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Abstract. Determining whether glioblastoma multiforme (GBM) is progressing despite treatment is challenging
due to the pseudoprogression phenomenon seen on conventional MRIs, but relative cerebral blood volume
(CBV) has been shown to be helpful. As CBV’s calculation from perfusion-weighted images is not standardized,
we investigated whether there were differences between three FDA-cleared software packages in their CBV
output values and subsequent performance regarding predicting survival/progression. Forty-five postradiation
therapy GBM cases were retrospectively identified as having indeterminate MRI findings of progression versus
pseudoprogression. The dynamic susceptibility contrast MR images were processed with different software and
three different relative CBV metrics based on the abnormally enhancing regions were computed. The intersoft-
ware intraclass correlation coefficients were 0.8 and below, depending on the metric used. No statistically sig-
nificant difference in progression determination performance was found between the software packages, but
performance was better for the cohort imaged at 3.0 T versus those imaged at 1.5 T for many relative CBV
metric and classification criteria combinations. The results revealed clinically significant variation in relative
CBV measures based on the software used, but minimal interoperator variation. We recommend against
using specific relative CBV measurement thresholds for GBM progression determination unless the same soft-
ware or processing algorithm is used. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License.
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1 Introduction
Glioblastoma multiforme (GBM) is the most common adult, pri-
mary brain cancer and carries a poor prognosis. Median survival
in patients treated on clinical trials with radiation therapy and
temozolomide ranges from 15 to 20 months.1,2 After biopsy
or maximal safe resection, patients typically receive ∼60 Gy

of radiation over 30 fractions, concurrent with daily low-dose
temozolomide. Patients then go on to receive adjuvant temozo-
lomide for 6 to 12 months or longer, while being imaged every
two to three months to assess tumor status. If it is determined
that the tumor is progressing, second-line agents are introduced.
However, progression can be difficult to confidently determine
based on imaging, since a treatment response can transiently
cause a similar imaging appearance as tumor progression,3

often referred to as pseudoprogression. It is important to distin-
guish the two conditions. If there is true progression, a second-
line agent may extend survival. If there is pseudoprogression,

there may be a survival advantage4 and temozolomide should
not be discontinued. It is difficult to distinguish pseudoprogres-
sion versus tumor progression by clinical symptoms, especially
early in the postradiation period.5

In a study examining the incidence of progression versus
pseudoprogression in 63 GBM patients,5 28 (44.4%) of the
patients had lesion enlargement with the first postradiation fol-
low-up MR exam. Each of these cases underwent salvage sur-
gery and pathologic analysis, resulting in 12 (42.8%) being
classified as pseudoprogression, with the other 16 (57.2%)
exhibiting true tumor progression. In the largest study regarding
conventional imaging of progression versus pseudoprogression,
qualitative features were analyzed regarding their ability to dis-
tinguish between the two phenomena.6 With 63 progression and
30 pseudoprogression patients, the only feature found to have
predictive value regarding progression was subependymal
enhancement. However, this was only present in 26 of the 93
cases, producing a negative predictive value of 41.8%, and is
not a good candidate for attempting to extract further value
through quantitative assessment since a radiologist would not*Address all correspondence to: Bradley J. Erickson, E-mail: bje@mayo.edu
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have trouble recognizing this and determining it to be new tumor
growth.

Relative cerebral blood volume (rCBV) has attracted much
interest as a functional measurement potentially representing
tumor-related vascular changes beyond those visible in conven-
tional MR characteristics.7 In addition to many studies investi-
gating its utility in distinguishing between tumor grades, various
studies have analyzed its use in distinguishing between tumor
progression and pseudoprogression. The mean rCBV in progres-
sion is higher than the mean rCBV in pseudoprogression,
consistent with the understanding that active tumor elicits angio-
genesis and consequently higher blood volumes. Accordingly,
many authors have reported optimal rCBV thresholds for sepa-
rating progression from pseudoprogression cases.8–11

