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Abstract. We discuss methods for modeling and removal of noise
in astronomical images. For its favorable properties, we exploit the
undecimated wavelet representation and apply noise suppression

in this domain. Usually, the noise analysis of the studied imaging sys-
tem is carried out in the spatial domain. However, noise in astronom-
ical data is non-Gaussian, and thus the noise model parameters need
to be estimated directly in the wavelet domain.We derive equations for
estimating the sample moments for non-Gaussian noise in the wave-
let domain. We consider that the sample moments in the spatial
domain are known from the noise analysis and that the model para-
meters are estimated by using the method of moments. © 2012 SPIE
and IS&T. [DOI: 10.1117/1.JEI.21.2.023025]
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1 Introduction
Noise analysis and noise suppression play an important role
in imaging processing applications. This paper is motivated
by the need of noise reduction in astronomical images. For
this type of images, noise contamination represents a signif-
icant problem, since these data are usually acquired at very
low levels of illumination. The image data used in this paper
originate from an international (Czech-Spanish) experimen-
tal system called burst observer optical transient exploring
system (BOOTES).1 This system has been in service since
1998 as the first Spanish robotic telescope for sky observa-
tion. This system is one of six fully operational similar sys-
tems in the world. The main goal of this project is to observe
extragalactic objects and detect a new optical transient (OT)
of gamma-ray burst (GRB) sources.

Within the denoising algorithm, we decided to use the
wavelet transform for video frame representation. A lot of
papers that deal with noise suppression and modeling in
the wavelet domain consider noise to be Gaussian, uncorre-
lated, and independent. For Gaussian noise, it is relatively
simple to estimate its variance. One of the most widely
used estimators is the median absolute deviation (MAD).2

However, as demonstrated in our previous work on noise
analysis of astronomical video of weak sporadic meteors,3

the contained noise is significantly non-Gaussian. As a con-
sequence, its statistics are not preserved after transformation
into the wavelet domain,4 and the noise model parameters
have to be estimated for every level of the wavelet decom-
position, which is computationally expensive. To overcome
this drawback, we derive equations that allow for finding
the k’th sample moment for every decomposition level by
evaluating the sample moments only in the spatial domain.

The possible usage of these proposed equations is in the
process of astronomical light images acquisition, where the
dark current contaminates the acquired light image data. The
dark current originates from the thermally generated charge
in the crystalline lattice of the charge-coupled device (CCD)
sensor (or another type of a photosensitive device) and is pre-
sent in the camera output even when an astronomical camera
is darkened. For very low temperatures of the CCD sensor
(approximately 173 K), the generated charge is negligible.5

Hence, astronomical cameras are usually cooled utilizing the
Peltier effect in order to partially suppress the thermal
charge. The temperature dependency of the dark current is
discussed in Refs. 5 and 6.

Dark current may also be eliminated by a specific config-
uration of the CCD chip. A number of configuration methods
have been developed recently.7,8 Okyay et al.9 study the
effect of the varying electrode area asymmetry on the leakage
behavior of metal-semiconductor-metal photodetectors
(MSM-PDs). The authors demonstrate an effective method
of dark current suppression by the means of the asymmetric
electrode area design and the appropriate biasing scheme in
MSM-PDs.

Another group of methods for dark current suppression is
based on postprocessing of the acquired images. Dark cur-
rent may be removed from the image by using dark frame
subtraction. The dark frame represents a mapped thermally
generated charge that is acquired by a darkened camera at the
same conditions (i.e., exposure time and temperature) as the
corresponding light image. An example of the dark frame
acquired by the SBIG ST-8 camera10 is shown in Fig. 1.

However, light images (see Fig. 2) are frequently acquired
without the corresponding dark frames. In this case median
filtering is usually used for dark current elimination.
Unfortunately, this simple method often causes significant
corruption of the imaged astronomical objects.

More sophisticated techniques for dark current suppres-
sion are based on statistical modeling of the dark frame. In
the spatial domain, Baer11 models the dark current histogram
by using the Log-Normal, the Gamma, and the Inverse
Gamma distribution. Goesele et al.12 propose a dark frame
subtraction method based on the entropy. This method is
based on the assumption that the dark current signal in-
creases the entropy of the resulting image, and thus the
entropy is minimal when the dark current signal is not
present at all.

For its sparsity and multi-scale nature, the wavelet trans-
form is used by many researchers in various signal proces-
sing areas such as image denoising or compression. Lyu and
Simoncelli13 model natural photographic images represented
in a multi-scale basis using the Gaussian mixture model. The
authors proposed algorithm for additive Gaussian noise
suppression on this framework. In the field of geoscience,
Amirmazlaghani14 introduced a Bayesian-based speckle-
suppression method that employs the two-dimensional (2-D)
generalized autoregressive conditional heteroscedasticity
(2-D-GARCH) model of the wavelet coefficients obtained
for log-transformed SAR images. Nevertheless, wavelet-
based denoising plays an important role also in astronomy.
In Ref. 15, Schmitt, Starck et al. study the large area

Fig. 1 Dark frame (inverted grayscale) acquired by SBIG ST-8
(conditions: T ¼ 288.15 K, texp ¼ 60 s).

