize
is a hallmark of chronic non-healing wounds.7 Note that the epidermis detection, such as the
epidermal thickness, is an essential indicator to judge whether the re-epithelialization process is
normal.8 Formation of a scab is also an essential indicator, commonly formed in the coagulation
and inflammation phases, to provide structural stability to the wound and prevent exsanguina-
tion.9 Thus, to design effective treatments, further precise analysis of epidermal restoration and
scar formation/loss during wound healing is required.

The complexity of the re-epithelialization process in wound healing cannot currently be
replicated in vitro. The use of rodent model is an effective way of studying this process.10

Histology remains the gold standard for assessing the molecular and cellular change of rodent
model quantitatively during wound healing.11 Non-invasive methods are, however, desirable
because it eliminates the need either to sacrifice animals or to collect serial skin biopsies to
evaluate changes in wound cure. Additionally, it may provide immediate information without
changing the tissue conditions during imaging. Currently, optical coherence tomography (OCT)
and OCTangiography (OCTA) are emerging three-dimensional (3D) and non-traumatic imaging
modalities that are enable providing high-resolution volumetric tissue structural and vascular
information up to a few millimeters in depth without contrast agent.12,13 With the advances
in optical fiber and laser technology, OCT is also well-suited to investigate tissue responses
in real time in high scattering tissue, especially in skin sites.14,15 In some studies, OCT and
OCTA techniques have been explored to visualize microstructure and microvascular change
in the process of wound healing in human and animal models.16–19

Quantitative analysis of epidermis and scab region based on OCT often includes manual
segmentation, which is extremely time-consuming and impractical. Recently, researchers in the
OCT community developed semiautomated epidermis segmentation methods to tackle this
problem.20–22 The most common one utilized a number of user-defined lines located at the boun-
daries between different layers or features in 3D OCT volumes for segmentation.21,23,24 For the
automatic segmentation and thickness quantification, Weissman et al.25 used a shapelet-based
image processing technique. Hori et al.26 suggested to automatically detect the dermal-epidemic
junction (DEJ) based on minimum local intensity. Li et al.27 defined the epidermis segmentation
in three stages: low-square weighed-preprocessing, graphic surface detection of the surface of
the skin, and local integral DEJ detection projections. However, segmentation process proposed
in these studies is highly reliant on the image quality. It is prone to the segmentation errors if
large variances of skin pathologies based on OCT are present. Srivastava et al.28 proposed a 3D
graph-based approach to segment skin layers with a new cost function which is capable of
degrading the impact of shadowing effects in OCT images. In some cases, however, the
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segmentation performance was significantly degraded when hair was touched the skin surface in
B-scans.

To address this problem, a combination of machine learning (random forests and kernel
regression) and mathematical modeling was investigated to support the graph-based segmenta-
tion.29,30 A combination of U-Net model and a robust postprocessing method was proposed to
segment epidermis and hair follicle in healthy human skin.31 Kepp et al.32 developed a modified
convolutional neural network (CNN) model by densely connected convolutions blocks rather
than standard convolution blocks to segment the skin layer of healthy mouse. However, the
epidermis and dermis layer were treated as one class in this study, which was impossible to
obtain epidermis layer thickness information. Sheet et al.33 subsequently used self-induced
denoising encoders to learn tissue-specific presentations. However, the standard quantitative
evaluation for each phase of wound healing was missing. Moreover, no scab region was men-
tioned in their cutaneous wound healing model. Hence, the authors possibly treated the scab and
epidermis region as one class.

Despite recent work on analyzing the processes of cutaneous wound healing and layer
thickness computation using a mouse model, the applications based on OCT remain limited.
Additionally, lack of a standardized segmentation method and quantitative analysis strategy
based on wound healing model makes it difficult for researchers to gain access to the character-
istics of epidermal and scab changes precisely during each phase of wound healing.

In this paper, we propose a pipeline based on deep-learning-based methods to segment the
epidermis and scab region automatically in the process of wound healing (day 3, day 7, day 10,
day 14 after injured, and control data). After training five deep-learning architectures and 10-fold
cross evaluation, the segmentation performance of the five models was compared qualitatively
and quantitatively. U-Net model34 has shown the best performance in segmenting the target
structure while minimizing the effect of other low scattering interfering tissue and noise. This
model also has higher accuracy of segmentation with higher F1-score compared with other
models. Furthermore, our novel pipeline is able to provide the standardized thickness measure-
ment of epidermis and scab inner and outer of the wound from en face reconstructed thick-
ness maps.

Four contributions have been made related to proposed pipeline. (1) Various structural char-
acteristics associated with the multiple phases of full-thickness excisional wound healing are
successfully monitored in non-invasive way using standardized mouse model. (2) Our proposed
pipeline is robust and efficient to segment target structures avoiding artifacts that are caused by
many image acquisition processes [hyper-reflection, bulk noise, and signal-to-noise ratio (SNR)
gapping] and diverse anatomy (remaining mouse hair, epithelial tongue, and granulate tissue).
Importantly, our approach has the ability to distinguish the scab and epidermis region. (3) A
robustly accurate measurement method is proposed even when neither the skin surface nor the
dermoepidermal junction is flat in the wound region during various wound healing stages. (4) A
new way of measuring normalized epidermal thickness is provided to quantitatively measure the
re-epithelialization process in the wound area over the healing timeline without manual inter-
vention. This lays the groundwork for rapid clinical quantitative translation, which will improve
the existing wound healing evaluation technique in mice.

