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Abstract. We used the ideal observer (IO) and IO with model mismatch (IO-MM) applied in the projection
domain and an anthropomorphic channelized Hotelling observer (CHO) applied to reconstructed images to opti-
mize the acquisition energy window width and to evaluate various scatter compensation methods in the context
of a myocardial perfusion single-photon emission computed tomography (SPECT) defect detection task. The IO
has perfect knowledge of the image formation process and thus reflects the performance with perfect compen-
sation for image-degrading factors. Thus, using the IO to optimize imaging systems could lead to suboptimal
parameters compared with those optimized for humans interpreting SPECT images reconstructed with imperfect
or no compensation. The IO-MM allows incorporating imperfect system models into the IO optimization process.
We found that with near-perfect scatter compensation, the optimal energy window for the IO and CHO was
similar; in its absence, the IO-MM gave a better prediction of the optimal energy window for the CHO using
different scatter compensation methods. These data suggest that the IO-MM may be useful for projection-
domain optimization when MM is significant and that the IO is useful when followed by reconstruction with
good models of the image formation process. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0
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1 Introduction
Model observers have been widely used to perform task-based
assessment of medical image quality. Two important categories
of model observers are ideal and anthropomorphic observers.
The ideal observer (IO) outperforms all other observers and
sets an upper limit on task performance measured by figures
of merit such as the area under the receiver operating character-
istic (ROC) curve (AUC).1 The IO makes optimal use of all the
information in the raw data. However, it requires full knowledge
of the raw data statistics. Therefore, it is typically applied in the
projection domain, where the quantum noise statistics are
known and easier to analyze. Moreover, IO performance is not
improved by invertible operations on the raw data such as linear
filtering or (invertible) reconstruction algorithms, and it thus
allows optimization of instrumentation or reconstruction param-
eters in the projection domain and provides an alternative to
image-domain optimization.

Anthropomorphic model observers, such as the channelized
Hotelling observer (CHO) using anthropomorphic channels,2

are designed to predict how humans would perform. They have
been extensively used in the evaluation and optimization of
acquisition, instrumentation, reconstruction, and compensation

methods in the context ofmyocardial perfusion, bone, andhepatic
single-photon emission computed tomography (SPECT).3–6 The
CHO has shown good agreement with human observers in a vari-
etyofclinicalapplicationsandtasks.3–5,7–13ForSPECT,theCHOis
typically applied to reconstructed images. Since task performance
for both humans and the CHOdepends on details of compensation
and regularization methods and parameters, comparing perfor-
mances in this domain should be done with images that are opti-
mized in terms of relevant reconstruction and regularization
parameters such as iteration number and the cutoff frequency of
anypostreconstruction smoothing filter. This optimization requires
significant computational resources, and it is thus simpler andmore
efficient to optimize imaging systems in the projection domain
using the IO rather than in the reconstructed image domain using
the CHO.

Despite the potential advantages of using the IO, it has rarely
been rigorously applied to real imaging tasks due to the techni-
cal difficulty of estimating the performance for realistic back-
ground variability arising from variations in patient anatomy
and uptake. Its application has been limited to cases where
the background and signal models could be expressed analyti-
cally, which often do not capture the variability observed in
clinical studies.14–16 To overcome this limitation, methods
based on Markov Chain Monte Carlo (MCMC) techniques
have been developed and applied to estimate the IO test statistic,*Address all correspondence to: Michael Ghaly, E-mail: mghaly@jhu.edu
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i.e., the likelihood ratio (LR) for realistic and general back-
grounds and signal models for binary defect detection
tasks.17–19

While the development of MCMC techniques has allowed
the IO to be applied to more realistic objects and ensembles
of objects, it is unclear if the acquisition and instrumentation
parameters optimized using the IO in the projection domain
will also be optimal when the reconstructed images are used
for visual interpretation by human observers. It is clear that
the optimization using the IO results in projection data that con-
tain the maximum possible information about the detection task.
However, for some sets of reconstruction algorithms and com-
pensation methods, there will undoubtedly be information loss
and thus the instrumentation and reconstruction parameters opti-
mal for the IO may not be optimal for the reconstruction and
compensation methods of interest.

In this work, we address the less general reconstruction opti-
mization problem of finding optimal acquisition parameters for
a particular set of reconstruction and compensation methods. In
this case, we restrict ourselves to iterative reconstruction using
various scatter compensation methods (including no scatter
compensation) and postreconstruction low-pass filtering regu-
larization for noise control.

Based on the above discussion, two ways to approach this
problem are as follows. In sequential optimization, the acquis-
ition and instrumentation parameters are first optimized using
the IO. These parameters are then fixed and reconstruction
parameters, such as number of iterations and low-frequency cut-
off parameters, are optimized using an anthropomorphic
observer. An alternative is joint optimization where the acquis-
ition, instrumentation, and reconstruction parameters are
optimized at the same time. As we have argued above, and
present data to support below, joint optimization is very
time consuming, and the sequential optimization process is
appealing.

However, one potential difficulty with the sequential optimi-
zation procedure is that there can be some information loss in the
reconstruction process. In this work, we investigate one particu-
lar source of such information loss: differences in the physical
model used or assumed by the reconstruction algorithm com-
pared with the true image formation process. In this work,
we propose introducing information loss into the IO formalism
in a way that will be described more fully below. We then inves-
tigate whether sequential optimization using this observer
results in acquisition parameters, i.e., the energy windows,
that are more similar to those from joint reconstruction. We
investigate this in the context of reconstruction methods that
include models of the image formation process with varying
degrees of fidelity to the true process.