CBV images are generated through postprocessing of a per-
fusion-sensitive image acquisition, which tracks signal change
over time due to the transit of a contrast bolus. Dynamic sus-
ceptibility contrast (DSC) MR is commonly used to produce
the perfusion-weighted images in brain tumor imaging. The
CBV for each voxel is calculated based on an integral of the
relaxivity change (derived from the MR signal using the echo
time) measured during bolus transit from a prebolus baseline
level (see Fig. 1). The starting and ending time points of this
integration, baseline estimate, model fitting, integration method
used, and correction for contrast agent extravasation are sources
of variation in CBV calculation.12,13 As a measurement with
arbitrary units, the need for normalization has been investigated,
with the most common approach being to divide by the mean
contralateral white matter value to produce relative or rCBV val-
ues.14 Efforts have been made to correct the DSC signal corrup-
tion caused by contrast agent extravasation due to blood brain
barrier disruption, both by bolus preload dose administration
and correction using mathematical models during the CBV cal-
culation.13 Previous studies have shown that both preload dosing
and modeling are needed for maximal rCBV accuracy.12,15 If
these methods are insufficient to correct for the variability,
then there is no translatability of results between studies
using different software packages. The potential for variability
has been recognized,12,16 with recent reports of variability in
measurements of mean rCBV between FDA-cleared software
packages using clinical DSC-MR images.17,18

The purpose of this study was to determine whether there
were significant differences in multiple rCBV metrics from
the same DSC-MR images between three FDA-cleared software

packages, and if so, how much disagreement there exists at vari-
ous thresholds of rCBVused to predict tumor progression. Then,
using clinical or outcome-based information to classify whether
the analyzed tumors were progressing or not, we investigated
whether one software performed better than others for distin-
guishing between GBM progression and pseudoprogression.
Finally, we analyzed whether there are clinically significant
differences between the optimal rCBV metric thresholds found
for each software.

2 Materials and Methods

2.1 Patients

Our institutional review board reviewed and approved this retro-
spective study and granted a waiver of informed consent. The
patient image files were anonymized prior to processing.

We identified the set of potential subjects through a medical
record query for patients who had been treated at this institu-
tion with radiation and had a histologic diagnosis of GBM
(SNOMED Code: M-94403). From this initial set of 148
patients, further inclusion criteria were treatment with temozo-
lomide concurrent with radiation and continuing afterward, and
sufficient follow-up to determine whether, within six months
postradiation, a decision was made to discontinue temozolomide
and initiate alternate therapy because of some appearance of
progression, including notations of enlarging contrast enhance-
ment. From this set of 58 patients, 10 did not have perfusion-
weighted images, and three were excluded due to software
incompatibility, leaving 45 cases for this study. The images
used were from the first MR exams obtained within six months
postradiation therapy demonstrating signs of possible progres-
sion. This resulted in the exam of interest for each patient being
obtained, for example, one month, four months, or six months
after radiation completion.

2.2 MR Images

Each imaging exam was acquired using one of several clinical
General Electric MR scanners (GE Healthcare, Milwaukee,
Wisconsin), operating at 1.5 T (n ¼ 29) or 3 T (n ¼ 16). For
both the 1.5 and 3 T scans, the DSC images were obtained
using a spin-echo echo-planar sequence with axial orientation
and TR/TE/FA of 2217 to 2225 ms∕60 ms∕90 deg. The matrix
was 128 × 96, field of view (FOV) 240 × 240 mm, slice thick-
ness 5 mm, and slice gap 5 mm. 40 successive time points were
imaged with ∼2 s between acquisitions. The number of slices
ranged from 10 to 26, covering the entire tumor in all cases.
For the DSC imaging, 2 ml of gadolinium-based contrast agent
were introduced as a preloading bolus to decrease the T1 leak-
age effects from contrast extravasation through the disrupted
blood brain barrier15 during the main bolus of 18 ml. Except
for two cases, the T1w postcontrast images were acquired at an
oblique axial angle using either spin-echo or fast spin-echo
sequences ∼10 min after gadolinium injection. The T1w
parameters for the 1.5 T spin-echo sequence were TR/TE/FA
of 433 to 683 ms∕20 to 21 ms∕90 deg. The matrix was 256 ×
192, FOV 220 × 220 to 250 × 250 mm, slice thickness 4 mm,
and no slice gap. For the 1.5 T fast spin-echo sequence, the TR/
TE/FA was 5067 ms∕98 ms∕90 deg. The matrix was 256 ×
192, FOV 220 × 220 mm, and an echo train length of 8. For
the two-dimensional (2-D) 3 T spin-echo acquisitions, the TR/
TE/FA was 467 to 700 ms∕20 ms∕90 deg. The matrix was

Fig. 1 Example of the change in relaxivity versus time curve for an
individual tumor voxel. The change in relaxivity reflects the concen-
tration of gadolinium-based contrast present within the voxel. The
shaded region represents the basis of cerebral blood volume (CBV)
calculation.
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320 × 192, FOV 220 × 220 mm, slice thickness 4 mm, and no
slice gap. For the three-dimensional 3 T fast spin-echo acquis-
itions, the TR/TE/FAwas 600 ms∕11.039 to 20.157 ms∕90 deg.
The matrix was 256 × 256, FOV 240 × 240 mm, and an echo
train length of 24. The two nonaxial postcontrast image volumes
were 2-D 3 T fast spin-echo acquisitions obtained in the coronal
plane, with TR/TE/FA of 600 to 767 ms∕13.1 to 13.5 ms∕
90 deg. The matrix was 320 × 224, FOV 180 × 180 mm, slice
thickness 4 mm, slice gap 5 mm, and an echo train length of 3.