2 Method

2.1 Deep-Learning-Based OCT Pipeline for Automatic Measurement
of Epidermis Layer and Scab

To facilitate the use of OCT for monitoring wound healing, an automatic algorithm to quantify
the thickness of the epidermis and scab is desired. We deployed deep-learning methods for the
segmentation of the epidermis and scab from each cross-section OCT images during wound
healing and then created a standardized strategy to automatically evaluate layer thickness from
reconstructed en face thickness maps. Figure 1 provides a schematic description of the proposed
pipeline. Our proposed pipeline comprises the following three steps:

1. Generation of a structural image using previously developed reconstruction method;
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2. Automatic segmentation of the epidermis and scab layers from cross-section view using
CNN-based deep-learning algorithms;

3. Evaluation of the thickness of epidermis and scab layer using automatic algorithms based
on en face thickness maps and proposed calculation strategy.

2.2 Experimental Setup

2.2.1 Experimental samples

All experiments were conducted with approval from the local ethical review committee at the
University of Edinburgh and in accordance with the UK Home Office regulations (Guidance
on the Operation of Animals, Scientific Procedures Act, 1986). Experiments on animals were
performed under PIL I61689163 and PPL PD3147DAB (January 2018 to January 2021).
Experiments were performed on 8-week-old male (8W) C57Bl/6J wild-type mice (Charles
River Laboratories, Tranent, UK).

Two mice that underwent the OCT examination were anesthetized with isoflurane (Zoetis,
Leatherhead, UK) by inhalation. Prior to wounding, animals received a subcutaneous injection of
analgesia (buprenorphine 0.05 mg∕kg) (Vetergesic, Ceva Animal Health Ltd., Amsterdam) and
the hair was trimmed on the dorsal skin (BaByliss Super Motor Skeleton Trimmer; BaByliss,
Hampshire, UK). Remaining fur was depilated with Nair sensitive hair removal cream (Church
and Dwight, Folkstone, UK). Four full-thickness excisional wounds were made to the dorsal skin
using a sterile, single-use, 4-mm-punch biopsy tool (Kai Medical; Selles Medical, Hull, UK).
Mice were housed in conventional cages in a 28°C warm box (Scanbur, Denmark) overnight
following the wounding.

2.2.2 System setup and imaging protocol

The system used for this study was an in-house-built, experimental prototype swept source-OCT
(SS-OCT) system, as shown in Fig. 2(a). This SS-OCT system was illuminated by a 200-kHz
vertical-cavity surface-emitting swept laser source (SL1310V1-20048, Thorlabs Inc., Newton,
NJ, USA). The light source has a central wavelength of 1310 nm and a spectral bandwidth of
100 nm, giving an axial resolution of ∼8 μm in tissue (∼11 μm in air). The sample arm consisted
of a hand-held probe, where a pair 2D galvo-scanner, an objective lens (LSM03, Thorlabs Inc.),
collimator, and display system (a mini charge-coupled device camera and a mounted screen)
were housed. The probe was affixed with a sample space to maintain a consistent distance
between the objective lens and the mouse skin. To minimize the bulk motion caused by breathing
of mouse, a 5-mm thickness and 15-mm diameter round cover glass was used. Between the
mirror and the skin, ultrasound gel was applied in the region of interest (ROI) which could reduce
the specular reflections from the superficial layer of skin.39 Moreover, the gel could fill the
uneven surface around the mouse wound to further reduce the effect from mouse breathing.
A visible laser beam with a wavelength of ∼650 nm was also including in the system, which

Fig. 1 The pipeline of automatic measurement of epidermis layer and scab. Five network struc-
tures of deep-learning network are compared in this study (Seg-Net,35 U-Net,34 Res-UNet,36

PSP-Net,37 and DeepLab-V338).
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was used to guide scanning area basically in the center of the injured region. 3D scanning captured
by this SS-OCT system contained 400 × 400 pixels, providing a field of view of 4 × 4 mm2. Four
repeated B-scans were taken at the same position of B-scan to extract the blood flow from static
tissue. The moderate penetration depth can be obtained for ∼1 mm. The scanning time for each
3D volume was ∼6 s, and each wound was repeatedly scanned for 3 to 5 times.

The imaging procedure is shown in Fig. 2(b), and the magnified images are showed in
Fig. 2(c). Mouse body temperature was maintained at 37°C with a heating mat. Scanning session
for each mouse, including preparation and adjustment of optimal position to ensure the adequate
stability of the probe during the imaging, was <25 min for animal safety purpose. With the set-
ups, three out of four wounds in the dorsal skin for each mouse were scanned successfully. One
extra scanning was also taken on healthy skin adjacent to the wound for comparison purposes.

2.3 Data Processing

Each acquired OCT and OCTA volume with size of 400 × 400 × 1920 (length × width × depth
in pixels) were preprocessed first. Afterward, the processed images were used to train deep-
learning neural networks. Figure 3 shows schematic description of the training procedure of
the semantic work. The detailed procedure is outlined step-by-step in this section.