To understand how we propose to implement this informa-
tion loss in the IO, recall that, since the IO has full knowledge of
all the statistical information about the background and signal, it
implicitly has a perfect model of the image formation process
including all physical processes and factors that degrade image
quality (e.g., finite energy resolution, scatter, and attenuation).
In other words, the image formation models embedded in the IO
match perfectly the models used to form the projection images,
ptð Þ (Fig. 1). In some sense, the IO can be viewed as providing
ideal compensation for the various image degrading effects,
and the task performance it achieves reflects the best achievable
with perfect compensation. However, real reconstruction and
compensation algorithms do not perfectly model the image

formation process and, in fact, there are often physical effects
for which no compensation is provided.

An important class of reconstruction methods to consider for
the optimization task is statistical iterative reconstruction meth-
ods such as ordered subsets-expectation maximization (OS-
EM). One advantage of these methods is that they allow incor-
porating complete (and incomplete) models of the underlying
physics of the imaging process. This is accomplished by mod-
eling the physics in the projection operator, pmð Þ, used in the
algorithms to compute projections from the current activity esti-
mate. The transpose of the projection operator is used in the
algorithm to update the image estimate after comparing the com-
puted and measured projections. In SPECT, the projection for-
mation process is continuous-to-discrete, spatially varying, and
patient dependent. Closed form expressions are not available.
For realistic object shapes and Monte Carlo simulations that
accurately model the nuclear medicine image formation process,
it is currently not possible to model the projection without digi-
tizing the object. As a result, the true projection operator ptð Þ
was approximated as discrete-to-discrete, but was applied to a
phantom with a voxel size half that of the projection bin size.
Projection operators used in the reconstruction algorithms,
pmð Þ, are also approximations of the true operator. They are
discrete-to-discrete and model the imaging physics to varying
degrees of accuracy. This operator was also applied to the phan-
tom having the same voxel size used for the true projection oper-
ator. The difference between the true projection model, ptð Þ,
and that used in reconstruction, pmð Þ is referred to as model
mismatch (MM). We hypothesize that MM could lead to
differences in optimal acquisition and instrumentation parame-
ters when using sequential and joint optimizations.20

We have previously introduced the concept of including MM
into the IO framework.21,22 We called this observer the IO with
MM (IO-MM). The IO-MM still uses the LR as the test statistic,
but in the estimation of the LR it uses an approximate model of
the image formation process [pmð Þ] instead of the true model
[ptð Þ]. In Ref. 22, we compared the performance of the IO and
IO-MM with that of the CHO for the task of optimizing the
energy window for myocardial perfusion SPECT (MPS) imag-
ing. The results for the IO-MM showed good agreement with
that of the CHO. We have also used the IO and IO-MM to opti-
mize the energy window in 90Y bremsstrahlung SPECT for a
detection task.23 The optimal energy window was narrower
when taking into account MM and was similar to that obtained
previously when optimized for an estimation task.24

In MPS imaging using Tc-99m, due to the interactions of the
Tc-99m photons in the body and collimator-detector system and
the limited energy resolution of scintillation cameras, the
recorded energy spectrum is degraded. Detection of scattered
photons degrades the final image quality and thus has a signifi-
cant impact in limiting the diagnostic accuracy of readers inter-
preting the images. Therefore, it is desirable to reduce the effects
of scatter on the final image quality by either reducing the num-
ber of detected scattered photons or compensating for them.

Fig. 1 A schematic diagram of the image formation process.
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One way to reduce the number of detected scattered photons
is to use narrower acquisition energy windows. However, there
is a tradeoff between the width of the acquisition energy window
and image noise: reducing the width of the energy window
decreases the number of detected primary and scattered photons
concurrently. This would result in an increase of the noise in the
projection data, which could degrade the performance of human
observers operating on the final images. In this work, we seek
the optimal acquisition energy window width that provides the
best tradeoff between reducing scatter and increasing noise, as
measured by performance on a perfusion defect detection task.

Scatter compensation can result in improved quantification,
lesion detection, and contrast-to-noise ratios.4,25–28 Current
methods for scatter compensation can be divided into two gen-
eral categories based on how the scatter component is estimated:
energy and spatial estimation methods. In the former category,
scatter in the photopeak image is estimated using information
acquired in one or more additional energy windows.29 The
dual and triple energy window methods are examples of this
approach and have been widely adopted due to their simplicity
and effectiveness.30 In the dual energy window (DEW) method,
an appropriately scaled projection image acquired in a relatively
narrow energy window immediately below the photopeak win-
dow is used as an estimate of the scattered component of the
photopeak window. For the triple energy window (TEW)
method, images used for scatter estimation are acquired in
energy windows below and above the photopeak window. A dis-
advantage of window-based methods is the noise in the scatter
estimate that results from acquiring data in these narrow win-
dows. Increasing the width of the scatter window reduces the
noise in the scatter estimate, but provides, in general, a more
biased estimate of scatter in the photopeak window.31

The alternative to energy-based scatter estimates is spatial
modeling. Scatter modeling methods estimate the scatter com-
ponent of the projection data based on an estimate derived from
the reconstructed image.32,33 They can naturally be applied as
part of iterative reconstruction algorithms. An example of
model-based scatter estimation methods is the effective source
scatter estimation (ESSE) method.33 It uses a set of scatter ker-
nels that are precalculated using Monte Carlo simulation meth-
ods to estimate an effective scatter source whose attenuated
projection gives the scatter contribution in the projection
data. It has previously been applied in a number of SPECT im-
aging applications for scatter, downscatter, and crosstalk estima-
tion and provided accurate compensation.34,35

In this work, we extended the work introduced in Ref. 36 to
compare different scatter estimation methods, including the
DEW, TEW, and ESSE methods in the context of MPS, and
to find the optimal acquisition energy window width that pro-
vides the best performance on a binary defect detection task
using the IO and IO-MM. We also compared optimal energy
windows obtained with the IO and IO-MM to that of an anthro-
pomorphic observer (CHO) applied to images reconstructed
using the OS-EM algorithm. In other words, we investigated
the agreement in optimal energy windows between sequential
optimization using the IO-MM or IO and joint optimization
using the CHO. In addition to providing information about opti-
mal energy windows and scatter copensation strategies for MPS,
this study investigates the use of the IO and IO-MM in the con-
text of projection-domain optimization of acquisition parameters
in comparison with reconstructed image-domain optimization

using an anthropmorphic CHO in the presence of varying
degrees of MM.