2.3 DSC-MRI Processing

Three operators created CBV images from the DSC-MRIs using
IB Neuro ver. 1.1 (Imaging Biometrics, Elm Grove, Wisconsin),
FuncTool ver. 4.5.3 (GE Healthcare, Milwaukee, Wisconsin),
and nordicICE ver. 2.3.13 (NordicNeuroLab, Bergen, Norway).
Each of the three operators processed all of the cases using
FuncTool and nordicICE, attempting to operate each package
with similar parameters, although exact matching was not pos-
sible due to proprietary aspects of each software. Just one oper-
ator using IB Neuro was sufficient to represent all three
operators since its algorithm is automatic, requiring no manual
intervention. We confirmed with a subset of images that multiple
runs with IB Neuro produced identical results. FuncTool
required manual selection of the prebolus baseline and integra-
tion starting and stopping time points, whereas nordicICE
required manual specification of the prebolus baseline only
when its automatic selection algorithm failed (7 of the 45
cases). Gamma-variate fitting and leakage correction were the
only nondefault settings used for nordicICE. IB Neuro’s leakage
correction was activated, and for FuncTool, the baseline was
interpolated between the integration time points. For both
FuncTool and nordicICE, the noise threshold was adjusted to
maximize brain coverage for rCBV calculation without process-
ing excessive background voxels. For nordicICE, this was done

after the prebolus baseline determination. We did test a subset
with and without gamma-variate fitting with nordicICE and did
not find a significant difference in values.

2.4 Registration and Tumor Segmentation

We defined a region of interest (ROI) representing abnormal
contrast enhancement on the postcontrast T1-weighted images.
The ROI was created by one author (Z.S.K.), who manually
drew a generous boundary around each slice of enhancing
tumor using ITK-SNAP v. 2.4.0,19 trying to achieve a roughly
50/50 distribution of enhancing voxels and a second tissue
intensity distribution. Then, on a per slice basis, custom soft-
ware used an Otsu threshold20 to segment out the enhancing
voxels. Those voxels with intensities above the Otsu threshold
were assigned the label “tumor” for enhancing tissue (see Fig. 2),
although it is possible this was not tumor but pseudoprogression.

To avoid registration-induced modification of the raw rCBV
values, we registered the T1w volume to the perfusion-weighted
space. To do this, we used FSL ver. 5.0’s21 linear registration
tool FLIRT22 after manual editing of the segmented brain pro-
duced by brain extraction tool.23 In a few cases, an additional
pathology mask had to be used during the registration step.
Thus, the tumor ROI was specified by the T1w postcontrast
image, which had been registered to the perfusion-weighted
image space, and then used for sampling the rCBV image
voxels.

2.5 rCBV Metrics

We calculated three different metrics that have been reported in
the literature: mean tumor rCBV, tumor 95th percentile rCBV,
and percent of tumor voxels with CBV greater than the normal-
appearing white matter (NAWM) mean (rCBV > 1.0).24 This
NAWM mean was calculated based on an ROI drawn on the
NAWM voxels in the hemisphere contralateral to the tumor,

Fig. 2 Tumor segmentation method: (a) example enhancing region with surrounding lasso drawn man-
ually, (b) histogram of voxel intensities, with the red line specifying the calculated Otsu threshold, and
(c) final segmentation result, with the enhancing tissue shaded in red.
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guided by the T1w postcontrast images. The slice nearest to the
tumor with a large number of NAWM voxels was targeted, if not
the same slice. Normalization was conducted by dividing the
NAWM mean from the tumor CBV values in order to create
the rCBV values. Then, the rCBV metrics were obtained from
the tumor ROI. The 95% rCBV value represents a form of the
hotspot method, as proposed by Kim et al.25 that can be calculated
more automatically and objectively. Summary metrics for the
tumors were used instead of direct voxel comparison since rCBV
analyses are performed for ROIs in practice. Since CBV values are
not computed for all image voxels, care was taken to exclude non-
processed (CBV ¼ 0) values from the measurements. Custom
code written using Python ver. 2.7.3 and the modules Numpy
ver. 1.6.2, Scipy ver. 0.11.0, SimpleITK ver. 0.6.0, and Pandas
ver. 0.10.1 were used for calculations and data management.