2.3.1 Preprocess

The preprocessing of the acquired raw data volumes was performed using customized MATLAB
scripts (MATLAB 2020a, MathWorks Inc, Natick, MA, USA). OCT cross-sectional structural

Fig. 2 Experimental prototype of OCTA system. (a) Experimental setup based on SS-OCTA
system. (b) Photo showing one mouse being imaging using the proposed experimental setup.
(c) A magnified view of the area denoted by green dashed rectangle in (b).
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image was attained by forming the average of the repeated OCT signals at the coequal spatial
position.

To decrease the inevitable mice motion artifact and speckle noise, we used an Elastix-based
3D registration method that included rigid affinity and non-rigid B-spline transformation
repeated volume registration and averaging.40,41 Inter-B-frame complex eigendecomposition-
OCTA algorithm was applied onto the repeated B-frames at each position to extract micro-
vascular network information.42

Each B-scan was first cut to remove unnecessary background and then resized to 512 to 512
for greater computational efficiency. To reduce computational time, other preprocessed methods,
such as, contrast enhanced, attenuation compensation, or shadow removal algorithm have not
been applied for collection of cross-section structure images.

2.3.2 Database

All images were digitally stored in float 16 data format for offline analysis. Due to strong motion
and shadow artifacts, four volumes had to be excluded, resulting in a total number of 36 OCT
volumes, consisting of 14,400 OCT cross-section images in total (36 volumes × 400 B-scans/
each volume). One thousand full-size 2D B-scan images from mouse No. 494 were randomly
selected (200 for each phase) for training datasets, and 1000 randomly selected 2D B-scan
images from mouse No. 505 were used as a validation set. The model selection was based
on the quantitative analysis of validation datasets. In total, 2000 B-scan images were annotated
by two experts using a custom software by MATLAB.

2.3.3 Deep neural network training

It is a difficult task to process cross-sectional OCT images with hyper-reflection, bulk motion, and
SNR gapping. Thus, finding proper architecture is an essential step in our study. In our previous
study,43 dense fully convolutional network and full resolution convolution network always per-
form over-or under-segmentation especially with low-contrast medical images. Furthermore,
an executive review that we have done through previous researchers43–45 has also been confirmed
with previous studies. The selected five architectures cover three types of structures: Seg-Net,
U-net, and Res-UNet, which have all adopted the symmetric structures for encoder and decoder;
PSP-Net belongs to U-Net variation. Unlike U-Net, PSP-Net captures multi-scale spatial context
from deep layers; DeepLab-V3 belongs to Res-UNet variation. Unlike Res-UNet, it integrates
dilated convolution and spatial pyramid pooling into the architecture.

The five CNN-based architecture can be observed in Fig. 4 to address the segmentation task.
Data augmentation is performed to prevent overfitting. We randomly applied horizontal flips and
rotations (�15 deg) to each input B-scan image. The data were augmented using horizontal flips
(left to right/right to left). For each epoch, each image was randomly flipped horizontally with a
50% chance. No early stoppage is used, with convergence based on validation loss inspections.
Each network is trained from scratch with weights initialized with utilizing the normalization
approach of Glorot and Bengio.46

Fig. 3 The pipeline of training workflow for automatic measurement of epidermis layer and scab.
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In the study, the Adam algorithm was used for minimizing the sum of cross entropy losses.
The hyperparameters used in Adam are α ¼ 0.001, β1 ¼ 0.9, β2 ¼ 0.999, ϵ ¼ 1 × 10−8. The
cross-entropy loss function is defined as

EQ-TARGET;temp:intralink-;e001;116;339Li ¼ −y logðPiÞ − ð1 − yiÞ logð1 − piÞ; (1)

where yi is the targets and pi represents the class probabilities. The sigmoidal outputs of a neural
network can be defined as follows:

EQ-TARGET;temp:intralink-;e002;116;284σðziÞ ¼
1

1þ e−zi
: (2)

For fair comparison, the strategy of data augmentation, initialization, and training parameters
remain to the same for five CNN-based architectures. The specific training parameters are shown
in Table 1. The software environment used throughout this work consists of Keras 2.2.446 using
Tensorflow47 (GPU) 1.8.0 backend in Python 3.7.10. The hardware consists of an Intel Xeon®

3.30 GHz E5-2680 v3 CPU, Nvidia GeForce GTX 1080Ti GPU, VMware virtual SSD and
16 GB 2400 MHz DDR4 ECC RAM.

2.4 En Face Thickness Measurement Method

The automated thickness measurement within different phases during wound healing was dem-
onstrated in Fig. 5. Figures 5(a) and 5(h) show a representative en face structural image for
wound healing day 3 and day 10, respectively. The corresponding en face epidermal thickness
maps was shown in Figs. 5(b) and 5(i). A color code was subsequently applied to represent
a thickness range of 0 to 131.25 μm (0 to 35 pixel). It was obtained by calculating the depth
separation between the upper and lower boundaries of predicted segmentation result by