2 Methods
In this section, we introduce the key elements of task-based
image quality assessment including the task, object, imaging
system models, observer, and figure of merits.1 We revisit the
concept of MM and give a brief overview of the IO, the use of
MCMC to estimate IO performance, and the modifications
needed in the IO to take MM into account. Finally, we give a
brief description of the CHO that was used as a surrogate for
human observer performance.

2.1 Identification of the Task

In this work, we focused on the task of detecting a fixed signal in
a realistic, randomly varying background in the context of MPS.
In a binary classification (detection) task, the observer is asked
to classify a given image as either containing or not containing a
signal, in this case a myocardial perfusion defect.

2.2 Object and Imaging System Models

It has been previously reported that the variability in patients’
anatomies and activity uptakes are important factors that limit
task performance. Thus, it is important that the object model
be realistic and represent the range of variability seen in clinical
populations.5,37–40 To this end, we have previously designed and
developed a digital phantom population based on the three-
dimensional (3-D) eXtended CArdiac Torso (XCAT) phantom
and generated the corresponding Tc-99m projection data.41

The population consists of 54 phantoms including anatomical
models for both genders and three variations (small, medium,
and large) in body habitus, subcutaneous adipose tissue thick-
ness, and heart size. The anatomical parameters of the phantom
population were obtained from the anatomical distributions in
the Emory Cardiac Database (Barclay, Emory University),42

which includes the anatomical measurements from 166 patients.
The phantoms were digitized into 0.221 cm cubic voxels. We
simulated anterolateral and inferior perfusion defects with a
10% extent and 25% severity as shown in Fig. 2. The extent
and severity are the fraction of the left ventricular volume
and reduction of uptake in the perfusion defect relative to the
normal myocardium, respectively. The extent and severity of
the defect were chosen to be challenging and clinically relevant.

Projections of the phantom population were simulated using
the SimSET Monte Carlo code43 and angular response functions
(ARFs)44 to model interactions in the body and the collimator
detector system, respectively. We modeled a GE Infinia dual-
detector SPECT system with a GE low-energy high-resolution
collimator and a 9.5-mm thick NaI(Tl) crystal. Projections were
simulated using noncircular phantom-specific body-contouring
orbits and acquired at 60 equispaced angles over a 180 deg

Fig. 2 Sample short-axis slice of the heart showing a perfusion defect
at the anterolateral and inferior locations of the myocardium wall. For
illustrative purposes, defects shown have 100% severity.
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acquisition arc extending from 45 deg right anterior oblique to
45 deg left posterior oblique. Projection images were binned in a
128 × 114 matrix with a pixel size of 0.442 cm. We used a
smaller voxel size in the phantom and Monte Carlo simulation
to realistically simulate the continuous spatial nature of the
anatomy in patients.

To model uptake variability, we simulated low-noise Tc-99m
projection data for the heart, liver, and body (including all other
organs) for each phantom. This enabled us to separately scale
the individual projection images of the different organs using
random scale factors obtained from distributions that were based
on data from a set of 34 patients who underwent MPS. We could
then sum the scaled projections before simulating Poisson noise
to generate an uptake realization. In this study, we modeled an
injected activity of 10 mCi of Tc-99m to model a low-dose
protocol.

Optimizing energy windows requires projection images
acquired in various acquisition energy windows. The flexible
and efficient design of the phantom population and the projec-
tion database in Ref. 41 permitted us to compute projections in
any arbitrary energy window. The original projection data were
simulated in 1 keV wide energy bins with no measurement-
related energy blurring. We computed projections in different
energy windows by summing the data from these narrow
bins. The summing process took into account the energy-depen-
dent energy resolution function. We investigated 11 acquisition
energy windows, labeledW1 toW11, with the parameters shown
in Table 1. Figure 3 shows the sample low-noise and noisy
projection images acquired in the different energy windows.
Note the tradeoff between increasing scatter, which reduces
the contrast of the myocardium, and reduced noise as the energy
window width increases. The goal was to seek the window
among those listed below that provides the best task
performance.

In order to evaluate different scatter estimates, and thus dif-
ferent compensation methods, we generated scatter estimates for
the DEW, TEW, and ESSE methods. For the DEWmethod, scat-
ter estimates were generated in a 10-keV wide window below
and adjacent to the photopeak window. Scatter estimates for the
TEW method were acquired in two 5 keV wide windows
immediately below and above the photopeak energy window.
For both the DEW and TEW methods, we calculated the scatter
estimates using methods reported in Ref. 30. For ESSE, the pro-
jections were calculated directly for the photopeak window
using the appropriate scatter kernels. Figure 4 shows the true
and estimated scatter projections obtained with the various
methods.

2.3 Observers Models

2.3.1 Application of the ideal observer and the ideal
observer with model mismatch

In SPECT imaging, given a continuous object, f, the projection
data, g, are the result of the image formation process and can be
represented by

g ¼ ptðfÞ þ n; (1)

where ptð Þ is a projection operator that maps the object, f, to the
projection space, and n is the measurement noise.

In this work, we consider the task of detecting a fixed signal,
fs, such as a perfusion defect, in a random background, fb. We
define the background and signal projection images as

bt ¼ ptðfbÞ; (2)

st ¼ ptðfsÞ. (3)

For a binary detection task, the two hypotheses to be tested
can be written as

H0: g ¼ bt þ n; (4)

H1: g ¼ bt þ st þ n; (5)

where H0 and H1 mean signal absent and signal present,
respectively.