Fig. 2 Light image 2g980831.fits (inverted grayscale) without dark
frame correction (conditions: T ¼ 277.36 K, texp ¼ 180 s).
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telescope (LAT) representing the main instrument of the
Fermi gamma-ray space telescope. Their two main scientific
objectives—studying of the Milky Way diffuse background
and detection of point sources—were complicated by the
lack of photons. Hence, they proposed a powerful method
of Poisson noise removal on the sphere that is efficient
for low count Poisson data. This method uses the isotropic
undecimated wavelet transform (IUWT) and the curvelet
transform as spherical multiscale transforms. In general, the
undecimated wavelet transform (UWT) gives outstanding
results in denoising,16 and thus we decided to use this
representation in this paper.

The paper is organized as follows. Section 2 discusses
image acquisition using the SBIG ST-8 camera and modeling
of the real dark frames. Section 3 is dedicated to acquisition
and analysis of real data using MAIA system. This section
also describes noise extraction and the whitening process
applied to the extracted noise due to its undesirable behavior.
At the end of this section, the UWT is described and the
relation between the sample moments in the spatial and
the wavelet domain is derived using the moment-generating
function. Section 4 describes the used noise PDF model and
the related moment equations. Section 5 contains the com-
parison of the two discussed methods for estimating the sam-
ple moments in the wavelet domain: the proposed method
and the direct method that evaluates the moments directly
from the noise wavelet decomposition. The main difference
of these methods lies in computational cost that is experi-
mentally evaluated. Section 6 is dedicated to performance
of the proposed method in the denoising algorithm based on
Bayesian shrinkage.

2 Dark Frame Acquisition for Modeling the
Temperature Dependency

Dark current (represented by the dark frame) is a highly
undesirable component of astronomical images and video
frames. It may be modeled as white impulsive noise. This
section describes the statistical characteristics of dark frames
in the spatial domain and also the temperature dependency
of the sample moments. The obtained dependency allows us
to evaluate the moments for an arbitrary temperature.

For analyzing the temperature dependency of dark cur-
rent, we acquired a set of dark frames using the SBIG
ST-8 camera with a sensor size of 510 × 710 pixels and
an exposure time of 60 s. By exploiting the temperature con-
trol functionality of the Peltier device, a set of 100 images is
collected for each temperature within the range from 268.15
to 293.15 K with the step of 5 K. The 100 images acquired at
each temperature were averaged in order to suppress dark
current fluctuations.

The temperature dependency of the dark current may be
modeled using the exponential model5 given as

IdðTÞ ¼ Ae
− B
kβT ; (1)

where A and B are the sensor material constants, T denotes
the temperature in Kelvin, and kβ stands for the Boltzmann
constant. This empirical model is valid only over a con-
strained temperature range. Its parameters can be estimated
using linear regression assuming the following model:

φðT−1Þ ¼ ln A −
B
kβ

T−1: (2)

The estimated model for the observed data is presented in
Fig. 3. The exponential model is obtained from Eq. (1) and
captures the temperature dependency of the first sample
moment (i.e., the mean value).

For PDF model parameters estimation, it is necessary to
evaluate the second and fourth sample moments of dark cur-
rent at each measured temperature in the spatial domain. The
temperature dependencies of these moments are modeled
using the exponential models to capture the prior information
about the CCD sensor in the spatial domain. The l’th sample
central moment is given by

Ml ¼
1

I

XI

i¼1

ðni − n̄Þl; 1 ≤ l (3)

where n denotes the pixel values of the acquired dark
frames, n̄ is the mean value, and I represents the number
of pixels.

We found empirically that a satisfactory fit of the moment
temperature dependenciesMl;iðTÞ is achieved with the expo-
nential model.17 Hence, using Eq. (1) we may write

Ml;iðTÞ ≈ Ale
− Bl
kβTi ; (4)

where the coefficients Al and Bl are estimated via minimiz-
ing the square error given as

SðAl; BlÞ ¼
XI

i¼1

�
ln Al −

Bl

kβ
T−1
i − lnðMl;iðTiÞÞ

�
2

: (5)

Minimization of SðAl; BlÞ is carried out using the
partial derivatives with respect to the variables Al and Bl
given as

∂SðAl; BlÞ
∂Al

¼ 0;
∂SðAl; BlÞ

∂Bl
¼ 0: (6)

This leads to the following system of linear equations

Cz ¼ b; (7)

where the matrix C is given by
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Fig. 3 Model of the dark current dependency on temperature (the first
sample moment) for the observed data (A ¼ 6070, B ¼ 2.05 · 10−20).
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C ¼
�PI

i¼1ðT−2
i Þ P

I
i¼1ðT−1

i ÞP
I
i¼1ðT−1

i Þ I

�
; (8)

and the column vector b is given by

b ¼
�PI

i¼1 ðT−1
i · Ml;iÞP

I
i¼1ðMl;iÞ

�
: (9)

The solution of the equation system z ¼ ½z1; z2�T , where
Al ¼ ez1 and Bl ¼ z2kβ is given as

z ¼ C−1b: (10)

The second and fourth sample moment evaluated for the
mean dark frames at different temperatures are displayed in
Fig. 4. The quality of the fit may be assessed by exploiting
the sample kurtosis κnðTÞ evaluated in the spatial domain as

κn ¼
M4ðTÞ
M2

2ðTÞ
: (11)

The computed values of κnðTÞ are displayed in Fig. 5.
Due to great oscillations, the polynomial approximation is
not suitable. These oscillations also suggest that the polyno-
mial models generate negative values of the sample kurtosis.