Fig. 4 Architecture of five different CNN-based models (Seg-Net, U-Net, Res-UNet, PSP-Net, and
DeepLab-V3).
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deep-learning networks at each A-line. The overlays of en face thickness map and en face
structure image in wound at day 3 and day 10 are shown in Figs. 5(c) and 5(j), respectively.
In wound healing day 3, the region inside the white dashed line indicates area remaining to be
re-epithelialization while the red dashed line highlights the edge of the wound. The area between
the white and red dashed line is considered as newly generated epidermis region in the wound
while the area outside the red dashed line is regarded as a healthy region. Since the full re-
epithelialization was completed in day 10, the region inside red dashed line is a new epithelial
region; meanwhile, it can also be considered as a wound area. Figures 5(d), 5(f), 5(k), and 5(l)
show the representative positive and negative masks for region-specific epidermal thickness
measurements for wounds at day 3 and day 10. Red mask represents the area remaining to
re-epithelialization which value is null. Further, the mask is used to calculate its corresponding

Fig. 5 Mask preparation for quantitative the epidermal thickness during the wound healing. (a),
(h) MIP en face projected structural images in dermis layer for day 3 (representative of not all the
wound regions finish the re-epithelialization) and day 10 (representative of all the wound region
has completed the re-epithelialization). (b), (i) The corresponding epidermal thickness maps of
(a) and (h), respectively. (c), (j) The overlaid images of (a) and (b), (h) and (i), respectively.
The red dashed line indicates the edge of wound area. The area inside the white dashed line
indicates the region has not finished re-epithelialization. (d), (k) A negative mask derived from
en face projected structure image of wound for day 3 and day 10, respectively. (e), (l) The multi-
plication of (c) and (d), (j) and (k), respectively. This allowed for quantification of epidermal thick-
ness solely in healthy region. (k), (l) A positive mask derived from en face projected structure
image of wound for day 3 and day 10, respectively. (g), (m) The multiplication of (c) and (f), (j) and
(l), respectively. This allowed for quantification of epidermal thickness solely in the wound region.
The red area in the day 3 is considered as remaining area to be re-epithelialization area which
value is null.

Table 1 Training parameters for five CNN-based models.

Training parameters Value

Batch size 8

Epoch 200

Learning rate 0.0001

Weight decay 2 × 10−5

Optimizer momentum parameters 0.9

Decay of learning rate 0.99
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thickness map [see Figs. 5(e), 5(g), 5(l), and 5(m)], allowing for epidermal thickness changes to
be measured solely within the wound itself, and/or within an equivalent control site. A more
reliable normalized method is defined as below to assess the process of re-epithelialization
during wound healing:

EQ-TARGET;temp:intralink-;e003;116;687Re_Epinor ¼
NE_wound

Epi_health
; (3)

where NE_wound represents the mean epidermal thickness in the region of new growth epidermis
in wound region, while Epi_health represents the mean epidermal thickness in adjacent healthy
region. Re_Epinor is epidermal thickness in the wound area normalized by its surrounding area.
Since the scab region is always above the wound, it can be easily demonstrated by calculating
the distance between the upper and lower boundaries of predicted red mask at each A-line.

The normalized epidermis and scab thickness were averaged and represented as a mean
value ± standard error of the mean. Groups were compared with non-paired t-tests in the adja-
cent phase. In order to indicate statistical meaning, P-value below 0.05 was indicated. Four
levels are shown in the graphs: *, P-value < 0.05; **, P-value < 0.01; and ***, P-value < 0.001.

3 Results

Two experts examined the OCT frames from two mice and selected random 2000 B-scan images
that corresponded to the ROI. Afterward, the contours of the epidermis and scab layers were
marked independently. The thickness of both layers is predicted by the deep-learning algorithms
and by the experts for comparison.

3.1 Qualitive Segmentation Accuracy Analysis Based on CNN
Deep-Learning Networks

Qualities segmentation results from experts are shown in Fig. 6. The histology images shown in
Figs. 6(a), 6(e), 6(i), 6(m), and 6(q) were used to confirm and validate the position of essential
layer information in corresponding OCT imaging. According to the research of Israelsen et al.47

and the aid of corresponding histology images, the first clue to identify the epithelial in OCT
images can be found during the wound healing, which is usually based upon recognizing the
low-signal band region due to its lower scattering effect [see Figs. 6(b), 6(f), 6(j), 6(n), and 6(r)].
In the control data, the boundary between ED and D has high contrast and the epidermis appears
as a thin and flatten layer. However, in the wound region, the contrast between the epithelial and
subepithelial zone was prominently reduced and it highly degraded the visualization of the DEJ
layer. Thus the epidermis region in the wound area can indirectly be defined accurately via
microvascular information, as it typically coincides with the onset of re-epithelialization.18

Cross-sectional OCTA signal (showed as red signal) overlaid on its corresponding OCT images
to assist finding the position of epidermis region, which can be illustrated as yellow contours in
Figs. 6(c), 6(g), 6(k), 6(o), and 6(s). The scab above the wound consists mainly of necrotic tissue
and presents poor scattering and highly surface reflection in OCT datasets. The blue contour in
Figs. 6(c), 6(g), 6(k), 6(o), and 6(s) highlights the scab region. Figures 6(d), 6(h), 6(l), 6(p), and
6(t) show the automatic generated mask according to the manual segmentation contour which is
the human-annotated ground truth of scab and epidermis region. The red-colored mask repre-
sents scab region while green colored mask defines the epidermis region. The black area means
other structures including background.