The IO uses the LR, ΛðgÞ, of defect-present versus defect-
absent as the test statistic. For the case where the background
and signal are known exactly (SKE/BKE) and the only source
of randomness is Poisson measurement noise, n, the expression
for the LR is given by

ΛBKEðg; btÞ ¼
prðgjH1Þ
prðgjH0Þ

¼
Y
i

�
1þ stðiÞ

btðiÞ
�

gðiÞ
exp½−stðiÞ�:

(6)

For a signal known exactly embedded in a background known
statistically (SKE/BKS), the expression for the LR is given by

ΛBKSðgÞ ¼
Z

ΛBKEðg; btÞprðbtjg; H0Þdb: (7)

Table 1 Investigated Tc-99m energy window settings.

W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11

Lower threshold (keV) 140 136 132 130 128 126 124 122 120 112 102

Upper threshold (keV) 141 145 149 151 153 155 157 159 161 169 179

Width (keV) 1 9 17 21 25 29 33 37 41 57 77

Width (%) 0.7 6.4 12.1 15 17.8 20.6 23.5 26.3 29.2 40.6 54.8
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The idea of Eq. (7) is to average over the backgrounds
sampled randomly from the posterior density prðbtjg; H0Þ.
However, the density prðbtjg; H0Þ is usually not known analyti-
cally and is hard to sample using standard Monte Carlo integra-
tion methods. Accordingly, methods based on MCMC
techniques have been developed to estimate the integral in
Eq. (7).17–19

We applied a previously developed method to efficiently esti-
mate the LR.19 We parameterized the object with a parameter
vector, θ

⇀
, which was a combination of discrete anatomical

parameters, n, p; q, and l, that specify the object gender,
body size, heart size, and fat level, respectively, and continuous
organ activity parameters, Aheart, Aliver, and Abody, corresponding
to the uptake activities of the heart, liver, and body, respectively.
Thus, the background btðθ

⇀
Þ parameterized by the vector θ

⇀
was

represented as

btðθ
⇀
Þ ¼ AheartPrj

heart
n;p;q;l þ AliverPrj

liver
n;p;q;l þ AbodyPrj

body
n;p;q;l;

(8)

where Prjheartn;p;q;l, Prj
liver
n;p;q;l and Prj

body
n;p;q;l were the projections of the

heart, liver, and the body, respectively, filled with unit activity
for a given anatomy. The advantage of this approach is that the
projections can be precalculated so that the background can be
estimated very rapidly simply by scaling and summing the set of
three projection images.

It has been shown in Ref. 16 that, if btðθ
⇀
Þ has a one-to-one

relation with the parameter vector θ
⇀
, the integral in Eq. (7) can

be expressed as

ΛBKSðgÞ ¼
Z

ΛBKE

�
g; btðθ

⇀
Þ
�
prðθ

⇀
jg; H0Þdθ

⇀
: (9)

Adopting a Metropolis–Hastings approach to draw samples
from the posterior distribution prðθ

⇀
jg; H0Þ, we could then com-

pute the ergodic average Λ̃BKSðgÞ, which gives an estimate of
the integral in Eq. (9).

It is relatively straightforward to use this formulation to take
into account the “mismatch” between the models used in
reconstruction and the real physical image formation process.
For the IO-MM and a binary decision task, the two hypotheses
to be tested were represented mathematically by

H�
0: g ¼ bm þ n; (10)

H�
1: g ¼ bm þ sm þ n; (11)

where g was the input projection image generated using Eq. (1),
and the background and signal projection images, bm and sm,
respectively, were defined as

bm ¼ pmðfbÞ; (12)

Fig. 3 Sample low noise (top) and noisy (bottom) Monte Carlo simulated anterior projection images of a
medium-sized male phantom with a medium-sized heart and fat level acquired in energy windows W1 to
W11 (from left to right). The images are displayed using a logarithmic grayscale to better show the lower
uptake organs.

Fig. 4 Low-noise scatter projection images generated using SimSET and ARFs (true), dual energy win-
dow (DEW), triple energy window (TEW), and effective scatter source estimation (ESSE) methods (from
top to bottom) for a medium sized male phantom with medium size heart and fat level acquired from
anterior projection view in energy windows W1 to W11 (from left to right). The images are displayed
using a logarithmic grayscale to better show the lower uptake organs.
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sm ¼ pmðfsÞ: (13)

For the IO-MM, the expression for the LR for the SKE/BKE
case is given by

ΛBKE;mðg; bmÞ ¼
prðgjH�

1Þ
prðgjH�

0Þ

¼
Y
i

�
1þ smðiÞ

bmðiÞ
�

gðiÞ
exp½−smðiÞ�: (14)

When background variability is included, the equation for the
LR becomes

ΛBKS;mðgÞ ¼
Z

ΛBKE;mðg; bmÞprðbmjg; H0Þdb: (15)

To compute the LR for the IO-MM, we followed the same
methodology as for the case of the IO. We parameterized the
object with the parameter vector, θ

⇀
, applied the MCMC method

to sample from the posterior distribution, prðθ
⇀
jg; H�

0Þ, and com-
puted the ergodic average Λ̃BKS;mðgÞ. This was implemented
using the same computer code as for the IO by providing a data-
base of organ projections that included the desired MM instead
of the true projections.

In the standard IO, we tested the hypothesis that a projection
image, g, contains or does not contain a fixed defect in a random
background, where both the signal and the background images
were generated using the true model of the image formation
process. Thus, the IO had a perfectly matched model of all
physical image-degrading processes. For the IO-MM, we still
tested the same hypothesis. However, the signal and the back-
ground images provided to the observer were generated using an
approximate model, pmð Þ, of the image formation process. In

both cases, the input projection data were generated using the
true model.