2.6 rCBV Values

For measuring variability between the rCBV values, both inter-
software and interoperator, we calculated the intraclass correla-
tion coefficients (ICCs) using the irr ver. 0.8426 package for
R ver. 3.0.1.27 The two-way analysis of variance model was
used, with both the absolute agreement and consistency coeffi-
cients computed.28 The consistency measurement excludes
software-specific additive bias, essentially allowing for an
agreement measure after subtraction of the software-specific
means. Favorable ICC values were considered to be >0.9, with
the expectation that they should be ∼1.0 for this application.

We computed for each operator and software the classifica-
tion of individual cases as progression or pseudoprogression
based on an rCBV metric threshold. Due to a lack of biopsy
proof of the tumor status and no absolute consensus regarding
classification criteria, we started with outcome-agnostic analysis
of differences in classification between software and operators
for a range of rCBV metric values. We focused the disagreement

analysis for the range of thresholds within which 25 to 75% of
the brains were classified as cases of progression by each soft-
ware, as this is a particularly informative range due to estimates
of true progression incidence.5 We do not have histologic con-
firmation of the tissue makeup, but the literature suggests that
true progression is about as frequent as pseudoprogression in
patients treated with temozolomide and radiation.29 If that is a
reasonable estimate for this cohort, then the threshold for rCBV
that splits the patients in half should be similar. Results were
calculated, however, for a continuum of thresholds to allow
for visualization of global trends as well as analysis at any
reader-preferred thresholds.

2.7 Outcome Prediction

For measuring the utility of the rCBV metrics for determining
whether progression or pseudoprogression is occurring, each
case needed a label as progression or pseudoprogression, mak-
ing use of a postimage acquisition outcome measure. Almost
none of this patient cohort had biopsy proof of tissue, so clinical
history alone was utilized. For the first labeling method, the cri-
terion used was based on how long the patients survived after
their first postradiation image exam with indications of progres-
sion or pseudoprogression. The days survived for each patient
were aggregated, and the 40th and 60th percentile values (237.6
and 321.4 days) were calculated. This is based on the literature
reports suggesting that about one-half to two-thirds of patients
with worrisome findings will have true progression and the other
fraction will have pseudoprogression. All patients who survived
less than the 40% threshold of 237.6 days were labeled as short-
survivors, likely due to tumor progression. Those surviving
longer than 321.4 days were labeled as long-survivors or as
likely having had tumor pseudoprogression. The patients who
survived between 237.6 and 321.4 days were excluded from fur-
ther analysis based on the survival criterion. Also, two patients

Table 1 Intersoftware intraclass correlation coefficients (ICCs).

Metric

ICC (95% CI)

Agreement Consistency

Operator 1 Mean rCBV 0.804 (0.642, 0.893) 0.848 (0.766, 0.908)

95% rCBV 0.683 (0.309, 0.849) 0.818 (0.722, 0.888)

% voxels above NAWM 0.679 (0.330, 0.842) 0.804 (0.704, 0.879)

Operator 2 Mean rCBV 0.756 (0.591, 0.859) 0.800 (0.698, 0.877)

95% rCBV 0.718 (0.421, 0.859) 0.817 (0.721, 0.887)

% voxels above NAWM 0.642 (0.269, 0.823) 0.787 (0.680, 0.868)

Operator 3 Mean rCBV 0.811 (0.653, 0.897) 0.853 (0.774, 0.911)

95% rCBV 0.721 (0.430, 0.859) 0.817 (0.721, 0.887)

% voxels above NAWM 0.657 (0.257, 0.838) 0.811 (0.713, 0.884)

Note: CI, confidence interval; rCBV, relative cerebral blood volume; NAWM, normal-appearing white matter; Agreement: Comparison of raw values;
Consistency: Comparison of values with software-specific means subtracted.
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with last follow-up at 94 and 162 days were removed from all
outcome-based analysis regardless of classification criterion due
to uncertainty regarding short- or long-survivor status, leaving a
total of 43 patients for this portion of the study.

For the second method of defining pseudoprogression, we
used the criterion published by Young et al.6 If temozolomide
was clinically determined to have failed within six months post-
radiation and a treatment change was necessary, the patient was
classified as having had progression. Patients who did not have a
change in treatment within six months were classified as having
pseudoprogression, and those who died within six months with
no treatment change were excluded.