3 Acquisition and Analysis of Real Video Data
The video data used in this experiment come from the meteor
automatic imager and analyzer (MAIA) project. A number of
papers are dedicated to this system. The electro-optical18

characteristics of this system are covered by Ref. 19, its
noise characteristics are discussed in Ref. 3, and the overall
description of this system can be found in Ref. 20. The
system for video acquisition consists of the Pentax SMC
FA 1.4∕50 mm fast autofocus lens, the Philips (Photonis)
XX1332 2nd Generation image intensifier, and the JAI
CM-040GE monochrome progressive scan camera with
GigE Vision interface and the Pentax H1214-M 1.4∕12 mm
fast lens. The camera in the test setup was delivering an
uncompressed video stream of 61.15 frames per second
with the resolution of 776 × 582 pixels and 256 grayscale
levels.

We carry out the noise analysis similarly as for the testing
data in Ref. 3. A real video sequence depicts the selected area
of interest from the night sky. Approximately 100 frames do
not contain any moving object and depict the same objects.
And thus these frames represent multiple realizations of the
same random process. It is possible to average these frames
to obtain the averaged frame with suppressed noise [see
Fig. 6(a)]. The average frame is then subtracted from each
noisy frame to extract several noise realizations for our
experiments. We assume noise to be stationary (of constant
statistical properties) from frame to frame, at least for a
certain number of consecutive video frames. In Ref. 3, we
found that mainly for low illumination levels, noise from
our system is signal-dependent.

However, the main problem revealed by the noise analysis
is that the extracted noise component is correlated. This
means that the noise samples are not independent and
the noise spectrum is not flat [as displayed in Fig. 6(b)].
Hence, we need to implement the whitening process prior
to the application of the proposed algorithm.

3.1 Noise Whitening
For data whitening, we exploit a linear convolution filter that
equalizes the nonflat noise spectrum. We derived this filter
via inversion of the noise spectrum and thresholding of the
spectral samples that are zero or near to zero. Let jSðu; vÞj be
the modulus of the noise spectrum, where u and v are the
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Fig. 5 Sample kurtosis in the spatial domain computed using the
modeled moment dependencies.
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Fig. 4 Dependency of the second and the fourth sample moments modeled by an exponential, (a) Dependency of the second moment,
A2 ¼ 3.03 · 1030, B2 ¼ 1.17 · 10−19, (b) Dependency of the fourth moment, A4 ¼ 2.39 · 1062, B4 ¼ 1.10 · 10−19.
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spatial frequency in the x and y directions, respectively. The
frequency response of the inverse filter Hinvðu; vÞ is then
given by

jHinvðu; vÞj ¼
� jSðu; vÞj−1; jSðu; vÞj > δ

δ; jSðu; vÞj ≤ δ
; (12)

where δ denotes the threshold value.
The noise whitening procedure is applied to the noisy

observations y in the frequency domain. For the sake of sim-
plicity, we consider an additive noise model of y given by

y ¼ xþ n; (13)

where x denotes the useful signal and n represents noise
introduced into the video data during the acquisition process.
The whitening process Wf–g is implemented via linear fil-
tering, and thus Wfyg ¼ Wfxg þWfng. Noise whitening
enables us to proceed with the denoising algorithm.

3.2 Sample Moments in the Spatial Domain
In this paper, the noise model parameters are estimated via
the method of moments. Hence, every noise realization n in
the spatial domain is described by the sample moments. The
r’th central sample moment is given by

Mr ¼
1

I

XI

i¼1

ðni − n̄Þr; 1 ≤ r; (14)

where n̄ is the mean value. The sample moments of the noise
are computed for every acquired video sequence. The choice
of moments depends on the used model.

3.3 Undecimated Wavelet Transform
For image denoising, the UWT or the stationary wavelet
transform (SWT) is a better choice than the critically
sampled discrete wavelet transform (DWT).16 The main rea-
son is that the DWT is shift variant,21 which limits its denois-
ing performance.2 Wavelet shrinkage methods performed on

the DWT coefficients usually cause unwanted artifacts
around the objects, such as stars.22

For the reasons explained above, we choose the UWT23

for the video frame representation. The UWT is computed
using a so-called à trous algorithm24 that produces the
same number of wavelet coefficients at each scale (decom-
position level). We use the following notation for the respec-
tive wavelet subbands: γDðvÞ

ξ , where ξ in the subscript
denotes the decomposition level and the superscript in the
parentheses denotes the particular detail subband (v-vertical,
h-horizontal, or d-diagonal).

3.4 Sample Moments in the Wavelet Domain
As we mentioned above, the noise present in astronomical
images is non-Gaussian and thus it is necessary to evaluate
the sample moments in the wavelet domain. This may be
achieved by using the moment-generating function. This
function of the random variable n (representing the analyzed
noise) is closely related to the characteristic function4 and is
defined by

MnðuÞ ¼ E½eun�; u ∈ R: (15)

The series expansion of eun suggests that the moment-
generating function allows to find all moments of a given
distribution.25 Provided that the random variable n has a
continuous PDF, the MnðuÞ is given by

MnðuÞ ¼
Z

∞

−∞
eunpðnÞdn

¼
Z

∞

−∞

�
1þ unþ u2n2

2!
þ : : :

�
pðnÞdn

¼ 1þ um1 þ
u2m2

2!
þ : : : :; (16)

where mk is the k’th moment.
For producing the relations between the moments in the

spatial and the wavelet domain, we need to describe the
wavelet transform process first. The one-dimensional (1-D)
UWT corresponds to convolution filtering of n with the