The qualitative comparison of segmentation results of representative 2D B-scan OCT images
in the validation dataset is presented qualitatively in Fig. 7. The first column is the original
magnified B-scan images; the second column is corresponding annotations from the first expert;
the third to seven columns are the predicted results by five different CNN-based models
(Res-Unet, U-Net, DeepLab-V3, PSP-Net, and Seg-Net model), respectively.

First row in Fig. 7 shows the result of epidermis segmentation in control data, all of the five
models showed an acceptable result as a thin layer along the skin surface. However, compared
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Fig. 6 Experts’ manual segmentation strategy. (a), (e), (i), (m), and (q) Representative histology
images (H&E staining) for control, wound healing day 3, day 7, day 10, and day 14, respectively.
(b), (f), (j), (n), and (r) Cross-section OCT images and structure annotation of corresponding his-
tology images of (a), (e), (i), (m), and (q). (c), (g), (k), (o), and (s) Overlay of cross-section structure
images and its corresponding cross-sectional B-frames of the vasculature during normal and heal-
ing states. Blue contour represents scar area while yellow contour highlights the epidermis region
which is marked by experts. (d), (h), (l), (p), and (t) Automatically generated mask according to the
manual segmentation contour where the red mask represents scab region while green mask rep-
resents epidermis region, black color represents remaining area including other anatomy structure
and background information. HF, hair follicle; ED, epidermis; D, dermis; GT, granulation tissue;
DEJ, dermal-epidermal junction; SF, subcutaneous fat; and FS, fascia. Scale bar = 1 mm.
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with Res-UNet, U-Net, and PSP-Net model, the connectivity of epidermis prediction is worse in
DeepLab-V3 and Seg-Net model. Although there is high visual agreement between segmenta-
tion results in day 3 of five different models with expert segmentation (shown in the second row
of Fig. 7), the DeepLab-V3 and Seg-Net model have a problem in recognizing the thickened
epidermis closed to the edge of scab. As demonstrated in fifth row of Fig. 7, when there is
shadow artifact involved, the Seg-Net model fails to segment epidermis in this region. Other
models are more robust to the low SNR and shadow region caused by hyper-reflection or hair.

3.2 Quantitative Segmentation Model Comparison

In order to compare the performance of deep-learning-based segmentation approach using five
different models, seven different metrics are employed for a quantitative assessment of segmen-
tation accuracy including precision (p), recall (r), F1-score (F1), F2-score (F2), intersection
over union (IoU), Dice similarity coefficient (DSC), and average symmetric surface distance
(ASSD). Definition of all seven quantitative parameters of segmentation accuracy can be found
in the Appendix.

As shown in Table 2, DeepLab-V3 model has the highest mean recall value (0.923); however,
it suffers from a poorer precision value with 0.857 compared with U-Net. DeepLab-V3 in some
cases was not able to find intact epidermis and scab region. A similar trend is observed in the
quantitative results of Seg-Net, which has a high recall but low precision. The results for the
recall and precision are similar across Res-UNet, U-Net, and PSP-Net models cross all the
wound recovery timeline. Notably, the mean IOU, F1_score, DSC, and ASSD of U-Net model
outperformed other models. Meanwhile, the U-Net model has a good compromise for the recall
and precision values, which can further confirm that the U-Net can effectively predict the epi-
dermis pixels. Furthermore, the ASSD based on U-Net model has the smallest variation with a
range of 6.832 μm of mean absolute error. Table 3 compares the computational cost and cal-
culation speeds for prediction of one cross sectional image with size of 512 × 512. The result
reveals that U-Net model runs considerably faster than other CNN-based architecture with
6.7 ms per images and achieves the moderate computation complexity. Size of training param-
eters in DeepLab-V3 is lowest but achieve much slower speed during testing. Our quantitative
results demonstrated that the best performance of five deep-learning models is the U-Net model.
Additionally, Fig. 8 shows that both training loss and evaluation loss decrease at around
40 epochs and both smoothly down to the same level. It shows that the model does not overfit
the training data.

Fig. 7 Segmentation results of representative OCT B-scan images in control, day 3, day 7, day 10,
and day 14 postinjured. First column: the magnified representative cross-section B-scan images
from validation datasets in control, day 3, day 7, day 10, and day 14 postinjured. Segmentation
results with expert annotations (second column) and with segmentations by Res-UNet, U-Net,
DeepLab-V3, PSP-Net, and Seg-Net (third to seventh columns, respectively). Scale bar
represents 500 μm.
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3.3 Qualitative Result of Epidermis and Scab Thickness Map

Figures 9(p)–9(t) show the selected cross-sectional B-scan images corresponding to the dashed
red lines in Figs. 9(a)–9(e), respectively. The en face projection of adjacent normal skin
surrounding the wound [see Fig. 9(a)] typically gives homogenous distribution of the texture.
The en face epidermal thickness maps [Fig. 9(f)], together with the corresponding cross-
sectional B-frame of normal skin, which demonstrate the epidermis in normal mouse skin is
a flat, homogeneous, intact, and thin layer.

From red dashed line circled in Fig. 9(q), we observed that the thick scab was forming to
cover the wound area in day 3 postinjury. The formation of granulation tissue was mainly sit-
uated at the bottom of the scab, and it already fully filled the wound bed. Thickened epidermis is
observed at its cut margins, in order to recruit keratinocytes, but they have not bridged the whole
incision in this stage. The epidermal thickness map generated by our proposed deep-learning

Table 3 Comparison of computational complexity and calculation speed for five CNN-based
model.

