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Abstract. Gender classification has found many useful applications in the broader domain
of computer vision systems including in-cabin driver monitoring systems, human—computer
interaction, video surveillance systems, crowd monitoring, data collection systems for the retail
sector, and psychological analysis. In previous studies, researchers have established a gender
classification system using visible spectrum images of the human face. However, there are many
factors affecting the performance of these systems including illumination conditions, shadow,
occlusions, and time of day. Our study is focused on evaluating the use of thermal imaging to
overcome these challenges by providing a reliable means of gender classification. As thermal
images lack some of the facial definition of other imaging modalities, a range of state-of-the-art
deep neural networks are trained to perform the classification task. For our study, the Tufts
University thermal facial image dataset was used for training. This features thermal facial images
from more than 100 subjects gathered in multiple poses and multiple modalities and provided
a good gender balance to support the classification task. These facial samples of both male and
female subjects are used to fine-tune a number of selected state-of-the-art convolution neural
networks (CNN) using transfer learning. The robustness of these networks is evaluated through
cross validation on the Carl thermal dataset along with an additional set of test samples acquired
in a controlled lab environment using prototype uncooled thermal cameras. Finally, a new CNN
architecture, optimized for the gender classification task, GENNet, is designed and evaluated
with the pretrained networks. © The Authors. Published by SPIE under a Creative Commons
Attribution 4.0 Unported License. Distribution or reproduction of this work in whole or in part requires
full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JE1.29.6.063004]
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1 Introduction

Uncooled thermal imaging is approaching a level of maturity where it can be considered as an
alternative to, or as a complimentary sensing modality to that of visible or NIR imaging. Thermal
imaging offers some advantages as it does not require external illumination and provides a very
different perspective on an imaged scene than a conventional CMOS-based image sensor. The
proposed research work is carried under HELIAUS' project, which is focused on in-cabin driver
monitoring systems using thermal imaging modality. The driver gender classification in a vehicle
can help to improve the personalization of various features (e.g., user interfaces and presentation
of data to the driver). It can also be used to better predict driver cognitive response,” driver
behavior, and intent, and finally knowledge of gender can be useful for safety systems such
as airbag deployment that may adapt to driver physiology. In summary, automotive manufac-
turers are interested to have the knowledge of driver gender within the vehicular environment for
designing smarter and safer vehicles. Alongside this, there are many other applications of ther-
mal human gender classification systems. In security systems, thermal imaging can easily detect
people and animals even in total darkness. In human—computer interaction systems, thermal
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imaging can provide complimentary information, determining subtle fluctuations in facial tem-
peratures that can inform on the emotional status of a subject. In other human—computer inter-
action systems, the systems may need to classify the individual person and/or their facial
expressions and voices® in order to effectively interact with them thus gender information serves
as a source of soft biometrics.* In medical applications, human thermography provides an im-
aging method to display heat emitted from a human body surface thus helping us to understand
unique facial thermal patterns in both male and female gender.” Human thermography helps us to
better understand that central and peripheral thermoreceptors are distributed all over the body
including on the human face and are responsible for both sensory and thermoregulatory
responses to maintain thermal equilibrium. Studies have shown that heat emission from the sur-
face of the body is symmetrical. All these studies measured differences between the left and right
side of different areas of the head.®”®

The literature reports that in healthy subjects the difference in skin temperature from side to
side of the human body is as small as 0.2°C.® The heat emission from the human body is related
to cutaneous vascular activity, yielding enhanced heat output on vasodilation, and reduced heat
amount on vasoconstriction.” The medical literature reports that a significant difference has been
observed between the absolute facial skin temperature of men and women during the clinical
studies of facial skin temperature.” Men were found to have higher temperatures compared to
women overall; 25 anatomic areas were measured on the face including upper lips, lower lips,
chin, orbit, and the cheek. According to another study, the basal metabolic rate of a healthy
30-year-old male with a height of 5 ft, 7 in weight of 64 kg, and who has surface area of about
1.6 m? dissipates about 50 W/m? of heat; on the other hand the basal metabolic rate of healthy
30-year-old female with the height of 5 ft, 3 in the weight of 54 kg, and who has surface area of
1.4 W/m? dissipates about 41 W /m? of heat. In addition, women’s skin is expected to be cooler
since less heat is lost per unit of body surface area.” However, thermal patterns whether in the
case of male or female also depend on many other factors such as age, human body intrinsic and
extrinsic characteristics, outdoor environmental conditions, and technical factors such as camera
calibration, and the field of view (FoV). Moreover, it also depends on factors such as drinking,
smoking, various diseases, and using medications.

The preliminary focus of this study is on binary human gender classification, however, the
same system can be retrained for third or multi-class (non-binary) gender classification tasks
if such datasets are available.

In this study, the Tufts thermal faces and Carl thermal faces datasets > are used to train
and test a selection of state-of-the-art neural networks to perform the gender classification task.
Figure 1 shows some examples of thermal facial images with varying poses from the Tufts data-
set and frontal facial poses from the Carl dataset. The complete workflow pipeline is detailed in
Sec. 3 of this paper. In addition to using pretrained neural networks, a new CNN architecture,
GENNet, is provided. This is designed and trained specifically for the gender classification task
and is evaluated against the pretrained CNN networks. In addition, a new validation set of
thermal images is acquired in controlled laboratory conditions using a new prototype uncooled
thermal camera and is used as a second means of cross-validating all the pretrained models along
with GENNet architecture. The evaluation results are presented in Sec. 4.