Finally, as a third method, the two criteria were combined. If
the survival-based and treatment change based classification
methods agreed for the patient, then that patient was given a
“combined” classification of progression or pseudoprogression.
If there was disagreement between the two classification meth-
ods, or the survival-based method gave an “intermediate” label,
then that patient was given an “indeterminate” combined-clas-
sification label and excluded from further analysis based on the
combined labeling method. While all 43 patients could be clas-
sified by the treatment change criterion, the survival criterion
allowed 34 patients in its group, with 20% of cases being
excluded. Twenty-four cases remained in the combined-classi-
fication group after excluding the cases not meeting its criteria,
representing what we believe is the most reliable labeling.

Table 2 Interoperator ICCs.

Metric

ICC, agreement (95% CI)

Functool nordicICE

Mean rCBV 0.882 (0.817, 0.928) 0.977 (0.962, 0.987)

95% rCBV 0.911 (0.860, 0.946) 0.966 (0.944, 0.980)

% voxels
above NAWM

0.936 (0.899, 0.962) 0.984 (0.975, 0.991)

Note: A subset of cases were processed using IB Neuro ver. 1.1 on
two different computers by different operators to confirm that the exact
results (i.e., ICC ¼ 1.000) are obtained due to automatic functionality.
Agreement: Comparison of raw values; Consistency: Comparison of
values with software-specific means subtracted.

(a) (b)

(c) (d)

(e) (f)

Fig. 3 Relative CBV (rCBV) values for each sampled voxel for a selected case. Each marker represents
the rCBV value for two separate software packages for the same voxel. (a) CBV values of contrast-
enhancing pixels for FuncTool IB Neuro. (b) CBV values of normal-appearing white matter pixels for
FuncTool versus IB Neuro. (c) CBV values of contrast-enhancing pixels for nordicICE versus IB
Neuro. (d) CBV values of normal-appearing white matter pixels for nordicICE versus IB Neuro.
(e) CBV values of contrast-enhancing pixels for nordicICE versus Functool. (f) CBV values of nor-
mal-appearing white matter pixels for nordicICE versus Functool.
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3 Results

3.1 rCBV Values

Significant differences were observed between software pack-
ages for the rCBV measurements. The intersoftware ICCs are
shown in Table 1. The mean rCBV metric has the highest inter-
software agreement, in part due to smaller additive bias, as evi-
denced by the consistency ICC, than the other metrics. However,
the agreement ICCs are around 0.8 or below, with none of
the 95% confidence intervals topping 0.9. With additive bias
negated, the consistency ICC for operator 3 reached 0.853 for
the mean rCBV metric, but was 0.800 for operator 2. The “%
voxels above NAWM mean” metric had the lowest ICC in all
cases. The interoperator ICCs are shown in Table 2. FuncTool
has lower ICCs for each of the metrics, perhaps due to a greater

number of manual steps. Based on the confidence intervals, this
difference is statistically significant for mean rCBVand “% vox-
els above NAWM mean,” and almost significant for 95% rCBV.
The interoperator ICCs are higher than the intersoftware ICCs,
with statistical agreement shown for each software and metric
except for the FuncTool/mean rCBV metric combination.
While the “% voxels above NAWMmean”metric had the lowest
intersoftware ICC, it had the highest intrasoftware, interoperator
ICC for both FuncTool and nordicICE. Figure 3 displays the
variation in rCBV values for both tumor and NAWM samples
on a per-voxel basis for a selected case.

To assess the impact on clinical decision-making, classifica-
tion analysis is shown in Figs. 4–6. We assessed a range of
rCBV metrics and thresholds for classifying progression versus
pseudoprogression. Figure 4 displays the percentage of cases
above a range of rCBV metric thresholds on the x axis. Overall,

(a) (b) (c)

Fig. 4 Percent of subjects above rCBV metric threshold. The lines represent the software-specific aver-
ages across the three operators. The shaded area on either side represents the interoperator range for
that software. (a) Shows the percentage of cases that are above threshold using the mean rCBV value as
the metric. (b) Shows the percentage of cases that are above threshold using the intensity of the 95th
percentile as the metric. (c) Shows the percentage of cases that are above threshold using the percent-
age of tumor voxels with rCBV above white matter as the metric.

(a) (b) (c)

Fig. 5 Percentage of cases where one software package disagreed with the other two (by operator). The
x axis range plotted is for all software’s percent of cases above the threshold (as shown in Fig. 4) being
between 25% and 75%. The threshold is used to differentiate between pseudoprogression and progres-
sion. (a) The percentage of cases with disagreement in assessment of progression across a range of
mean rCBV thresholds for different operators. (b) The percentage of cases with disagreement in assess-
ment of progression across a range of 95th percentile thresholds for different operators. (c) The percent-
age of cases with disagreement in assessment of progression across a range of percentage of voxels
above NAWM thresholds for different operators.
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each software package produced different measurements (i.e.,
was the outlier) than the other two packages, depending on the
rCBV metric of interest. For mean rCBV, IB Neuro was the out-
lier, while nordicICE was the outlier for the 95% rCBV metric,
and FuncTool was the outlier with % voxels above the NAWM
mean.