Fig. 6 (a) Averaged video frame with inverted grayscale, (b) Amplitude spectrum of the extracted noise from the MAIA system.
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kernel h ¼ ½h1; h2 : : : hk� while the down-sampling step is
omitted. Hence, each wavelet coefficient is computed as
the weighted sum of the independent random variables
n1; n2 : : : nk (noise pixels) given as

Sk ¼
Xk
i¼1

hini: (17)

The moment-generating function MSkðuÞ of Sk then runs as

MSkðuÞ ¼ Mn1ðh1uÞMn2ðh2uÞ : : :MnkðhkuÞ: (18)

where

MnkðhkuÞ ¼
�
1þ h1um1 þ

ðhkuÞ2m2

2!
þ ðhkuÞ3m3

3!

þ ðhkuÞ4m4

4!
: : :

�
: (19)

We are going to demonstrate that it is possible to find the
sample moments in the wavelet domain by using the values
of the sample moments from the spatial domain. As men-
tioned above, the moment-generating function is closely
related with the moments of the distribution. Therefore,
the r’th moment may be evaluated using the moment-
generating function computed as the r’th derivative with
respect to the variable u at u ¼ 0 given as

Mr ¼ MðrÞ
n ð0Þ: (20)

Let us consider a zero-mean noise n and its wavelet domain
representation N ¼ UWT fng. In our method, we exploit the
second and the fourth moment for noise description. These
moments are related via the sample kurtosis as demonstrated
in (29). For the sake of simplicity, we assume a short filter
such as the Haar filter with the kernel h ¼ ½h1; h2�. The pre-
viously stated assumptions suggest the following moment
relations. The second sample moment M2ðNÞ in the wavelet
domain is computed from M2ðnÞ given by

M2ðNÞ ¼ M2ðnÞ
X2
i¼1

h2i : (21)

Similarly the fourth moment M4ðNÞ computed from M4ðnÞ
given by

M4ðNÞ ¼ 6ðM2ðnÞh1h2Þ2 þM4ðnÞ
X2
i¼1

h4i : (22)

Equations (21) and (22) may be generalized for filters with
k coefficients h ¼ ½h1; h2 : : : hk� given as

M2ðNÞ ¼ M2ðnÞ
Xk
i¼1

h2i ; (23)

M4ðNÞ ¼ 6ðM2ðnÞÞ2½h21h22 þ h21h
2
3 þ : : : þ h21h

2
k þ h22h

2
3

þ h22h
2
4 þ : : : � þM4ðnÞ

Xk
i¼1

h4i : (24)

The above equations are demonstrated on the case of the
1-D UWT. Nevertheless, the UWT may be easily extended
also to the two-dimensional space. This transform is separ-
able, and thus we carry out the convolution in the row direc-
tion and then also in the column direction to obtain the 2-D
UWT decomposition. The sample moments of the resulting
coefficients are evaluated using the derived equations.

3.4.1 Simplification of the derived equation for the
fourth moment

This proposed equation for the fourth moment in the wavelet
domain is a little complex, especially for longer wavelet
transform filters. We found experimentally that Eq. (24)
could be simplified for certain types of impulsive noise. If
we consider the salt-and-pepper noise for 8 bpp (bits per
pixel) images then the probability of the pixel value flipping
to 0 is Pðy ¼ 0Þ ¼ ε∕2 and the probability of flipping to
255 is Pðy ¼ 255Þ ¼ ε∕2. If the parameter ε approximately
satisfies ε ≤ 0.05 then

6ðM2ðnÞÞ2½h21h22þh21h
2
3þ : : :þh21h

2
kþh22h

2
3þh22h

2
4þ : : : �

≪M4ðnÞ
Xk
i¼1

h4i : (25)

As a result, Eq. (24) can be simplified as

M4ðNÞ ¼ M4ðnÞ
Xk
i¼1

h4i : (26)

We tested these findings also on the 16-bpp dark frames26

that were acquired by the SBIG ST-8 astronomical camera as
described in Sec. 2. Our experiments indicate that these dark
frames may be modeled as white impulsive noise for which
the hot pixels do not always reach the maximum value of the
dynamic range. Using this model, Eq. (25) is satisfied for all
the acquired dark frames within the whole temperature range
(from 268.15 to 293.15 K).

4 Marginal Noise Model
For modeling of non-Gaussian noise in the wavelet domain,
we exploit an exponential marginal model—the generalized
Laplacian model (GLM). This model is commonly used for
modeling of filtered images such as the result of the wavelet
transform. The GLM is defined as

pnðn; μ; s; νÞ ¼
e−jn−μs jν
Zðs; νÞ ; n ∈ ð−∞;∞Þ; (27)

where μ denotes the mean value, the parameter ν presents a
generalization in the sense of the shape of the heavy-tailed
PDF, and the parameter s controls the width of the PDF. The
function Zðs; νÞ ¼ 2s

ν Γð1νÞ, where ΓðxÞ ¼ ∫ ∞
0 t

x−1e−tdt, nor-
malizes the exponential to a unit area.

The parameters of this PDF may be estimated by using the
system of moment equations.27 For the sake of simplicity, let
us consider the noise n to have μ ¼ 0. Then the second and
the fourth moment run as
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Table 1 The summary of the evaluated sample moments for uniform white noise Uð−5;5Þ for the input moments M2ðnÞ ¼ 8.4, M4ðnÞ ¼ 126.