10-12 13,6

Fig. 1 Sample images from Tufts and Carl thermal face database: (a) male subject with four
different face poses from the Tufts dataset; (b) female subject with four different face poses from
the Tufts dataset; and (c) male and female subjects (frontal face pose) from Carl database.
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2 Background/Related Work

This section focuses on the background research and previous studies on gender classification
using CNNs.

2.1 Gender Classification Using Conventional Machine Learning Methods

Makinen and Raisamo'* and Reid et al."” provided a detailed survey of the gender classifications
method in their studies. One of the early techniques for gender recognition reported in Ref. 16
utilized a neural system trained on a small arrangement of close frontal face pictures. In Ref. 17,
the consolidated 3D structure of the head (captured by a laser scanner) and picture intensities
were utilized for characterizing genders. Support vector machine (SVM) classifiers were
employed by Ref. 18 where the authors evaluated the performance of SVM with an overall error
rate of 3.4% when compared with other traditional classifiers including linear, fisher linear
discriminant, nearest neighbor, and radial basis functions. Instead of using SVM, " Baluja and
Rowley?’ referred to AdaBoost for gender classification tasks using a set of low-resolution gray-
scale images. Perspective invariant age and gender recognition was performed by Ref. 21 using
arbitrary viewpoints. Recently, Ullah et al.? utilized the Webers local surface descriptor? for the
gender recognition system, showing near-perfect execution on the facial recognition technology
(FERET) benchmark.?* In Ref. 25, shape, texture, and color features were extracted from frontal
faces, thus obtaining robust outcomes on the FERET benchmark. In an attempt by Arun and
Rarath, unique mark pictures are used, and the input images are represented by a feature vector
consisting of ridge thickness to valley thickness ratio and ridge density. Further, they used SVM
to categorize subjects into male and female classes accordingly. In addition to the gender clas-
sification system using the visible spectrum, the possibility of deducing gender information from
thermal and NIR spectrum is also gaining much interest. Chen and Ross?’ claimed to be the first
proposing human faces-based gender classification system using thermal and NIR data. The
authors have selected three different conventional feature extraction methods for gender repre-
sentation including linear binary patterns, principle component analysis, and pixels from low-
resolution facial images. For gender recognition, they have used SVM, LDA, Adaboost, random
forest, Gaussian mixture model, and multi-layer perceptron classifiers. Their experimental
results conclude that SVM for histogram-based gender classification results in much better
performance on NIR and thermal spectra. Nguyen and Park®® proposed a gender classification
system using joint visible and thermal spectrum data of the human body. The classification
accuracies in Ref. 28 are measured by employing different feature extractors including HoG
and MLBP.? Their experimental results demonstrated an improvement in classification accuracy
using the joint data from visible and thermal image spectrums. Similarly, in another study
reported in Ref. 30, the author’s utilized multimodal datasets consisting of audiovisual, thermal,
and physiological recordings of male and female subjects. The authors extracted feature values
from these datasets, which were later used for automatic gender classification purposes. In both
studies, authors used conventional machine learning algorithms for feature extraction rather than
using advanced deep learning methodologies.

2.2 Gender Classification Using Deep Learning-Based Methods

Due to the fact that much potential is laid in deep CNN structures, they are widely used for
diversified applications especially where more precise and robust accuracy levels are required
such as medical image analysis, surveillance systems, object detection, and autonomous clas-
sification systems.’! Canziani et al.*” listed many pretrained models that can be used for various
practical applications in their study. They analyzed the overall performance of these pretrained
models by computing the accuracy levels and the inference time needed for each model. Dwivedi
and Singh® provided a comprehensive review of deep learning methodologies for robust gender
classification using the GENDER-FERET?* face dataset. In their study, they have compared the
performance of various CNN architectures. Moreover, they have selected one of the architec-
tures as a baseline model, and by changing different parameters like the number of fully con-
nected (FC) layers and the number of filters they have created different models. The authors
achieved the best accuracy of 90.33% with the base model architecture of CNN. Ozbulak et al.*
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have investigated two different deep learning strategies including fine-tuning and SVM
classification using CNN features. They were applied on different networks including their
proposed task-specific GilNet model and pretrained domain-specific VGG*® and Generic
AlexNet*’-like CNN model for building robust age and gender classification system using the
Adience®® visible spectrum dataset. The experimental results from their study show that trans-
ferred models outperform the GilNet model for both age and gender classification tasks by
7% and 4.5%, respectively. In a more recent study, Manyala et al.** investigated the overall
performance of two CNN-based methods for gender classification using near-infrared (NIR)
images. In the first method, a pretrained VGG-Face*’ was used for extracting features for gender
classification from a convolutional layer in the network, whereas the second method used
a CNN model obtained by fine-tuning VGG-Face to perform gender classification from
periocular images. The authors had achieved the classification accuracy of 81% on an in-house
dataset, which was gathered locally.

Further in a more recent study, Baek et al.*! used the combined data of both visible and NIR
spectrum for performing robust gender classification using full human body images in surveil-
lance environment. The system works by deploying two CNN architecture to remove the noise of
visible-light images and enhance the existing image quality to improve gender recognition
accuracy. The overall system performance was evaluated on desktop pc as well as on Jetson
TX2 embedded system.