With the assumption that pseudoprogression may occur in
roughly half of this cohort, the mean rCBV value at which
IB Neuro splits the cases in half is ∼0.2 below the value at
which the other software split the cases in half. Alternatively,
at a 95% rCBV threshold of 2.7, nordicICE classifies ∼50%
more cases as above the threshold (progressing tumor) than
FuncTool. There is no single value where all three packages had
reasonably high agreement, other than extreme values, where all
cases would be considered progression or pseudoprogression.

For case-by-case analysis, Fig. 5 displays the percentage of
cases where one software provides a different classification
result than the other two, depending on the rCBV metric thresh-
old used. Particular thresholds of interest would be based on the
estimated incidence of progression versus pseudoprogression
among the cases. The percentage of cases with disagreement
ranges from the 20s to the 50s. The mean rCBV and % voxels
above NAWM metrics have similar disagreement curves, with
95% rCBV peaking higher. The interoperator differences are
small. Figure 6 displays the percentage of cases with discordant
classification for each software package for a range of thresh-
olds. This figure uses data from operator 1, as the small inter-
operator difference in Fig. 5 suggests it is representative of other
operators. As expected from Fig. 4, IB Neuro disagrees more for
mean rCBV, nordicICE disagrees more for 95% rCBV, and IB
Neuro or FuncTool disagrees more for % voxels above NAWM.

3.2 Outcome Prediction

The number of cases classified as progression or pseudoprog-
ression using the three different criteria are shown in Table 3.
More of the cases were classified as progression than pseudo-
progression in the 1.5 T dataset, but less than half in the 3 T

dataset. The area under the curve (AUC) measurements are
shown in Table 4 for all the cases pooled together, with Table 5
displaying the results for the 1.5 and 3 T datasets analyzed sep-
arately. The 1.5 and 3 T pooled dataset showed poor perfor-
mance of rCBV measures, with none of the instances having
a 95% CI > 0.5. However, the 3 T dataset had multiple instances
where the AUC was significantly >0.5 based on the 95% con-
fidence interval. Additionally, despite the low numbers, the 3 T
dataset had statistically significantly higher AUCs for the mean
rCBV metric than the 1.5 T dataset. When nordicICE was used,
the % voxels above NAWM metric also resulted in significantly
higher AUCs for the 3 T group than the 1.5 T group. There was
no statistically significant difference for any of the three metrics
between the software or operators. Additionally, none of the
three metrics performed better than the others.

The sensitivity and specificity analysis is shown in Tables 6
through 8 for operator 1’s data. The optimal thresholds often
differed between the software packages, and this resulted in
differences in sensitivity and specificity that were statistically

(a) (b) (c)

Fig. 6 Percentage of cases where one software package disagreed from other two (by software).
Operator 1’s data. The x axis range plotted is for all software’s percent of cases above the threshold
(as shown in Fig. 4) being between 25% and 75%. The threshold is used to differentiate between pseu-
doprogression and progression. (a) The percentage of cases where one software package disagreed
from the other two across a range of mean rCBV thresholds. (b) The percentage of cases where
one software package disagreed from the other two across a range of 95th percentile rCBV thresholds.
(c) The percentage of cases where one software package disagreed from the other two across a range of
thresholds for percent of voxels above NAWM.

Table 3 Number of images for each classification and magnet
strength.

Magnet strength

Survival
classification

Treatment
change

classification
Combined

classification

Prog PsP Prog PsP Prog PsP

1.5 T 12 9 15 11 8 6

3 T 5 8 7 10 3 7

1.5 or 3 T 17 17 22 21 11 13

Note: Prog, progression; PsP, pseudoprogression.; Survival classifi-
cation eliminated middle 20% of cases. Combined classification inclu-
sion required agreement between the survival and treatment change
classification methods.
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Table 4 Area under the ROC curve for all 1.5 and 3 T images combined.