Level

Wavelet: Haar Wavelet: Db4

Proposed Direct Proposed Direct

M2 M4 M2 M4 M2 M4 M2 M4

1st 8.4 189 8.4 188 8.4 185 8.4 184

2nd 8.4 205 8.3 202 8.4 202 8.3 200

3rd 8.4 209 8.0 187 8.4 208 7.9 182

Table 2 The summary of the evaluated sample moments for salt-and-pepper noise distributed from 0 to 20 and with ε ¼ 0.01 for the input moments
M2ðnÞ ¼ 1.9, M4ðnÞ ¼ 760.

Level

Wavelet: Haar Wavelet: Db4

Proposed Direct Proposed Direct

M2 M4 M2 M4 M2 M4 M2 M4

1st 1.9 198 1.9 197 1.9 235 1.9 233

2nd 1.9 58 1.9 58 1.9 78 1.9 67

3rd 1.9 23 1.9 25 1.9 31 2.0 27

Table 3 The summary of the evaluated sample moments for Gaussian white noise Nð0;3Þ for the input moments M2ðnÞ ¼ 9.0, M4ðnÞ ¼ 244.

Level

Wavelet: Haar Wavelet: Db4

Proposed Direct Proposed Direct

M2 M4 M2 M4 M2 M4 M2 M4

1st 9.0 243 9.0 239 9.0 243 9.0 241

2nd 9.0 243 9.0 242 9.0 243 9.0 240

3rd 9.0 243 9.0 246 9.0 243 9.0 246

Table 4 The summary of the evaluated sample moments for whitened real noise extracted from our system for the input moments M2ðnÞ ¼ 3.8,
M4ðnÞ ¼ 166.

Level

Wavelet: Haar Wavelet: Db4

Proposed Direct Proposed Direct

M2 M4 M2 M4 M2 M4 M2 M4

1st 3.8 73 3.8 98 3.8 79 3.8 100

2nd 3.8 50 3.8 59 3.8 53 3.8 60

3rd 3.8 44 3.8 54 3.8 46 3.8 54
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m2ðs; νÞ ¼
s2Γ

�
3
ν

�
Γ
�
1
ν

� ; m4ðs; νÞ ¼
s4Γ

�
5
ν

�
Γ
�
1
ν

� : (28)

In accordance with Ref. 27, the parameters estimation
task can be simplified by using the kurtosis statistic

κn ¼
m4ðs; νÞ
m2

2ðs; νÞ
¼

Γ
�
5
ν

�
Γ
�
1
ν

�
Γ2
�
3
ν

� : (29)

The GLM model was chosen for our experiments because
of its simplicity and flexibility to different types of noise. In
the cases that the GLM cannot be used for the particular type

of noise, another, more complex model such as Gaussian
mixture model (GMM)26 must be employed.

5 Comparison of the Direct and the Proposed
Method for Moments Estimation

This section is focused on the comparison of the direct
method and the proposed method for sample moments eva-
luation in the wavelet domain. The direct method estimates
the sample moments directly from the wavelet decomposi-
tion of noise, whereas the proposed method exploits the
derived equations. The exact choice of the equations is
driven by the length k of the convolution filters. In our
experiments, we exploit two wavelets: the Haar wavelet
and the Daubechies 4 (db4) wavelet. The moments for the
Haar 2-tap filters are computed by using Eqs. (21) and (22),

Table 5 The summary of the evaluated sample moments for real dark current represented by dark frame captured at T ¼ 268.15 K and texp ¼
2.5 s for the input moments M2ðnÞ ¼ 1.5, M4ðnÞ ¼ 2917.

Level

Wavelet: Haar Wavelet: Db4

Proposed Direct Proposed Direct

M2 M4 M2 M4 M2 M4 M2 M4

1st 1.5 7298 1.5 7318 1.5 8729 1.5 8774

2nd 1.5 1830 1.5 1836 1.5 2615 1.5 2165

3rd 1.5 462 1.5 458 1.5 787 1.5 530

Table 6 The estimated parameters of the noise GLM in the wavelet domain (for the Haar wavelet and three decomposition levels).

UniformjProposed γD�v�
3 γD �h�

3 γD�d�
3 Direct γD�v�

3 γD �h�
3 γD �d�

3

ν 2.02 2.02 2.02 ν 2.02 1.99 2.01

s 4.11 4.11 4.11 s 4.11 4.06 4.11

JD1 0.0027 0.0036 0.0028 JD2 0.0026 0.0036 0.0027

JD12 0.0001 0.0001 0.0000 JD12 0.0001 0.0001 0.0000

GaussianjProposed γD�v�
3 γD �h�

3 γD�d�
3 Direct γD�v�

3 γD �h�
3 γD �d�

3

ν 2.00 2.00 2.00 ν 2.01 1.92 1.94

s 4.24 4.24 4.24 s 4.25 4.10 4.19

JD1 0.0024 0.0030 0.0026 JD2 0.0024 0.0022 0.0025

JD12 0.0000 0.0008 0.0003 JD12 0.0000 0.0008 0.0003

RealjProposed γD�v�
3 γD �h�

3 γD�d�
3 Direct γD�v�

3 γD �h�
3 γD �d�

3

ν 1.87 1.87 1.87 ν 1.60 1.71 1.62

s 2.64 2.64 2.64 s 2.4 2.51 2.41

JD1 0.0105 0.0063 0.0079 JD2 0.0126 0.0074 0.0102

JD12 0.0105 0.0034 0.0089 JD12 0.0105 0.0034 0.0089
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whereas for the Daubechies 8-tap filters, we need to use the
generalized formulations in Eqs. (23) and (24).