3 Research Methodology

The goal of this work is to evaluate the potential of thermal image facial data as a means of
gender classification. The thermal image data are analyzed with a selected set of nine state-
of-the-art neural networks. These pre-existing convolution neural networks are adapted for
the thermal data using transfer learning. In addition, a new CNN model is proposed, and its
performance is compared against nine state-of-art pretrained networks.

Initially, all the pretrained networks are first trained on the Casia Face dataset*” since Tufts
thermal training dataset'®"'> does not contain enough images, an important requirement for opti-
mal training of deep neural networks. This face dataset is used to extract low-level features for
building the baseline architecture. In the second stage, the Tufts thermal face database'®'? is
used for transfer learning. This dataset consists of 113 different subjects and comprises images
from six different image modalities that include visible, NIR, thermal, computerized sketch, a
recorded video, and 3D images of both male and female classes. The thermal face dataset was
acquired in a controlled indoor environment using constant lighting that was maintained using
diffused lights. Thermal images were captured using FLIR Vue Pro Camera,” which was
mounted at a fixed distance and height.

Figure 2 represents the complete workflow diagram of the overall gender classification
system.

3.1 Initial Training and Transfer Learning of Pretrained Networks

This research takes advantage of the pretrained networks by freezing and unfreezing all the
layers and adding customized final layers to generalize the model for the target autonomous
gender classification task from thermal image datasets. The main reason for using these pre-
trained networks is they already learned low-level feature values such as edges and textures
by training the networks on very large and varied datasets. This process helps in obtaining useful
results even with a relatively small training dataset since the basic image features have already
been learned by the pretrained model using larger datasets like ImageNet.** Further, the classifier
is trained to learn the higher-level features in the proposed thermal dataset images.

A typical CNN system comprises certain layers including convolution layers, pooling layers,
dense layers, and FC layers. There are various pretrained networks available that can be effi-
ciently used for different types of visual recognition, object detection, and segmentation tasks.
For the proposed study, the following pretrained neural networks are utilized: ResNet-50,*
ResNet-101,* Inception-V3,*® MobileNet-V2,*” VGG-19,°® AlexNet,”” DenseNet-121,*
DenseNet-20,*® and EfficientNet-B4* networks. These models are chosen as they are commonly
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Fig. 2 Workflow diagram for autonomous gender classification system using thermal images.

trained using the ImageNet** dataset, each model has a different architectural style, they provide
a good trade-off between accuracy and inference time,*® and in addition, they are the state-of-the-
art for image classification tasks. Thus an impartial performance comparison of these networks
can be made for the thermal gender classification task.

ResNet® architecture mainly relies on the residual learning process. The network is
designed to solve complex visual tasks using more deeper layers stacked together. ResNet-50
is a 50-layer Residual Network. The other variants from the ResNet family include ResNet-101%
and ResNet-152.* Resnet-50 network was initially trained on ImageNet,** which consists of
a total of 1.28 million images from 1000 different classes. The Inception-v3 is made up of
48 layers stacked on top of each other.*® The Inception-v3 model was initially trained on
Imagenet** as well. These pretrained layers have a strong generalization power as they are able
to find and summarize information that will help to classify various classes from the real-world
environment.

MobileNet-V2 is considered as efficient deep learning architecture proposed by Sandler
et al.*’ specifically designed for mobile and embedded vision applications. It is a lightweight
deep learning architecture with the working principle of using depth-wise separable convolutions
meaning that it performs a single-convolution operation on each color channel rather than com-
bining all three and flattening them. This has the advantage of filtering the input channels.

DenseNet*® architecture also referred to as dense convolutional neural network is a state-of-
the-art variable-depth deep convolutional neural architecture. It was designed to improve
the architecture of ResNet.*> The principle design feature of this architecture is channel-wise
concatenation, with every convolution layer that has access to the activations of every layer
preceding it. DenseNet family has different variants including DenseNet-121, DenseNet-169,
DenseNet-201, and DenseNet-264.

VGGNet*® was developed by the Visual Geometry Group from the University of Oxford.
Like ResNet* and Inception-V3,%® this network was also originally trained on ImageNet.**
The network was designed with the significant improvement compared to AlexNet architec-
ture,”” which was more focused on smaller window sizes and strides in the first convolutional
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Table 1 Performance comparison of state-of-the-art CNN

Number of

CNN parameters Top 5 error rate  Depth Main attributes

AlexNet 62 M ImageNet: 16.4 8 Uses ReLU, dropout, and overlap pooling

VGGNet 138 M ImageNet: 7.3 19 Homogenous topology, uses small size kernels

Inception-V3 24 M ImageNet: 3.5 159  Replace large size filters with small filters

MobileNet 22 M ImageNet: 10.5 17 The width multiplier uniformly reduces the
number of channels at each layer, fast
inference

ResNet-50 26 M ImageNet: 3.6 152  Residual learning, identity mapping-based skip
connection

ResNet-101 43 M

DenseNet-121 72M CIFAR-10+: 3.46 190  Cross-layer information flow
DenseNet-201 186 M

EfficientNet-B4 19 M ImageNet: 2.9 Compound coefficient scaling method, 8.4 x
smaller and 6.1 x faster than other convnets

layer. VGG architecture can be trained using images with (224 x 224) pixel resolution. The main
attribute of VGG architecture is that it uses very small receptive fields (3 X 3 with a stride of 1)
compared to AlexNet’’ (11 x 11 with a stride of 4). In addition to this, VGG incorporates
1 x 1 convolutional layers to make the decision function more non-linear without changing the
receptive fields. The architectures come in different variants including VGG-11, VGG-16, and
VGG-19.