Operator Software

Survival classification Treatment change classification Combined classification

Mean
rCBV

95%
rCBV

% voxels
above NAWM

Mean
rCBV

95%
rCBV

% voxels
above NAWM

Mean
rCBV

95%
rCBV

% voxels
above NAWM

1 IB Neuro 0.523 0.511 0.539 0.595 0.621 0.587 0.645 0.627 0.639

FuncTool 0.503 0.523 0.516 0.582 0.578 0.584 0.590 0.603 0.615

nordicICE 0.542 0.598 0.511 0.569 0.591 0.589 0.645 0.663 0.633

2 IB Neuro 0.523 0.511 0.539 0.595 0.621 0.587 0.645 0.627 0.639

FuncTool 0.549 0.526 0.536 0.600 0.571 0.594 0.686 0.603 0.667

nordicICE 0.542 0.588 0.529 0.565 0.579 0.577 0.627 0.633 0.639

3 IB Neuro 0.523 0.511 0.539 0.595 0.621 0.587 0.645 0.627 0.639

FuncTool 0.513 0.516 0.529 0.576 0.573 0.598 0.635 0.641 0.647

nordicICE 0.529 0.582 0.520 0.593 0.615 0.587 0.663 0.686 0.639

Note: All 95% CIs included 0.5.

Table 5 Area under the ROC curve for 1.5 and 3 T images separately.

Magnet
strength Op. Software

Survival classification Treatment change classification Combined classification

Mean
rCBV

95%
rCBV

% voxels
above NAWM

Mean
rCBV

95%
rCBV

% voxels
above NAWM

Mean
rCBV

95%
rCBV

% voxels
above NAWM

1.5 T 1 IB Neuro 0.437 0.484 0.452 0.583 0.701 0.561 0.500 0.650 0.483

FuncTool 0.427 0.487 0.479 0.545 0.614 0.597 0.407 0.537 0.500

nordicICE 0.484 0.571 0.460 0.508 0.540 0.561 0.517 0.600 0.483

2 IB Neuro 0.437 0.484 0.452 0.583 0.701 0.561 0.500 0.650 0.483

FuncTool 0.444 0.487 0.462 0.563 0.608 0.597 0.481 0.519 0.519

nordicICE 0.508 0.587 0.500 0.524 0.540 0.578 0.500 0.600 0.517

3 IB Neuro 0.437 0.484 0.452 0.583 0.701 0.561 0.500 0.650 0.483

FuncTool 0.368 0.453 0.470 0.517 0.608 0.580 0.370 0.574 0.500

nordicICE 0.468 0.595 0.468 0.567 0.626 0.578 0.517 0.683 0.483

3.0 T 1 IB Neuro 0.725 0.750 0.725 0.729 0.657 0.714 0.905a 0.905a 0.857a

FuncTool 0.825a,b 0.800a 0.750 0.843a 0.743a 0.686 1.000a,b 0.952a,b 0.857a

nordicICE 0.800 0.775 0.750 0.843a 0.786 0.757 1.000a,b 0.952a 0.952a,b

2 IB Neuro 0.725 0.750 0.725 0.729 0.657 0.714 0.905a 0.905a 0.857a

FuncTool 0.800a 0.775 0.750 0.729 0.700 0.657 0.952a,b 0.952a,b 0.857a

nordicICE 0.750 0.750 0.775 0.786a 0.757 0.800a 1.000a,b 0.952a 1.000a,b

3 IB Neuro 0.725 0.750 0.725 0.729 0.657 0.714 0.905a 0.905a 0.857a

FuncTool 0.800a,b 0.800a,b 0.675 0.757 0.671 0.657 0.952a,b 0.952a 0.762

nordicICE 0.750 0.750 0.775 0.800a 0.743 0.786a 1.000a,b 0.952a 1.000a,b

aThe 95% CI is above 0.5.
bThe 3 T value was statistically significantly higher (p < 0.05) than the corresponding 1.5 T value, using the Delongmethod for comparison.; Op., operator.
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significant in many cases. The optimal threshold for the 3 T
dataset was always higher than for the 1.5 T dataset, except
FuncTool’s optimal thresholds for the % voxels above NAWM
metric and the combined classification ground truth criterion.
For the mean rCBV metric, the optimal threshold for 1.5 T
ranged from 0.87 to 1.44, and that for 3.0 T from 1.10 to 1.52,
depending on the software and classification criteria. For the
95% rCBV metric, the 1.5 T range was 2.0 to 3.04 and 3.0
T range was 2.64 to 4.00. The % voxels above NAWM metric
produced optimal threshold ranges of 32.5 to 72.4 for 1.5 T
(32.5 to 55.7 if the 72.4 threshold is removed), and 49.5 to
58.5 for 3.0 T.