For each energy window, we computed the IO and IO-MM
(in the cases where the observer had an approximate model of
scatter based on the ESSE, DEW, and TEW methods) test sta-
tistics using the MCMC method for an ensemble of 2160 pairs
of defect-present and defect-absent projection images modeling
different anatomical and uptake variations. The projection data
contained a 64 × 24 × 60 pixel region of interest centered over
the centroid of the heart. This ensured that the whole heart was
included inside the region-of-interest. For each energy window,
the IO test statistics were used as the input to the ROCkit
code,45which fits a binormal ROC curve to the input set of
LRs to estimate the AUC.

2.3.2 Channelized Hotelling Observer Study

We used an anthropomorphic CHO as a surrogate for human
observer performance and compared optimal energy window
settings and the different scatter compensation methods to
those obtained from the IO and the IO-MM.

Image reconstruction. We performed CHO studies on
images reconstructed using the OS-EM algorithm with four
combinations of compensations: attenuation only (A); attenua-
tion, spatially varying geometric response, and scatter using
ESSE scatter modeling (AG-ESSE); attenuation, spatially vary-
ing geometric response, and scatter using the DEW method
(AG-DEW); and attenuation, spatially varying geometric
response, and scatter using the TEW method (AG-TEW).
Figure 5 shows sample transaxial slices from images recon-
structed using the different compensation methods. For each
energy window and compensation method, we used 10 pairs
of projection datasets per defect position per phantom, leading

Fig. 5 Sample transaxial images located at the heart centroid for different phantoms and the correspond-
ing attenuation maps (rows 1 and 2). Rows 3 to 6 show the reconstructed slices obtained using A, AG-
DEW, AG-TEW, and AG-ESSE compensation methods after the third iteration with 12 subsets per
iteration.
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to a total of 1080 pairs of defect-present and -absent images. We
used 12 subsets with five projections per subset in the OS-EM
algorithm. We considered iterations 1, 2, 3, 5, 7, 10, 12, 15, 18,
and 20 in choosing the optimal one.

Post-reconstruction processing. After reconstruction,
images from each of the iterations identified above were filtered
using a low-pass Butterworth filter with order 8 and cutoff
frequencies of 0.08, 0.1, 0.12, 0.14, 0.16, 0.2, and
0.24 pixels−1. We reoriented the filtered transaxial images to
the short-axis view (standard view of MPS images; orthogonal
to the long axis of the left ventricle). For each filtered and reor-
iented image, we extracted the short-axis slice containing the
center of the defect (or the same slice in the defect-absent
short-axis image). Following the methodologies adopted in
Refs. 4 and 46, the pixel values in the filtered, reoriented images
were windowed to 256 gray levels by scaling the image so the
maximum value in the heart was 255, and negative values were
set to zero.

Application of the channelized Hotelling observer.
In this study, we used four nonoverlapping difference-of-mesa
frequency channels with successively doubling widths and a
starting frequency of 0.5 pixels−1. We estimated CHO perfor-
mance using a leave-one-out technique in which the CHO
was trained using all but one image and tested using the left-
out image, producing one test statistic value. This process
was repeated with each of the feature vectors being left out,
resulting in a set of test statistics with as many members as
images. These test statistics were used as inputs to the
ROCkit code to estimate the AUC. For each energy window
and compensation method, the iteration and cutoff frequencies

giving the highest AUC were selected as optimal. A schematic
diagram showing the steps of the CHO study is shown in Fig. 6.

3 Results

3.1 IO and IO-MM Studies

Figure 7 shows a plot of the AUC values of the IO, i.e., the case
where the observer used a perfect scatter model for the detection
task as a function of acquisition window width. The standard
deviations, estimated by ROCkit, were very small (∼0.003)
and thus are not plotted. The performance of the IO operating
on the images acquired in energy window, W1, a 1-keV wide
energy window, was poor. This was a case where quantum
noise was dominant due to fewer detected photons, and signifi-
cantly limited the observer performance. We observed that the
IO performance in the range of energy window widths 9 to
41 keV (W2 to W9) did not change substantially, indicating
that the observer could handle moderate amounts of scatter.
Despite the fact that the IO had a perfect scatter model, the per-
formance was slightly worse for energy windows of widths
more than 41 keV (W10 and W11). This is likely because the
amount of scatter was very high and resulted from very large
angle and multiple scatter, thus adding little information relevant
to the task. These results suggest that there is no benefit in
increasing the acquisition energy window width to more than
∼41 keV (W9), even when incorporating a perfect scat-
ter model.

AUC values of the IO and IO-MM for the cases when scatter
was modeled using the ESSE, DEW, and TEW methods are
shown in Table 2. The standard deviations of the AUC values
for all methods were, again, very small (∼0.004). We note that
the maximum AUC value for the IO and IO-MM for the

Fig. 6 Schematic diagram showing the steps used in the channelized Hotelling observer (CHO) study.
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different cases was for an energy window width of 29 keV (W6).
For each scatter modeling method (perfect, ESSE, DEW, and
TEW), we tested the statistical significance of the difference
between the AUC value for a width of 29 keV (W6) and the
rest of the energy windows under investigation. The correspond-
ing p-values are shown in Table 3. Italicized AUC and corre-
sponding p-values indicate the cases where the differences
were not statistically significant at the p ¼ 0.05 level. The
results in Tables 2 and 3 indicated that, for the IO, acquisition
energy windows of widths between 17 keV (W3) and 41 keV
(W9) were near-optimal in the sense that we could not accept
the hypothesis that the AUC values were significantly less
than that for the 29-keV wide window. When the IO-MM incor-
porated a scatter model based on the DEW, TEW, and ESSE
methods, the near-optimal range of energy window widths
was between 21 and 33 keV (W4–W7), 25 and 33 keV
(W5–W7), and 25 and 37 keV (W5–W8), respectively.