EfficientNet*’ was recently published and designed using a compound scaling method. As
the name suggests the network proved to be a competent and optimum network by achieving
state-of-the-art results on the ImageNet dataset. Table 1°! provides a more comprehensive com-
parison of these architectures highlighting their attributes, number of parameters, the overall
error rate on benchmark datasets, and their respective depth.

As discussed in the previous section, all the pretrained networks are initially trained on the
Casia Face database* since the Tufts thermal training dataset'®"'> does not contain a sufficient
number of images. Casia facial dataset*” consists of facial images of different celebrities (38,423
distinct subjects) in the visible spectrum. This facial dataset has been used to extract low-level
feature values for building a baseline architecture. The networks are trained using a total of
30,887 frontal facial images of different celebrities from both genders. The data were split
in the ratio of 90% for training and 10% for validation. To better generalize and regularize the
base model for final fine-tuning on the thermal dataset, certain data transformations are per-
formed on the Casia*” training data including random resizing of 0.8, random rotation of 15 deg,
and flipping. The logic for performing these transformations is that it will bring supplementary
data variations for optimal training of the baseline architectures keeping in view the final fine-
tuning process on thermal images. Figure 3 displays the Casia data samples along with training
data transformation results. The initial training is done by adding a small number of additional
final layers to enable generalization and regularization of all the pretrained models. In the case of
ResNet-50 and ResNet-101 networks, the last FC layer is connected to a linear layer having 256
outputs. It is further fed into the rectified linear unit (ReLU)? and dropout layers with the drop-
out ratio of 0.4 followed by a final FC layer, which has binary output corresponding to the two
classes in the Casia dataset. A similar formation of final layers is inserted by transforming the
number of features to the number of classes in all the pretrained networks. Each of these net-
works is further fine-tuned using a training dataset comprising of thermal facial image samples.
The fine-tuning is achieved using transfer learning techniques.’®

The models were trained using the PyTorch framework.’* Binary cross-entropy is used as
the loss function during training along with a stochastic gradient descent (SGD)>® optimizer.
The final training data include male and female thermal images as shown in Fig. 4.
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Fig. 3 Facial samples from two different datasets: (a) male and female data samples from Casia*
database; (b) male and female samples from Tufts thermal images;'%'? and (c) PyTorch data

transformations on Casia dataset.

o Convolution neural network
Training

data Hidden layer
Input layer

Output layer

Male

Female
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@l 7}
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Fig. 4 Training data comprising of male and female samples for network training.

In order to better fine-tune the networks, the thermal training data are augmented by intro-
ducing a selection of image variations. These are achieved using the transformation operations
shown in Table 2.

During the fine-tuning phase, the SGD>® and the Adam®® optimizers are used to compare
their respective performance. This is discussed in Sec. 4. As compared to gradient descent
(GD) where the full training set is used to update the weights in each iteration, in minibatch
SGD,” the dataset is split into randomly samples minibatches, and the weights are updated in
separate iterations for each minibatch (not element-wise unless minibatch size is 1). Moreover,
minibatch SGD*® is computationally less expensive and minimizes losses faster than GD as it
cycles through the full training data, just in the form of chunks as opposed to all at once.
The Adam>® optimizer is an adaptive learning rate optimizer and is considered one of the best
optimizers for training convolution neural networks. As compared to minibatch SGD, Adam
optimizer also uses the SGD algorithm. However, it implements an adaptive learning rate and

Table 2 Training data transformation

Transformation type Data variation

Resized cropping Size = 256,
scale = (0.8, 1.0)

Rotation 15 deg

Flipping Horizontal

Center cropping Size: 224

Tensor conversion —

Mean and standard deviation [0.485, 0.456, 0.406],
normalization [0.229, 0.224, 0.225]
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Fig. 5 CNN training structure: network A indicates pretrained networks with initial weights and
network B indicates transfer learning process with new weights for thermal gender classification.

Table 3 Pretrained networks hyperparameters

Network hyperparameters

Batch size 32
Epochs 100
Learning rate 0.001
Momentum 0.9

Loss function Cross-entropy
Optimizer SGD and Adam

can determine an individual learning rate for each parameter. Figure 5 shows the generalized
training structure for all the pretrained networks. The training data are split into the ratio of
80% and 20% for training and validation purposes, respectively. To achieve a fair evaluation
baseline, all the pretrained networks are fine-tuned using the same hyper-parameters on the one
train dataset. These parameters are provided in Table 3.