We consider that the analyzed noise has the same moment
values for every wavelet subband at a given decomposition
level. Therefore a single moment value may be evaluated at
every decomposition level (from the approximation coeffi-
cients). This statement holds for white noise. If that noise
is not white, the whitening process described in Sec. 3.1
may be applied.

The comparison of the two methods for different types of
noise (both real and simulated) is presented as follows. The
computed moments for uniformly distributed white noise are
presented in Table 1 for salt-and-pepper white noise in
Table 2 for Gaussian noise in Table 3 for real whitened
noise in Table 4 and for real dark current in Table 5. The

parameters of the simulated noise components were chosen
with the aim to obtain similar values of the computed
moments for both methods.

5.1 Estimated Marginal Models
Table 6 contains the estimated parameters of the GLM in the
wavelet domain for different types of noise, with the excep-
tion of the generated salt-and-pepper noise that cannot be
fitted by this model, This type of noise requires a more
general model, such as the Gaussian mixture model. The
goodness-of-fit is measured by the Jeffrey divergence (i.e.,
the symmetrical version of the Kullback-Leibler divergence),
which is an empirical measure of similarity between distri-
butions (PDFs) based on the relative entropy28 given by
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Fig. 7 The estimated GLMs of diagonal details at decomposition level 3 γDðdÞ
3 for the direct and the proposed method modeling; (a), (b) uniform

white noise, (c), (d) Gaussian white noise, and (e), (f) real whitened noise.
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JD ¼
XI

i¼1

�
pi ln

�
pi

0.5ðpi þHiÞ
�

þHi ln

�
Hi

0.5ðpi þHiÞ
��

; (30)

where I stands for the number of PDF samples, p denotes the
model PDF, and H represents the histogram of the noise in
the wavelet domain. This histogram is normalized and its bin
width is optimized according to Freedman and Diaconis29

written as

BW ¼ 2ðN0.75 − N0.25ÞI−1
3; (31)

where the term in parentheses denotes the interquartile range,
N0.75 is the 75th percentile, and N0.25 is the 25th percentile.

Table 6 contains the values of Jeffrey divergence com-
puted as the similarity measure between the model calculated
by the proposed method and the optimized histogram of
noise wavelet coefficients (JD1 ), between the model com-
puted by the direct method and the noise histogram (JD2 ),
and between the models produced by the two moment
estimation methods (JD12 ).

The models from Table 6 are depicted in Fig. 7. Both
the models and the optimized histograms are plotted in the
logarithmic scale to better visualize the quality of fit.

According to the central limit theorem (CLT), a weighted
sum of Gaussian random variables again produces a Gaus-
sian variable. If we apply the same process to a uniform vari-
able, the conditions of the CLT may be satisfied. A lot of
pseudorandom number generators are based on this princi-
ple. The satisfaction of the CLT for the filtered uniformly
distributed variable is well visible in Table 1, where the kur-
tosis approaches 3 practically for all decomposition levels.
However, the decomposed astronomical data (dark frames)
are strongly non-Gaussian. The kurtosis is usually consider-
ably greater than 3 for all decomposition level. Table 5
contains the second and fourth sample moments of the
decomposed dark frame and illustrates its strong non-
Gaussianity. Figure 8 contains the typical histogram with
high value of kurtosis of the decomposed dark frame.

5.2 Computational Cost
The major advantage of the proposed method is saving in the
computational cost. To evaluate the sample moments in the
wavelet domain, the direct method requires the UWT to be

applied to the extracted noise. The sample moments are then
evaluated in the chosen wavelet subband at every decompo-
sition level. By contrast, the proposed method does not
require the UWTof the extracted noise that is especially sig-
nificant for the redundant wavelet representation that we are
using. The sample moments of the noise are evaluated in the
spatial domain and then converted to the wavelet domain
exploiting the derived equations.

To demonstrate this point, we measured the computa-
tional time of the two methods under discussion. We used
three different image sizes (256 × 256, 512 × 512, and
1024 × 1024). For each image, the moments were evaluated
20 times and the obtained computational times were aver-
aged. The resulting averaged times are displayed in Table 7.
The variances were negligible in all cases. The results
show that the proposed algorithm saves computational time,
especially for images of larger size.

6 Testing of the Derived Equations Using
Bayesian Shrinkage

We have demonstrated that the proposed method surpasses
the direct method in terms of computation cost. In this sec-
tion, we experimentally verify that the proposed method does
not negatively impact the denoising results. For its suitabil-
ity, we selected the Bayesian shrinkage algorithm based on
the minimum mean square error (MMSE) estimator.27 We
applied this noise removal algorithm to multimedia data that
were artificially contaminated with a high amount of uniform
white noise Uð−20; 20Þ and also to real astronomical light
images contaminated with dark current.