Seg-Net U-Net Res-UNet PSP-Net DeepLabV3

Computation complexity (MB) 112.33 69.25 124.28 204.40 43.68

Calculation speed (s) 0.0090 0.0067 0.016 0.015 0.026

Fig. 8 Training loss and validation loss of U-Net model.

Table 2 Mean evaluation metric (IOU, recall, precision, F1_score, F2_score, DSC, and ASSD)
with standard deviation of validation data (bold font highlights the best indicator).

Mean IOU Recall Precision F1_Score F2_Score DSC ASSD (μm)

Seg-Net 0.826 ±
0.072

0.901 ±
0.052

0.82 0 ±
0.04 2

0.862 ±
0.044

0.885 ±
0.047

0.905 ±
0.067

28.59 ±
10.29

Res-UNet 0.859 ±
0.053

0.889 ±
0.028

0.884 ±
0.032

0.886 ±
0.024

0.888 ±
0.036

0.924 ±
0.046

20.28 ±
8.49

U-Net 0.875 ±
0.033

0.906 ±
0.043

0.882 ±
0.027

0.894 ±
0.036

0.901 ±
0.032

0.933 ±
0.033

18.28 ±
6.83

PSP-Net 0.859 ±
0.046

0.880 ±
0.023

0.892 ±
0.038

0.886 ±
0.057

0.882 ±
0.042

0.884 ±
0.033

20.16 ±
9.46

DeepLab-V3 0.834 ±
0.058

0.923 ±
0.062

0.857 ±
0.034

0.889 ±
0.053

0.909 ±
0.055

0.909 ±
0.057

22.58 ±
8.05
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network is illustrated in Fig. 9(g), together with overlapped images with en face structure image
[Fig. 9(l)], which again confirm the thickened epidermis is located in the peripheral of
wound area.

In the healing period 7-days after surgery, the re-epithelialization grows rapidly, and the scab
is replaced gradually which can be shown from Figs. 9(c) and 9(r). The incisions were com-
pletely bridged with multi-layers of newly synthesized epithelial cells. The progressive increase
in its collagen fibers and fibroblasts were placed in granulation tissue (see bright region in the
wound). As shown in Figs. 9(h) and 9(m), the thickened region is well correlated with corre-
sponding wound region of en face structure image. The epidermis gradually becomes thicker
when it reaches to the center of the wound.

The observation from Figs. 9(d) and 9(e) and its corresponding cross-section image
[Figs. 9(a) and 9(t)] in day 10 and day 14 revealed similar structural information as the major
components in granulation tissue is extracellular matrix (ECM) and there is little scab remaining
on the top of the wound region. During wound contraction, re-epithelialization showed a lower
number of epithelial layers in wound healing day 10, while in day 14, its thickness was similar to
intact epidermis. The finding can be confirmed again by the obtained epidermal thickness map-
ping result (shown in Figs. 9(i) and 9(j)]. According to the overlaid region in Figs. 9(n) and 9(o),
it revealed thinner epidermis layer compared to that in day 7 postinjury when the process of
epithelial contraction just started.

Fig. 9 En face projected whole volume scan presenting the structure and epidermal features for
normal and wound skin within four different phases. (a)–(e) MIP en face projected structure
images during normal and different healing states (day 3, day 7, day 10, and day 14 postinjury).
The red dotted line on each en face image indicates where the corresponding cross-sectional
B scan images from mouse were taken from. (f)–(j) MIP en face epidermal thickness maps
by U-Net deep-learning network. The range of the color bar on the right side is 0 to 131.25 μm
(0 to 35 pixel). (k)–(o) Overlay of en face projected structure images and its corresponding
epidermal thickness maps. (p)–(t) Cross-sectional B frames of structure during normal and heal-
ing states. The area inside the red dashed line represents the epidermis region while the area
inside the green dashed line represents the scab obtained by deep-learning network. Scale bar
represents 1 mm.
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3.4 Quantitative Result of Epidermis and Scab Thickness Map

The selected U-Net model was applied to predict the epidermal and scab region of test datasets
which consisted of 36 OCT volumes (totally 14,400 OCT images). Figure 10 provides the quan-
tification results of epidermal thickness and scab thickness parameters at the days 3, 7, 10, and 14
postinjuries, alongside its corresponding results from normal skin region. Figure 10(a) shows the
averaged epidermal thickness taken solely from the healthy region (0.4 cm × 0.4 cm) surround-
ing the wound. The epidermal thickness is showed significant difference between control and
day 3 postinjury (P-value ¼ 0.0082), which indicates that the inflammation at day 3 thickens the
epidermis surrounding the wound area. Additionally, although there was no statistically signifi-
cant difference of averaged epidermal thickness in the healthy region between different stages of
wound healing, it shows a decreased trend which demonstrates that the inflammation subsides
gradually back to normal. Figure 10(b) shows the averaged epidermal thickness taken solely
from the wound area. The keratinocytes start to be recruited at the edge of the wound to get
a thicker epithelial (77.8� 7.0 μm) by day 3. Day 7 postinjury is a unique time when all wound
regions have completed epithelialization and the mean epidermal thickness in the wound has
reached its peak (114.6� 15.0 μm) before gradually decreasing as wound healing progresses
on day 10 (82.0� 13.6 μm) and day 14 (56.3� 5.1 μm). The epidermal thickness between all
the successive stage showed significant difference (day 3 to day 7: P-value ¼ 0.0028, day 7 to
day 10: P-value ¼ 0.013, day 10 to day 14: P-value ¼ 0.0018). In order to measure the change
of re-epithelialization in response to adjacent healing part, the statistical analysis of normalized
epidermal thickness is present in Fig. 10(c). The trend was similar to that in Fig. 10(b). However,
no significant difference can be shown between day 7 and day 10 postinjury. Shown in Fig. 10(d)
are the averaged scab thickness measurements at the days 3, 7, 10, and 14 postinjuries. Although
mean scab thickness decreased across different stages, the variance among individuals is mas-
sive. The significant difference is only visualized between day 3 and day 7, in which P value is
smaller than 0.0005.