3.2 New CNN Model GENNet

To analyze the validity of the existing thermal images, a novel CNN network is designed that is
referred to as GENNet and its performance is compared against the pretrained state-of-the-art
architectures. The structural block diagram representation of the proposed network is shown in
Fig. 6. The overall network structure is consisting of four main blocks. The first three blocks

Fully connected layer 1

Input layer Fully connected layer 2
Convolution layer 1 Convolution layer 2 Convolution layer 3 Output
Maxpooling Maxpooling Maxpooling \:’ layer
layer 1 layer 2 layer 3 =7

) Eﬁﬁ""".

laqe99

000 e ®+000

Fig. 6 Structural representation of GENNet CNN model for thermal images-based gender
classification.
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contain sequential layers in the form of 2D convolutions each followed by the ReLU>? activation
function, max-pooling, and dropout layers. The fourth block consists of two FC layers. The first
FC layer is followed by the ReLLU activation function® and dropout layer, whereas the second and
last FC layer of the overall network converts the corresponding number of features to the number of
outputs. The layer-wise detail of the GENNet model is provided in Appendix A (Table 7).
Like all other pretrained networks, GENNet is initially trained on the Casia facial database**
and later fine-tuned on Tufts thermal dataset.'”'> The same division of thermal training data is
used along with the same hyperparameters as it was utilized for other pretrained models. Once the
network is fine-tuned, it is tested on the combination of two new datasets as discussed in Sec. 4.3.

4 Experimental Results

PyTorch> deep learning platform is used to fine-tune and train all the pretrained models as well
as the proposed GENNet model. These experiments are performed on a machine equipped with
NVIDIA TITAN X graphical processing unit with 12 GB of dedicated graphic memory.

4.1 Training and Validation Results of CNN Architectures by
Unfreezing the Layers

In this part of the experimental study, all the networks are retrained by unfreezing all the original
network layers to improve the feature learning process on thermal data. As described and shown
in ablation study Sec. 6, transfer learning while freezing the network layers and using both SGD
and ADAM optimizer we cannot achieve optimal training and validation accuracy in the case of
most of the models. The experimental results using freezed network layer are depicted in Fig. 14.
During this fine-tuning process, both Adam and SGD optimizers were employed and the best
results in the case of each model were selected. Most of the models performed well, achieving
better training and validation accuracy as shown in Fig. 7. AlexNET is specifically trained using
a fixed learning rate and it utilizes a one-cycle learning policy to achieve a better convergence.
The initial learning rate of the network is set to 0.001 and momentum to 0.9. The final learning
rate of the network was 0.0003. Using a smaller learning rate makes a model converge more
efficiently but at the expense of the speed, whereas using a higher learning rate can lead to model
divergence. Thus to overcome this issue, the learning rate needs to be adjusted automatically.
One cycle LR works by increasing and then decreasing the learning rate according to a fixed
schedule during the complete training process of a CNN. The main goal of performing these
techniques is to optimize all the models as well as that of the newly proposed GENNET archi-
tecture. Figure 7 shows the training and validation accuracy chart of all the retrained networks
along with the newly proposed GENNet architecture.

It can be observed that most of the models performed significantly well by getting training
accuracy above 96% and validation accuracy greater than 90%. The inception-V3 achieved the
highest training accuracy with the lowest training loss of 0.008. The Efficientnet-B4 network
achieved the highest validation accuracy of 96.98% with a validation loss of 0.11. The newly
proposed GENNet model for task-related thermal gender classification achieves the overall train-
ing and validation accuracy of 97.86% and 92.26% with loss of 0.08 and 0.15, respectively. The
trained models are further used for cross-validating their performance on the new test data as
discussed and shown in the subsections.

Training and validation accuracy

100

Wb

AIU(\IL VGG- Mobile Inceptio ResNet- ResNet- DenseN DenseN Efficien GENNe

G

0
O

19 Net-V2 n-V3 50 101 et-121  et-201 tNet-B4 t
= Training accuracy % 96.61  99.86  99.73 9998 9991 @ 9948 99.42 99.6  99.73 97.86
B Validation accuracy% =~ 92.2 = 96.55  94.84 = 90.53 94.13 94.18 95.81 9624 96.98 @ 92.26
= Training accuracy% B Validation accuracy%

Fig. 7 Accuracy charts of all the networks by unfreezing the network layers.
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4.2 Local Thermal Data Acquisition

To further validate the effectiveness of all the pretrained models and provide an additional mode
of comparison with the newly proposed CNN GENNet model, a live thermal facial dataset was
gathered using a new prototype thermal camera. The data are acquired in an indoor lab envi-
ronment using a camera-based on a prototype uncooled microbolometer thermal camera array
that embeds a Lynred®’ long-wave infrared (LWIR) sensor developed under the Heliaus EU
project.! Figure 8 displays the prototype thermal camera model being used for the proposed
research work to gather this live dataset, whereas Table 4 provides the technical specifications
of the camera.

To take comprehensive facial information during the data acquisition process, we have
calculated other important parameters including the lens aperture, angular field of view (AFOV),
height and width of the sensor, and working distance as shown as follows:
F — number — foctal length(f)

diameter(D)

ey

focal length 7.5
_ focal length(f) _ 75 _ ¢ 5 6 mm, @

diameter(D) Fmumber 15

height of sensor(%) = horizontal pixels * pixel spitch = 640 x 17 = 10.88 mm,  (3)
width of sensor(w) = vetricle pixels * pixel spitch = 480 % 17 yum = 8.16 mm,  (4)

10.88 mm

h
— -1t -1 _ ~
AFOV = 2 x tan 27 2 % tan 2+ 75 mm 71.9 =72 deg, (®)]
focal length HFOV  7.5%890
working distance(WD) = ocal length(f) « = ~ 60 cm. (6)

height of sensor(h) 10.88

The data are collected by mounting a camera on a tripod at a fixed distance of 60 to 65 cm.
The height of the camera is adjusted manually to align the subject’s face centrally in the FoV.
Shutterless®” camera calibration at 30 FPS is used to acquire the data. The data acquisition setup

Fig. 8 Prototype thermal VGA camera model for acquiring local facial data.