6.1 Multimedia Data
As discussed above, the parameters of non-Gaussian noise
are not preserved by convolution filtering. From the various
types of non-Gaussian noise that we generated, uniform
noise was selected because of the perfect fit of the wavelet-
based GLM. We consider image x contaminated by additive
noise as defined in Eq. (13). Hence, the additive model in
the wavelet domain is given as Y ¼ X þ N, where Y ¼
UWT fyg denotes the noisy observation (i.e., the acquired
data), N ¼ UWT fng presents noise, and X ¼ UWT fxg
is the ideal noise-free image. The conditional mean of the
posterior PDF pXjYðxjyÞ provides the least square estimation
of X. The formula for the MMSE16 estimator runs as

Table 7 The obtained averaged execution time for the proposed
method tP , and the direct method tD and the ratio of these times
for the four-level UWT. Description of the system used: DELL
LATITUDE E6500, Intel(R) Core(TM)2 Duo CPU P9500 @ 2.53 GHz
processor, 4.00 GB RAM, 32bit Windows Vista™ Business, and
Matlab 7.5.0 (R2007b).

Image size tP �s� tD �s� tD∕tP �-�

256 × 256 0.18 0.60 3.3

512 × 512 0.42 2.22 5.3

1024 × 1024 1.27 8.60 6.8
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Fig. 8 GLM of wavelet band along with histogram (decomposed dark
frame), fourth decomposition level, vertical details, κ ¼ 201, ν ¼ 0.29.
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X̂ðYÞ ¼
Z þ∞

−∞
pXjYðxjyÞx dx ¼

Rþ∞
−∞ pYjXðyjxÞpXðxÞx dxRþ∞
−∞ pYjXðyjxÞpXðxÞdx

;

¼
Rþ∞
−∞ pNðy − xÞpXðxÞx dxRþ∞
−∞ pNðy − xÞpXðxÞdx

; (32)

where pYjXðyjxÞ denotes the likelihood function, pXðxÞ repre-
sents the a priori model, and pNðxÞ stands for the noise model.
Both these random variables are modeled by the wavelet-
based GLM. Similarly to Ref. 30, we define the theoretical
central moments of Y. The second moment is given by

m2ðYÞ ¼
τ2Γ

�
3
λ

�
Γ
�
1
λ

� þ
s2Γ

�
3
ν

�
Γ
�
1
ν

� ¼ m2ðXÞ þm2ðNÞ; (33)

where τ and λ are the GLM parameters of the signal. The
fourth moment of Y runs as

m4ðYÞ ¼
τ4Γ

�
5
λ

�
Γ
�
1
λ

� þ
6s2τ2Γ

�
3
ν

�
Γ
�
3
λ

�
Γ
�
1
ν

�
Γ
�
1
λ

� þ
s4Γ

�
5
ν

�
Γ
�
1
ν

�
¼ m4ðXÞ þ 6m2ðNÞm2ðXÞ þm4ðNÞ: (34)

The GLM parameters of the noise-free signal are estimated
from second and fourth moment of the observed signal and
noise using the kurtosis formula

κX ¼
Γ
�
5
λ

�
Γ
�
1
λ

�
Γ2
�
3
λ

�
¼ m4ðYÞ −m4ðNÞ − 6m2ðNÞ½m2ðYÞ −m2ðNÞ�

ðm2ðYÞ −m2ðNÞÞ2 :

(35)

From Eq. (33), we may derive

τ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½m2ðYÞ −m2ðNÞ�

Γ
�
1
λ

�
Γ
�
3
λ

�
vuuut : (36)

The values of the moments used in the above equations are
estimated from the data using the sample moments. The
k’th central sample moment of X is given by MkðXÞ ¼
1
I

P
I
i¼1 ½Xi − EðXÞ�k.
Figure 9 depicts two testing images (Brada and House)

from our image database. These images (8 bpp and uncom-
pressed tiff format) were contaminated with additive
uniform white noise and subsequently denoised by the Baye-
sian estimator using both the direct method and the proposed
method for estimation of the GLM parameters. Table 8
contains the root mean square error (RMSE) measure
computed as

Fig. 9 Testing images (256 × 256 pixels) denoised by Bayesian shrinkage using the Db4 wavelet and 4 UWT decomposition levels (a) The noise
House image [added uniform noiseUð−20; 20Þ], (b) the denoised House image by using the direct method (c) the denoised House image using the
proposed method, (d) the noisy Brada image [added noiseUð−20; 20Þ], (e) the denoised Brada image using the direct method, and (f) the denoised
Brada image using the proposed method.
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RMSEout ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

I

XI

i¼1

ðx − x̂Þ2
vuut ; (37)

where x denotes the original image before contamination and
x̂ is the reconstructed denoised image. However, in most
real-world applications, the precontamination image is not
available and the RMSEout and RMSEin measures must
be estimated in another way. RMSEin is directly related
to the noise second moment M 0

2ðnÞ ¼ M2ðnÞ þ E2ðnÞ,dRMSEin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
M 0

2ðnÞ
p

. In Sec. 2, we exploit the model of
the temperature dependency of dark current for the SBIG
camera. The modeled second moment M2ðnÞ, the mean
value EðnÞ, and the fourth moment M4ðnÞ represent a priori
information about the noise component contained in
the image.