Fig. 10 Quantitative result of epidermis and scab thickness spanning the whole healing process.
(a) Mean epidermis (ET) thickness in surrounding healthy region; (b) the mean thickness of
newly generated epidermis in wound region; (c) the mean normalized epidermal thickness;
and (d) the mean thickness of scab region. Error bars represent the standard deviation.
*Represents p-value < 0.05, **represents p-value < 0.01, ***represents p value < 0.001, ET,
epidermal thickness.
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4 Discussion

The concept of automated segmentation using deep-learning method has become increas-
ingly popular in OCT imaging; however, comparatively little has been applied in dermatol-
ogy and the validation of proposed models were limited to healthy samples. The proposed
pipeline in this study offers innovative and efficient way to segment the epidermis and scab
precisely. According to the segmentation output, en face epidermal and scab thickness maps
as well as its quantitative parameters are obtained automatically spanning the whole healing
process.

Image preprocessing approach, including multi-volume registration and autocropped algo-
rithm, was applied to reduce the movement and speckle noise as well as enhanced the training
efficiency. A standard and systematic manual segmentation method for mouse model is validated
by its corresponding histology images and angiograms via OCTA technique. Five different archi-
tectures of CNN-based segmentation models (Res-UNet, U-Net, DeepLab-V3, PSP-Net, and
Seg-Net) were applied for comparison. All the model trained with 200 epochs without over-
fitting. All the five models are able to identify basic expressive features of epidermis and scab.
In comparison to Seg-Net and DeepLab-V3 model, the U-Net, Res-UNet, and PSP-Net models
offer more robust segmentation result against the shadow noise, hyper-reflection and low SNR
region, resulting in better connectivity in the segmented epidermis structure. DeepLab-V3 and
Seg-Net models also present a higher recall and poorer precision value compared with other three
models. Furthermore, U-Net and Res-UNet were more adaptive to different stages of wound
healing which can recognize various thickened epidermis, epithelial tongue (mostly in day
3), and scab region. U-Net model showed both higher DSC scores and lower ASSD compared
with Res-UNet which means it improves the segmentation accuracy in the area of object con-
tours. Additionally, U-Net shows an excellent balance between precision and recall which agrees
with the highest F1-score (Table 2). According to the quantitative assessment, the U-Net model
is then selected to predict the new OCT datasets in test data (∼3 s to predict one data volume)
which requires no additional human input.

By analyzing the en face epidermis and scab thickness maps quantitatively with its corre-
sponding en face structural images in this study, we were able to formulate an approximate
healing timeline schematic for full-thickness incision wound in healthy mouse. It includes
inflammation, proliferation, and remodeling phases, which are not strictly separated from each
other, and their processes freely blend together.1 Control data were taken from the adjacent
healthy region of the wound and its epidermal thickness maps is homogeneous. Based on
our model, the mean epidermal thickness in back site of the healthy mice model is 28.0�
3.59 μm, which is slightly thicker than another research gives 21.9� 4.29 μm by measuring
15 to 20 random site based on histology images.48 The difference is taken into account for
in vivo OCT scanning, which has a lower effect on tissue dehydration. Based on epidermis
thickness maps and its corresponding cross-section structure images, it demonstrates the day 3
postinjured is in the overlapped phase of late inflammatory and early proliferation. Loosen
granulation tissue tends to fill out the wound bed, which can be regarded as the first step of
the proliferation stage. Together with the protection of thick scab (179.3� 37.9 μm) is forming
above the wound to rebuild the damaged area. In all the cases at day 3 postinjured, the epithelial
does not fully bridge the wound and its thickness in the re-epithelialization region was 2.07�
0.18 times thicker than the healthy region due to mitotic activity and proliferation of nearby basal
cells. The wound healing at day 7 and day 10 was characterized by almost total regression of the
inflammatory process as the new epithelial were completely bridged the wound bed with newly
synthesized epithelial cells. Re-epithelialization showed a higher number of newly formed epi-
thelial layers 3 to 4 times thicker than the surrounding healthy region in day 7 postinjured. By
day 10, the newly epidermis formation is only ∼2.5 thicker than the healthy region, thinner than
day 7, indicating that the process of epidermal contraction has begun. Moreover, the bright tissue
surrounding the contracting wound is thought to be a feature of new ECM (mainly composed by
collagen fibers),49 which at this stage serves two purposes: to provide structural strength and to
facilitate the migration of various cell types responsible for wound healing.50,51 Meanwhile, the
scab is gradually rejected. In the wound healing day 14, the thickness of epidermis in the wound
was reduced to approximately two times thicker than the normal area. In this stage, the wound
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is contracting, and the bright area considered as ECM region become fade, which reflects the
collagen type III being converted to type I. Additionally, almost all the scab is replaced by
the new tissue after wound healing day 14. At day 14, re-epithelialization process finishes as
the inflammatory signs disappear.