We compared the performance of the IO and IO-MM when
incorporating each of the different scatter models for each
energy window. Table 4 shows the p-values for the hypothesis

that the AUCs were the same for the various energy windows.
We see that the IO-MM that used the ESSE scatter model was
statistically indistinguishable (had a p-value >0.05) from the
IO, which implicitly had a perfect scatter model, for all the
energy windows. This indicates that the information about
the scatter provided by ESSE was very similar to that in the
true scatter in terms of its effect on defect detection. The per-
formances of the IO-MMs that used the DEW and TEW scatter
models were statistically indistinguishable from that of the IO
for energy windows W6 to W9 and W4 to W9, respectively.
However, the performance was significantly worse than the
IO for energy window of widths more than 41 keV (W10 and
W11). These data suggest that using an accurate scatter estimate,
such as that from ESSE, would allow for the use of a wider
energy window without degrading task performance. The
DEW or TEW estimates resulted in a performance similar to
that achieved by the IO when the appropriate acquisition energy
windows were used.

3.2 CHO Study

3.2.1 Optimization of Reconstruction Parameters

Figure 8 shows the two-dimensional contour plots of the AUC
values as a function of the iteration number and the Butterworth
postreconstruction filter cutoff frequency for the different scatter
compensation methods. The plots correspond to energy window
widths of 21 keV (W4), 25 keV (W5), 25 keV (W5), and 33 keV
(W7) for the scatter compensation methods A, AG-DEW, AG-
TEW, and AG-ESSE, respectively. We also observed similar
trends for the rest of the energy windows and compensation
methods. Table 5 shows the optimal cutoff frequency and iter-
ation number for each energy window and compensation
method. Figure 9 shows the short-axis images reconstructed
using the different compensation methods and optimal recon-
struction parameters. For all methods and energy windows, we
observed that the CHO performance was best for two to three
iterations. Beyond that number of iterations, the AUC values
changed slowly with the iteration number. The optimal cutoff
frequency was between 0.12 and 0.16 pixels−1. This was very
similar to what was reported in previous studies.4,5

3.2.2 Comparison of Compensation Methods

A plot of the AUC as a function of energy window width for the
different compensation methods is shown in Fig. 10. Again, as
was the case with the IO, the standard deviations were very
small (∼0.004) and so error bars are not plotted. From these
data, we see that scatter compensation using AG-DEW, AG-
TEW, or AG-ESSE provided better performance than when
only attenuation compensation was included. This agreed
with previous studies as reported in Refs. 4 and 5. These results
also indicate that ESSE scatter modeling provided better
observer performance than the DEW and TEW methods. This
agreed with results of previous human observer studies.47

The observer performance, when using ESSE scatter compen-
sation, was less sensitive to changes in the energy window
width. This agreed with the results from the IO-MM when
using the ESSE scatter model.

For each compensation method, we tested the statistical
significance of the differences between the AUC value of the
window that had the highest AUC value and that of the rest
of energy windows.We computed the p-values, given in Table 6,
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Fig. 7 The ideal observer (IO) performance measured in terms of the
area under the receiver operating characteristic (ROC) curve (AUC)
value for the different acquisition energy windows.

Table 2 AUC values for the ideal observer (IO) and IO with model
mismatch (IO-MM).

Energy window
width

IO
(Perfect)

IO-MM
(DEW)

IO-MM
(TEW)

IO-MM
(ESSE)

1 0.794 0.792 0.723 0.789

9 0.946 0.943 0.855 0.941

17 0.949 0.949 0.938 0.946

21 0.949 0.949 0.954 0.948

25 0.951 0.948 0.957 0.949

29 0.956 0.955 0.960 0.958

33 0.954 0.951 0.959 0.958

37 0.954 0.947 0.954 0.956

41 0.947 0.948 0.950 0.953

57 0.949 0.928 0.931 0.940

77 0.937 0.926 0.924 0.935

Note: DEW, dual energy window; TEW, triple energy window; ESSE,
effective scatter source estimation.
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for the hypothesis that the AUC values were different. Italicized
AUC and p-value pairs indicate that the differences were not
statistically significant at the level p ¼ 0.05. Acquisition energy
window widths of 17 to 25 keV (W3–W5) were near-optimal for
attenuation compensation alone. However, when scatter com-
pensation was incorporated into the reconstruction algorithm,

the optimal energy window width was larger than for attenuation
compensation only. Thus, scatter compensation enabled the use
of wider energy windows. We also observed that the range of the
near-optimal energy window widths changed with the compen-
sation method. These data suggest that the acquisition energy
windows of widths 21 to 29 keV (W4–W6), 25 to 33 keV

Table 3 p-values for hypothesis that the area under the receiver operating characteristic (ROC) curve (AUC) for the indicated energy window was
different than that for the 29 keV width energy window (W6).

Energy window width

IO (Perfect) IO-MM (DEW) IO-MM (TEW) IO-MM (ESSE)

ΔAUC p-value ΔAUC p-value ΔAUC p-value ΔAUC p-value

1 0.162 0 0.163 0 0.237 0 0.169 0

9 0.010 0.004 0.012 0 0.105 0 0.017 0.023

17 0.006 0.062 0.006 0.012 0.022 0 0.012 0.048

21 0.006 0.633 0.006 0.472 0.006 0.014 0.010 0.013

25 0.004 0.065 0.007 0.095 0.003 0.661 0.009 0.07

29 0 1 0 1 0 1 0 1

33 0.002 0.243 0.004 0.063 0.001 0.371 0 0.572

37 0.002 0.278 0.008 0.002 0.006 0.012 0.002 0.578

41 0.009 0.479 0.007 0.006 0.010 0 0.005 0.026

57 0.013 0.022 0.027 0 0.029 0 0.018 0

77 0.019 0.001 0.029 0 0.036 0 0.023 0

Note: p-values less than 10−5 are shown as 0.