Since we consider y ¼ xþ n, the second sample moment
of y (a noncentral moment in this case) is given as

m2ðyÞ ¼
Z

∞

−∞
y2
�Z

∞

−∞
pnðnÞpxðy − nÞdn

�
dy

¼ m2ðxÞ þ 2EðxÞEðnÞ þm2ðnÞ: (38)

Using Eq. (38) we may write

M 0
2ðyÞ ¼ M 0

2ðxÞ þ 2EðxÞEðnÞ þM 0
2ðnÞ; (39)

EðyÞ ¼ EðxÞ þ EðnÞ: (40)

If we consider the reconstructed light image to be given as
x̂ðyÞ ¼ xþ nres, where the noise is suppressed to nres, then
RMSEout can be estimated by

dRMSEout ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M 0

2ðnresÞ
q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M 0

2½x̂ðyÞ� −M 0
2ðxÞ − 2EðxÞEðnresÞ

q
; (41)

where EðnresÞ ¼ EðnÞ denotes the mean value of the residual
noise. Furthermore, if the modeled temperature dependency
of the sample moments belongs to dark frames acquired at an
arbitrary exposure time, we can normalize it to any selected
exposure time. We consider a dark frame with the exposure
time texp. Then the k’th moment M

texp
k ðnÞ normalized to

required exposure treq runs as

M
treq
k ðnÞ ¼ 1

I

XI

i¼1

�
treqni
texp

�
k
¼

�
treq
texp

�
k
M

texp
k ðnÞ: (42)

The RMSE measure in Table 8 illustrates that the pro-
posed algorithm gives practically the same results as the
direct method for multimedia images.

6.2 Astronomical Data
We applied the Bayesian shrinkage also to an astronomical
light image (containing the object such as stars, nebulae, etc.)
contaminated by dark current. We exploited the following
process:

1. Read the temperature and the exposure time of the
acquired light image in the image header.

Fig. 10 The 3m42-d03.sbg.dat light image (512 × 1024 pixels; inverted grayscale) without dark frame correction (T ¼ 277.36 K, texp ¼ 1000 s).

Table 8 The computed RMSE measure for denoising via Bayesian
shrinkage using the Db4 wavelet and four UWT decomposition levels
for the multimedia images.

Image RMSEin RMSEoutjproposed RMSEout

�
�direct

House 11.55 6.13 6.19

Brada 11.55 4.06 4.10
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2. Find the appropriate values of sample moments from
the approximated temperature dependencies (see
Sec. 2). If necessary, normalize the value of the sample
moments in accordance with the exposure time value.

3. Convert the sample moments into the wavelet domain
using the derived equations.

4. Estimate the parameters of the wavelet-based
PDF model.

5. Transform the light image contaminated by dark cur-
rent into the wavelet domain using the UWT.

6. Apply the Bayesian estimator to the detail wavelet
subbands at all decomposition levels.

7. Apply the inverse UWT to the altered coefficients.

The astronomical light image of the Messier 42 nebula and
the same image corrected by the MMSE estimator is depicted
in Figs. 10 and 11, respectively. The estimations of the
RMSE measure for light astronomical data 3m42-
d03.sbg.dat (five UWT decomposition levels, Db4, wavelet)
are: dRMSEin ¼ 1498, proposed: dRMSEout ¼ 325, direct:dRMSEout ¼ 333. Hence, the direct and the proposed algo-
rithm produce practically the same results in the sense of
RMSE. In both cases, dark current is considerably sup-
pressed and the objects become visible and detectable.

7 Conclusion
The proposed algorithm based on the moment-generating
function can be used for evaluation of the noise model para-
meters for noise removal in the wavelet domain. Generally,
the proposed method is capable of finding all sample
moments in the wavelet domain by converting the sample
moments originally evaluated in the spatial domain. This
is possible owing to the fact that the second sample moment
is preserved in accordance with Parseval’s theorem.26

Table 6 illustrates behavior of the proposed noise model-
ing algorithm. For Gaussian white noise, the model para-
meters are preserved in the wavelet domain. On the case
of uniform white noise, we may observe the effect of the
CLT on a weighted summation of independent random vari-
ables. (The value of shape parameter ν is approaching 2.)

The GLM was chosen for modeling of several types of
noise in the wavelet domain. This model is widely used
for filtered images modeling, and moreover, the parameters
estimation is simple when we use the method of moments.
As a quality criterion for model parameters estimation, the
Jeffrey divergence was chosen. The Jeffrey divergence
was evaluated for the optimized histogram of the wavelet
coefficients and the estimated models computed using
both the proposed and the direct method. For further methods
comparison, this measure was also computed for the models
produced by these two methods. The results indicate that if
noise is not white (i.e., is correlated), the whitening process
can be used.

The proposed method and the direct method were com-
pared with respect to computational efficiency (see Table 7).
The direct method exploits two separate undecimated wave-
let decompositions: the UWTof the image data and the UWT
of the extracted noise, whereas the proposed method uses the
UWT only for the image data and estimates the noise model
parameters in the spatial domain. The difference in compu-
tation cost between these two methods increases with the
size of the analyzed image. For an image of the size
(1024 × 1024 pixels), the proposed method runs approxi-
mately seven times faster than the direct method.

Performance of the proposed algorithm was also tested
using the Bayesian shrinkage. This denoising method
exploits the noise and the image PDF model for image esti-
mation. The proposed algorithm was tested for multimedia
images contaminated with uniform white noise and a real
astronomical image. The results show that the direct and

Fig. 11 The 3m42-d03.sbg.dat light image (inverted grayscale) denoised using the MMSE estimator.

Journal of Electronic Imaging 023025-13 Apr–Jun 2012/Vol. 21(2)

Švihlík et al.: Estimation of non-Gaussian noise parameters in the wavelet : : :



the proposed method cause practically the same denoising
results.
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