Due to the superior segmentation accuracy and speed outlined in this study, our algorithm
is able to provide the basis for quantitative assessment of the wound based on its state of re-
epithelialization. Moreover, the normalized epidermal thickness can be serving as an essential
hallmark to describe the normal re-epithelialization process of the mouse model. According to
the deviations from normal epidermis contracting speed in each timeline, it is promising to extent
the research in assessing the drug efficacy or physical factors (laser light and magnetic field) by
which the wound healing can be favorably influenced.

It should be acknowledged, however, that this study has some limitations. First, due to lim-
ited penetration depth in OCT, it is difficult to observe keratinocytes that have migrated beneath
the thick scab (commonly happened on day 3 postinjury). Secondly, the study comprised only
two mice (six sites for each stage) of the full-thickness wound. In the future, the algorithm should
be further validated by including wounds of different severities within a variety of scenarios. It is
also worth noting that the images used in the current study are from healthy mouse, and therefore
further work is required to examine the proposed segmentation methods in cases of different
disorders, such as a chronic wound. Additionally, from a technical perspective, the future lines
of work will focus on adapting the network architecture to other models, especially for human.
This can be performed by doing transfer learning,52,53 where the model is fine-tuned with data of
the target domain with only a small number of annotated images, which will enable the proposed
method to achieve clinical utility. Additionally, a novel technique has been developed recently
named zero-shot learning54,55 which can predict a class that was omitted from a training set.
Using this technique, it is promising to be saving more time for the training of new datasets
with different conditions of the model.

5 Conclusion

We present a novel pipeline that automatically detects epidermis and scab layer using deep-
learning frameworks. The method is validated by comparing the algorithm-obtained segmenta-
tion results with the golden-standard method (manual segmentations from human experts). Our
proposed deep-learning method shows promising results in segmentation accuracy and auto-
mated quantification of epidermal and scab thickness of mouse skin data within the standard
healing timeline. This pipeline is more efficient than manual labeling and makes OCT useful
in the clinical and research arenas. Furthermore, the automatic segmentation and thickness
measurements of data within different phases of wound healing demonstrates that our system
provides a robust, quantitative, and accurate method for serving as a standard model for further
research into pharmacological and physical factors.

6 Appendix: Evaluation Metrics

• Precision (p), recall (r), F1 score, and F2 score: These measures evaluate the fraction of
correctly predicted instances of the validation datasets. Given a number of true instances
GT and number of predicted instances Pred by a method, precision is the fraction of pre-
dicted instances that were correctly found:

EQ-TARGET;temp:intralink-;e004;116;161p ¼ TP

Pred
; (4)

where TP denotes number of true positives and recall is the fraction of ground-truth
instances that were correctly predicted:

EQ-TARGET;temp:intralink-;e005;116;96r ¼ TP

GT
: (5)
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Ideally, the best methods should have jointly high precision and recall. F1 and F2 scores
give a single score to capture this desirability through a weighted β harmonic means of
precision and recall:

EQ-TARGET;temp:intralink-;e006;116;699Fβ ¼ ð1þ β2Þ � p � r
ðβ2 � pÞ þ r

: (6)

β equal to 1 represents the F1 score while β equal to 2 represents F2 score.

• IoU can be defined as follows:

EQ-TARGET;temp:intralink-;e007;116;633IoUðGT; SÞ ¼ jGT ∩ Predj
jGT ∪ Predj ; (7)

where |·| denote the set cardinality. The IoU is 0 for no overlap and 1 for perfect overlap.

• DSC is a spatial overlap measure for segmentation which is similar to IoU. It can be
defined as

EQ-TARGET;temp:intralink-;e008;116;552DSCðGT; SÞ ¼ jGT ∩ Predj
jGTj þ jPredj : (8)

DSC is 0 for no overlap and 1 for perfect overlap. It is related to IoU:

EQ-TARGET;temp:intralink-;e009;116;495DSC ¼ 2 � IoU
1þ IoU

: (9)

• ASSD: The size of the segmented areas has an effect on the DSC, since misclassifications
have a stronger impact on smaller areas than on larger ones. Therefore, we additionally use
ASSD in this work. Let NS ¼ fp0; : : : ; pn1g and NGT ¼ fq0; : : : ; qn2Þ be a subsets of a
predicted segmentation S and a ground truth GTwith NS ⊆ Pred and NGT ⊆ GT contain-
ing surface points. The surface distance SD between SP and SG is then defined as

EQ-TARGET;temp:intralink-;e010;116;390SDðSp; SGÞ ¼
Xn2

i¼0

min kpj − qik2: (10)

The surface distance can then be used to determine the ASSD:

EQ-TARGET;temp:intralink-;e011;116;328ASSD ¼ SDðSP; SGÞ
2n2

þ SDðSP; SGÞ
2n1

: (11)
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