Table 4 Statistical significance of the differences between the AUC values of the IO and IO-MM for each scatter model.

Energy window width

Perfect versus DEW Perfect versus TEW Perfect versus ESSE

ΔAUC p-value ΔAUC p-value ΔAUC p-value

1 0.002 0.002 0.071 0 0.005 0.457

9 0.003 0.007 0.090 0 0.004 0.185

17 0 0.001 0.012 0.020 0.003 0.327

21 0.001 0.001 −0.007 0.113 0.001 0.531

25 0.003 0.004 −0.006 0.068 0.002 0.258

29 0 0.785 −0.005 0.063 −0.002 0.268

33 0.002 0.618 −0.005 0.066 −0.004 0.341

37 0.005 0.313 −0.001 0.073 −0.002 0.108

41 −0.001 0.392 −0.003 0.388 −0.006 0.819

57 0.005 0.008 0.001 0.001 0.003 0.532

77 0.011 0 0.003 0.006 0.002 0.099

Note: p-values less than 10−5 are shown as 0.
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(W5–W7), and 29 to 37 keV (W6–W8) were near optimal for the
AG-DEW, AG-TEW, and AG-ESSE compensation methods,
respectively.

3.3 Comparison between IO-MM and CHO

We compared the near-optimal energy window settings and the
ranking of the different compensation methods obtained when
using the IO-MM and the CHO, as shown in Fig. 11. We see that
the IO-MM had a performance similar to the three scatter esti-
mation methods for energy windows in the near-optimal range.
However, the CHO favored the ESSE method over the DEWand
TEW methods and had a similar performance when using the
DEW and TEW methods. The range of near-optimal energy
windows was larger for the IO-MM than the CHO when
using the DEW or ESSE scatter models.

4 Discussion
This paper provides information on the use of projection-domain
observers, the IO and IO-MM, as an alternative to optimizing
instrumentation and acquisition parameters in the reconstructed
image domain using an anthropomorphic model observer. The
IO is an observer that makes optimal use of all the information
in the image data about the task. Thus, it is reasonable and has
been proposed by other authors to optimize acquisition and
instrumentation in terms of IO performance.14–16 This is to ensure
that there is maximum information in the data about the task. In
this concept, the role of reconstruction is to put that information in
a form that a human observer can best interpret. Previous work by
a number of authors has consistently demonstrated that using
reconstruction algorithms that model the image formation process
provides equal or better performance than using reconstruction
without full modeling.4 In other words, using imperfect models

Fig. 8 Two-dimensional contour plots of the AUC values as a function of the iteration number and the
Butterworth filter cutoff frequency for the different compensation methods. In the above, A indicates the
attenuation alone and AG-X indicates the attenuation and geometric detector response and scatter com-
pensations using the scatter estimated with method X, where X is either DEW, TEW, or ESSE.
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of the image formation process in the reconstruction process
results in a loss of information. In cases where full modeling
is used, we hypothesized that optimizing instrumentation and
acquisition parameters in the projection domain and then optimiz-
ing the reconstruction algorithm (sequential optimization) would
yield similar results compared with jointly optimizing the acquis-
ition parameters and the reconstruction algorithm. However, for a
variety of reasons including both practical reasons such as com-
putation time or lack of commercial availability of reconstruction
methods with full modeling of the image formation process,
reconstruction with MM is often used clinically. Thus, an under-
lying hypothesis of this work was that, in this case, the sequential
and joint optimizations yield different results. We also hypoth-
esized that, if there is knownMM, then better correlation between

the sequential and joint optimization processes will be realized if
the IO “discards” information in a similar way as in the
reconstruction.

In the case of MPS, the diagnosis is made by human observ-
ers interpreting reconstructed images. Clearly, it is desirable that
images be optimized in this domain. However, optimizing
reconstructed images is computationally intensive due to the
computational cost of image reconstruction and the need to opti-
mize regularization parameters. For the calculation of the IO and
IO-MM test statistics, about 6 min were required to calculate the
LR of one input image. Thus, the calculations presented here
required a total of 18 CPU days for each acquisition energy win-
dow and scatter modeling method. The CPU times are for a sin-
gle core of a 2.33 GHz Intel Xeon E5410 quad core processor.

Table 5 Optimal reconstruction parameters for each compensation method.

Energy window width

A AG-DEW AG-TEW AG-ESSE

Iterationa Cutoff Iteration Cutoff Iteration Cutoff Iteration Cutoff

1 1 0.1–0.12 1–3 0.1–0.12 2–7 0.08–0.1 1–5 0.1–0.12

9 1–2 0.12–0.16 2–3 0.12–0.14 3–7 0.1–0.12 2–3 0.12–0.14

17 2–5 0.14 2–5 0.12–0.14 2–5 0.12 2–3 0.12–0.14

21 2–5 0.14–0.6 2–5 0.12–0.16 2–5 0.12 2–3 0.12–0.14

25 2–5 0.14–0.16 2–5 0.12–0.14 2–3 0.12–0.14 2–3 0.12–0.16

29 2–5 0.14–0.6 2–5 0.12–0.14 2–5 0.12–0.14 2–3 0.12–0.16

33 2–3 0.14–0.16 3–5 0.12–0.14 2–5 0.12–0.14 2–3 0.12–0.16

37 2–3 0.14–0.16 2–5 0.12–0.14 2–5 0.12–0.14 2–3 0.12–0.16

41 2–5 0.14–0.16 2–5 0.12–0.14 2–5 0.12–0.14 2–3 0.12–0.16

57 2–7 0.14–0.16 1–5 0.12–0.14 1–7 0.12 2–3 0.12–0.16

77 2–7 0.14–0.16 1–3 0.12 1–5 0.12 2–3 0.12–0.16

aNumber of subsets ¼ 12.