Table 4 Technical specifications

Prototype thermal camera specifications

Quality and type VGA and LWIR
Resolution 640 x 480 pixels
Focal length (f) 7.5 mm
F-number 1.2

Pixel pitch 17 ym
HFOV 90 deg, 890 mm

Journal of Electronic Imaging 063004-10 Nov/Dec 2020 « Vol. 29(6)



Farooq, Javidnia and Corcoran: Performance estimation of the state-of-the-art convolution...

Data acquisition setup

Thermal camera

Subject

f]n

Video recorder

Fig. 9 Indoor lab environment data acquisition setup.

is shown in Fig. 9. A total of five subjects consensually agreed to take part in this study. The data
were gathered by recording videos stream of each subject covering different facial poses and then
generating image sequences from the acquired videos.

Figure 10 illustrates a few samples of the captured data including both male and female
subjects.

4.3 Testing Results of State-of-the-Art CNN

All the trained models are tested on the combination of the two different datasets including
Carl'®*® and the locally gathered indoor thermal dataset. This is done to cross-validate the
effectiveness of all the trained classifiers, as discussed in Sec. 1. The best models achieving
the highest training and validation accuracy from Sec. 4.3 are selected for the cross-validation
experiment. The test data contain a total of ninety samples. The overall performance of all
the networks on test data is measured using the accuracy metric as shown in the following

equation:®

(b) :
Eaé " s

()

Fase n

Fig. 10 Test cases of three different subjects acquired in the lab environment with varying face
pose: (a), (b) the varying facial angles of male subjects and (c) the different facial angles of
a female subject.
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Fig. 11 Test accuracy and model parameters chart of all the CNN architectures.

accuracy(ACC) =

tp +tn

— X 100,
tp+tn+fp+fn

0

where tp, fp, fn, and tn refer to true positive, false positive, false negative, and true negative,
respectively. ACC in Eq. (7) means overall testing accuracy.

Figure 11 illustrates the calculated test accuracy along with total number of parameters chart
of all the models. A confusion matrix for five of the best models is presented in Fig. 12 to better
elaborate on the performance of each model on different genders.

By analyzing Fig. 11, we can observe that GENNet model performed significantly well
among other low-parameter models by achieving total test accuracy of 91%, equal to the test
accuracy of the VGG-19 model. However, VGG-19 has 138 million parameters, which is the
highest number of parameters among all other models.

Figure 13 shows a number of failed predictions by the studied state-of-the-art models. The
results display the model name along with the predicted output class.

VGG-19 Class: Males
N=90 True positives
Predicted 51
positives

Predicted

31

Class: Females
True negatives

Predicted

ResNet-50 Class: Males
N=90 True positives
Predicted 51
positives

Class: Females
True negatives

negatives negatives
(a) (b)
DenseNet- | Class: Males | Class: Females EfficientNet- | Class: Males | Class: Females
201 True positives | True negatives B4 True positives | True negatives
N =90 :
Predicted 54 P"‘?l:f ted >0
positives pos1- ves
Predicted 32 Predicted
negatives negatives
(©) (d)
GENNet Class: Males | Class: Females
True positives True negatives
Predicted 54
positives

Predicted
negatives

28

(e)

Fig. 12 Confusion matrix depicting the performance of (a) VGG-19; (b) ResNet-50; (c) DenseNet-
201; (d) EfficientNet-B4; and (e) GENNet models.
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Model: AlexNet, Prediction : MALE  Model: MobileNet-V2, Prediction : MALE Model: GENNet, Prediction : FEMALE

Fig. 13 Individual false prediction test case results: (a) AlexNet model: female gender misclassi-
fied as male gender; (b) MobileNet: female gender misclassified as male gender; and (c) GENNet:
male gender misclassified as female gender.

In order to understand how effective, the models are for the custom classification task, eight
different quantitative metrics are employed in addition to the accuracy metrics thus providing
a detailed performance comparison of all the trained models. The additional metrics include
sensitivity, specificity, precision, negative predictive value, false positive rate (FPR), false neg-
ative rate (FNR), Matthews correlation coefficient (MCC), and F'1-score. Sensitivity, specificity,
and precision are the conditional probabilities where sensitivity also termed as recall is defined as
the probability of given positive example results in positive test, specificity is the probability of
given negative example results in negative test, whereas precision provides what proportion of
positive identifications was actually correct. The FPR is the proportion of negative cases incor-
rectly identified as positive cases in the data, whereas FNR also known as miss rate is the pro-
portion of positive cases incorrectly identified as negative cases. F1-score describes the
preciseness (such that how many instances it predicts correctly) and robustness (such that it
does not miss a significant number of instances) of the classifier. MCC produces a more inform-
ative and reliable statistical score in evaluating binary classifications in addition to accuracy and
F1-score. It produces a high score only if the trained classifier obtained good results in all the
four confusion matrix categories including true positives, false negatives, true negatives, and
false positives. The numerical results are presented in Table 5. The best and worst value per
metric is highlighted in bold and italics.

5 Discussions

This section will discuss the overall performance of each model along with its individual training
and inference time required compared to other models and individual parameters of each model.
Table 6 presents the numerical values of this comparison.

¢ AlexNet model achieved the best inference time and sensitivity compared to the other
models, but it has a low specificity and precision scores.

* EfficientNet-B4,* DenseNet-201, and GENNet model has achieved an optimal F'1-score
followed by VGG-19 and ResNet-50 architectures. Also EfficientNet-B4* achieved the
highest testing accuracy of 93% and best MCC®! scores, however, EfficientNet-B4 requires
the highest training time.

¢ DenseNet-201 also proved to be one of the best models achieving the second best speci-
ficity and second lowest FPR. The total test accuracy of the model is 91%, however,
it requires the highest inference time and relatively higher training time as compared to
other models thus making it a computationally expensive model.

* The bigger architectures such as ResNet, DenseNet, and EfficientNet have good sensitivity
and less FNR, however, the inference time required by these architectures is relatively high
compared to other models.

¢ Although the proposed model GENNet has a high false-positive rate, but as a trade-off,
it achieved the optimal test accuracy of 91% along with good sensitivity, 1 score, negative
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Table 5 Different quantitative metrics. The best value per metric is highlighted in bold, and the
worst value per metric is highlighted in italics.

Quantitative metrics comparison of all the models

Negative

predictive F1-
Models Sensitivity Specificity Precision value FPR FNR score MCC
AlexNet 0.98 0.54 0.77 0.95 045  0.02 0.86 0.61
VGG-19 0.93 0.88 0.93 0.88 0.11 0.07 0.92 0.81
MobileNet-V2 0.87 0.86 0.90 0.81 0.14 0.12 0.89 0.72
Inception-V3 0.96 0.77 0.87 0.93 023  0.04 0.91 0.77
ResNet-50 0.93 0.85 0.91 0.88 0.14  0.07 0.92 0.78
ResNet-101 0.98 0.60 0.79 0.95 040  0.02 0.87 0.66
DenseNet-121 0.93 0.74 0.85 0.87 025  0.07 0.88 0.69
DenseNet-201 0.93 0.91 0.94 0.88 0.09 0.07 0.93 0.83
EfficientNet- 0.90 0.97 0.98 0.87 0.03  0.09 0.94 0.86
(B;IliNNet 0.98 0.80 0.89 0.96 020  0.02 0.93 0.82
Model

Table 6 Comparison of total training and testing time required by all the models and individual

model parameters

Mobile Res Res Dense Dense

Alex VGG- Net- Inception- Net- Net- Net- Net- Efficient GEN
Models Net 19 V2 V3 50 101 121 201 Net  Net
Average training time required 2.66 12.19 4.55 6.2 64 103 83 11.33 1513 3.1
for each epoch (s)
Overall training time required (s) 266 1220 455 620 640 1030 830 1130 1513 310
Inference time required for 3.6 132 41 8.3 72 112 7.4 9.3 7.2 3.6
complete test data (s)
Parameters (million) 62.3 138 2.2 24 26 43 72 186 19M 168

Journal of Electronic Imaging 063004-14

predictive value, and lowest FNR when compared to other low or nearly equivalent param-
eter models. In addition to this, the model requires the least inference time like AlexNet.
By analyzing the low-specificity value of all the models except EfficientNet-B4 compared
to the sensitivity metric as shown in Table 7, it can be concluded that low can be overcome
by using a significant amount of thermal training data to better generalize the capabilities
of DNN.

Moreover, currently, the main focus is on gender classification for in-cabin driver mon-
itoring systems using thermal facial features. The current technique can be expanded to
face recognition and obtaining other biometrics information in random outdoor environ-
mental conditions. For instance, in law enforcement applications®” this system can be made
more effective by capturing data through CCTV recordings. The recorded data can be used
for training and thus performing multi-frame detection and classification tasks such as hat
and mask detection, and then subsequently classifying the person’s gender. This can be
achieved by training advanced deep learning algorithms®*** such as human body instance
segmentation and recognition.
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Training and validation accuracy
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® Validation accuracy% = 84.28 81 89.18 85.59 90.49 86.55 84.59 87.86 86.32
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101 -121 -201 Net-B4
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® Training Loss M Validation Loss

Fig. 14 Accuracy and loss charts of all the networks trained using freezed layer configuration.

6 Ablation Study

This section shows an ablation study by analyzing the results of the nine state-of-the-art deep
learning networks by freezing the network layers as discussed in Sec. 3.1. Figure 14 presents the
overall performance of all the pretrained architectures initially trained on Casia dataset** and
fine-tuned on thermal facial images from Tufts dataset.'®"'> The networks were trained using
both SGD and Adam optimizer, and the best training and validation results in the case of each
model were selected. It is important to mention that during the training phase the data are di-
vided subject-wise and all the eight poses of each particular subject are used for training and
validation purposes, respectively. This is done to avoid bias and to do optimal inductive learn-
ing. Figure 14 presents the training and validation accuracy and loss chart of all the pretrained
models.