Fig. 9 Sample short-axis image corresponding to the optimal reconstruction parameters for energy win-
dows W1 to W11 (from left to right) reconstructed using compensation methods A, AG-DEW, AG-TEW,
and AG-ESSE (from top to bottom).
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For the CHO study, it required about 23 min to reconstruct, fil-
ter, and reorient one input image for each acquisition energy
window and scatter compensation method. This required a
total time of 69 CPU days. This did not include the additional
time required to apply, train, and test the CHO. Thus, projection-
domain optimization using the IO or IO-MM leads to reduction
in the computational cost by 74% compared with image-based
CHO studies.

The data in this paper indicate that projection-domain opti-
mization using the IO can give suboptimal parameter values
when MM is present. The IO suggested a broad optimal
range of energy window widths between 17 and 41 keV, with
the maximum AUC obtained at a width of 29 keV. On the other
hand, the CHO indicated that the optimal energy window width
depended on whether scatter was modeled in the reconstruction
and on the scatter model used. For example, when scatter com-
pensation was not used (i.e., using attenuation compensation
only), the optimal energy window width suggested by the

CHO was 17 keV. In addition, when scatter compensation was
included, the difference between the optimal window for the IO
and CHO was smaller. This was particularly true for ESSE, the
scatter estimation method with the most accurate scatter esti-
mates and thus the least MM. The IO-MM was partially effec-
tive in accounting for MM during the optimization: the ranges of
the optimal energy window widths for the various scatter mod-
eling methods were narrower than with the IO and very similar
to those obtained using the CHO, but the IO-MM and CHO did
not predict the same rankings of the scatter estimation methods.

An important question about the clinical applicability of the
results of this work is with respect to the realism of the object
and object variability modeled. We used a previously developed
adult digital phantom population based on the 3-D XCAT phan-
tom41 with organs’ parameters sampled from the Emory Cardiac
Database.42 The phantom itself is based on human data and pro-
vides high levels of anatomical realism. The population consists
of 54 digital phantoms including variabilities in gender, body
size, heart size, and fat level with no modeling of organ textural
variability included. We chose to vary anatomical parameters
rather than to model other variations such as the variable uptake
in organs. Due to the resolution of SPECT imaging and the
nature of the defect detection task, these parameters are likely
to be more important limiters of task performance than organ
texture variations. In addition, data on texture variations in MPS
were not available, and modeling such variations would make
the fast MCMC method more difficult to use. Further, based on
the relative homogeneity of myocardial tissue and the uptake
mechanism of myocardial perfusion tracers, we expect the tracer
distribution in normal organs, especially the heart, to be uniform.

Another limitation of this study with respect to clinical real-
ism is that we investigated the case of detecting a known signal
in a randomly varying background, whereas clinically, the signal
itself is variable. The case where there is randomness in the sig-
nal, i.e., the signal is known statistically, is relatively easy to
implement with the IO and IO-MM.18 However, the CHO can
become a very poor observer in this situation and may not model
human observer performance. We thus did not include this effect
in this investigation.

5 Conclusions
In this work, we applied three different model observers for the
optimization of Tc-99m acquisition energy window width and
the evaluation of different scatter estimation methods in the con-
text of MPS defect detection. Performance was evaluated in
terms of the AUC. The near-optimal range of energy window

0.5 

0.6 

0.7 

0.8 

0.9 

1 

0 8 16 24 32 40 48 56 64 72 80 

A
U

C
 

Energy window width (keV) 

A AG-DEW AG-TEW AG-ESSE 

Fig. 10 Plot of AUC values for the CHO for the different energy
windows and scatter compensation methods using optimal
reconstruction parameters.

Table 6 Results of testing hypothesis that the highest window is opti-
mal for various compensation methods using the CHO.

Energy window width A AG-DEW AG-TEW AG-ESSE

1 0 0 0 0

9 0.023 0 0 0

17 1 0.03 0 0

21 0.239 0.427 0.036 0

25 0.367 1 1 0

29 0 0.099 0.567 0.635

33 0 0 0.196 1

37 0.012 0 0.008 0.071

41 0 0 0.031 0.048

57 0 0 0 0

77 0 0 0 0

Note: (1) In each column, the p-values are for the difference with
respect to the window with the highest AUC, indicated by the cell
in bold values. (2) p-values less than 10−5 are shown as 0.
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Fig. 11 Comparison of the IO-MM and CHO performances for the dif-
ferent compensation methods. AUC values are the averaged over the
optimal range of energy window widths.
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widths was broader for the IO than for the other observers. This
is consistent with the fact that the IO, which has the highest per-
formance of any observer, implicitly has perfect knowledge of
the image formation process and all physical image-degrading
factors. The IO-MM is an observer that allows the incorporation
of nonideal forward models in the optimization process and
evaluates them in terms of IO performance. We used this ability
of the IO-MM to compare the DEW, TEW, and ESSE scatter
estimation methods. The IO-MM had poorer performance
than the IO, as expected. The results showed that the ESSE scat-
ter estimation method provided a very similar performance to
the perfect scatter model implicit in the IO. We also applied
the CHO, an established surrogate for a human observer, and
compared the optimal energy window settings and the ranking
performance of the different scatter compensation methods to
those obtained from the IO and the IO-MM. The IO-MM
showed good agreement with the CHO for MPS energy window
optimization and the evaluation of scatter modeling methods.
The results of this study also demonstrated that the disagreement
between the optimal energy window between the IO and the
CHO was smallest when the MM was smallest. This suggests
that the IO may be appropriate for projection-domain optimiza-
tion in cases where the model of the image formation process
used in image reconstruction is a good representative of the
true image formation process. Together, these data indicate
that appropriately taking MM into account is important in
order to allow projection-domain optimization of acquisition
parameters.
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