Among all the models ResNet-50 architecture scores highest with the validation accuracy of
90.49% followed by MobileNet-V2 with a validation accuracy of 89.18% using the SGD opti-
mizer. However, AlexNet, VGG, and EfficientNet architectures do not perform well as compared
to other models thus getting the lower validation accuracy and higher loss values. However,
it was not possible to achieve an optimal training outcome as most of the models have accuracy
levels below 95% with freeze layer configuration. By analyzing the accuracy and loss charts in
Fig. 14, it is clear that during the finetuning process of all the pretrained models DenseNet-201*®
and AlexNet achieves the highest training accuracies of 95.16% (using SGD optimizer) and
93.61% (using Adam optimizer) with the lowest training losses of 0.14 and 0.18, respectively.
MobileNet-V2*" architecture achieved the best validation accuracy of 89.18% with a validation
loss of 0.28 (using SGD optimizer). However, it achieved a lower training accuracy of 90.32%
with validation accuracy of 90.16% when the model was trained using Adam optimizer. The
DenseNet-201 model scored second best with a validation accuracy of nearly 88% (using
SGD optimizer). The VGG-19 architecture was unable to achieve good accuracy scores com-
pared to the other pretrained models with overall validation accuracy of only 81% and the highest
validation loss of 0.46.

7 Conclusions and Future Work

In the proposed study, we have proposed a new CNN architecture GENNet for autonomous
gender classification using thermal images. Initially, all the models including pretrained models
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as well as newly proposed GENNet models are trained on a large-scale human facial structures,
which eventually help us to fine-tune the model on smaller thermal facial data more robustly. In
order to achieve optimal training accuracy and less error rate, all the networks are trained using
two different state-of-the-art optimizers including SGD and Adam optimizers and picked the best
results in the case of each model. The trained models are cross-validated using two new thermal
datasets including the public as well as the locally gathered dataset. The EfficientNet-B4 model
achieved the highest training accuracy of 93% followed by the DenseNet-201, and the proposed
network has achieved an overall testing accuracy of 92% and 91%. However, GENNet archi-
tecture is good for a compute-constrained thermal gender classification use-case as it performs
significantly better than other low-parameter models.

For future work, we can work on the grouping of different datasets and fusions of features
that can eventually push toward the horizon for the advancement of deep learning. In the same
way, we can use techniques to generate new data from the existing data such as smart augmen-
tation techniques, GANSs, and last but not least generating synthetic data that can aid us in
increasing the accuracy levels and reducing the overfitting of a target network. Moreover,
multi-scale convolutional neural networks can be designed for performing more than one human
biometrics task such as face recognition, age estimation, and emotion recognition using thermal
data. For example, face recognition using thermal imaging can be performed using blood per-
fusion data by extracting blood vessels patterns, which are unique in all human beings. Similarly,
emotion recognition can be performed by learning specific thermal patterns in human faces while
recording different emotions.

Appendix A

Table 7 shows the complete layer-wise architectural details of the newly proposed GENNet
model for task-specific thermal gender classification.

Table 7 Layer wise architecture of GENNet. Output shape is shown in brackets along with kernel
size, no of stride, padding, and number of network parameters

Block-1 Block-2 Block-3 Block-4

Conv 2D-1 Conv 2D-5 Conv 2D-9 FC-1/linear-13

[16, 16, 250, 250] [16, 32, 125, 125] [32, 64, 62, 62] [65536, 256]

Kernel size = 3 Kernel size = 3 Kernel size = 3 No of param =
16,777,472

Stride = 1 Stride = 1 Stride = 1

Padding = 1 Padding = 1 Padding = 1

No of param = 448 No of param = 4,640 No of param = 18,496

ReLU-2 ReLU-6 RelLU-10 RelLU-14

[16, 16, 250, 250] [16, 32, 125, 125] [32, 64, 62, 62]

MaxPool 2D-3 MaxPool 2D-7 MaxPool 2D-11 Dropout (0.5)-15

[16, 16, 125, 125] [16, 32, 62, 62] [32, 64, 32, 32]

Kernel size = 2

Stride = 2

Kernel size = 2

Stride = 2

Kernel size = 2
Stride = 2

Padding = 1

Dropout (0.5)-4
[16, 16, 125, 125]

Dropout (0.5)-8
[16, 32, 62, 62]

Dropout (0.3)-12
[32, 64, 32, 32]

FC-2/linear
[256, 1]

Total no of param =
16,801,570
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Appendix B

During the experimental work, when training the GENNet model from scratch using only ther-
mal dataset, we were unable to achieve precise training and validation accuracy with greater loss
values, which eventually results in low testing accuracy. The experiments were carried using
different optimizers including adaptive learning rate optimization Adam®® as well as SGD,>
but the same results were observed. The experimental results are demonstrated in Fig. 15.

(@ 10 10
—— Training accuracy —— Training loss
Validation accuracy C — Validation loss
08 W os | Training loss = 0.31
> Py Yalidation loss = 0.56
o
06 06
g e
] .. _ o 2
8 o Training accuracy = 86.50% 2 o4
Validation accuracy = 77.60%
02 02
00 L ‘ i . . . 001 . . ; , ;
1y 0 Y 2 0 50 0 10 20 30 40 50
Epoch number Epoch number
(b) 10 10
— Training loss
M Validation loss
08 08
2
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5 2
o . _ 0 7]
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02 02 Training loss = 0.28
—— Training accuracy . .
Validation accuracy Validation loss = 0.49
0.0 1+ . : . . ,
B 1 ) » © % % B3 ) ) ® %
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Fig. 15 Training GENNet accuracies and loss graph using only thermal data: (a) training and val-
idation accuracy and loss graph using Adam optimizer and (b) training and validation accuracy and
loss using SGD optimizer.
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