4 Discussion
DSC perfusion imaging is widely used in brain tumor imaging.
In all cases, some form of postprocessing is required to convert
the acquired images into a clinically relevant image, such as an
rCBV image. The processing required to compute the rCBV
includes identification of the time point where the bolus arrives
and ends. The area under the relaxivity change curve created by
this bolus is the basis of CBV determination. The challenge is
that these images have a low signal-to-noise ratio (SNR), and

contrast leakage can result in different baseline intensity after
the bolus compared to before the bolus, and the baseline after
the bolus can have a slope. Overall, the Boxerman et al.15 mod-
eling method represents the most widely used and accepted
model to date. Yet, which models the software programs imple-
ment can vary, and the specific method of implementation is
often not readily available. IB Neuro and nordicICE employ
the Boxerman model as the basis of their algorithm, while
GE FuncTool uses linear interpolation from the prebolus and
postbolus baselines when calculating the AUC.

Our study suggests that using different software packages
results in clinically significant differences in CBV images, but
using different operators produces just mild variability. It is
important to note that the measurement comparisons we made
were for the exact same voxels—the only variables were the soft-
ware and the operator. While little operator variability was seen,
substantial variation between software was seen. This variation
was not something as simple as a scaling factor, which one
could reasonably expect to see. The differences showed some pat-
terns, with one software package being an outlier compared to the
other two for each of the three metrics, but for each metric, a
different package was the outlier. The variation is not based on

Table 6 Sensitivity and specificity at optimal thresholds for each software and magnet strength. Metric: Mean rCBV.

Class. criteria Software

1.5 T 3 T 1.5 T 3 T 1.5 T 3 T

IB Neuro FuncTool nordicICE

Thresh: 1.09 Thresh: 1.10 Thresh: 1.06 Thresh: 1.33 Thresh: 1.16 Thresh: 1.39

Sens Spec Sens Spec Sens Spec Sens Spec Sens Spec Sens Spec

Survival IB Neuro 0.44 0.67a 0.80 0.63a 0.44b 0.56 0.40b 0.88 0.31b 0.67 0.40b 0.88

FuncTool 0.60 0.44 1.00 0.38 0.60 0.44 0.80 0.75 0.47 0.44 0.60 0.75

nordicICE 0.63 0.22a 0.80 0.25a 0.69b 0.22 0.80b 0.75 0.56b 0.44 0.80b 0.88

Thresh: 0.87 Thresh: 1.41 Thresh: 0.98 Thresh: 1.39 Thresh: 1.13 Thresh: 1.50

Sens Spec Sens Spec Sens Spec Sens Spec Sens Spec Sens Spec

Treatment change IB Neuro 0.79 0.55 0.57 0.90 0.53a,b 0.55 0.57a,b 0.90 0.26c,d 0.64 0.43c,d 1.00

FuncTool 0.78 0.36 0.86 0.80 0.72b 0.45 0.86b 0.80 0.61c 0.45 0.57c 1.00

nordicICE 0.89 0.27 0.71 0.90 0.84a 0.27 0.71a 0.80 0.68d 0.36 0.71d 1.00

Thresh: 1.09 Thresh: 1.10 Thresh: 1.44 Thresh: 1.45 Thresh: 1.31 Thresh: 1.52

Sens Spec Sens Spec Sens Spec Sens Spec Sens Spec Sens Spec

Combined IB Neuro 0.58 0.50 1.00 0.71 0.17 0.83 0.33 1.00 0.25 0.50 0.33 1.00

FuncTool 0.82 0.17 1.00 0.43 0.36 0.67 1.00 0.86 0.45 0.33 0.67 1.00

nordicICE 0.75 0.17 1.00 0.29 0.25 0.83 1.00 1.00 0.42 0.50 1.00 1.00

Note: Operator 1’s data. Comparison of sensitivity and specificity performed by pooling the 1.5 and 3 T cases of disagreement before calculating the
test statistic.
aComparison p value ¼ 0.016
bComparison p value ¼ 0.031
cComparison p value ¼ 0.046
dComparison p value ¼ 0.0047
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the selection of any particular threshold, but for a broad range of
threshold values, the clinical interpretation of the enhancing tissue
would be different, depending only on the software used.

Normalization of rCBV values through the use of an NAWM
mean appears insufficient as a postprocessing step to correct for
variation. Normalization through removal of additive bias still
did not increase the ICCs to over 0.9, and that is an optimistic
correction that only works if the additive bias can be perfectly
known on both an intersoftware and operator-specific basis.
Regardless, a simple additive bias correction would have mostly
empirical support rather than robust theoretical support.

One reassuring aspect of this study was the small variation
between operators for a given software package. This suggests
that if operators are given criteria for processing using a given
software package, the results can be reproduced.

While previous papers published revealed differences in
mean rCBV measurements from clinical images between soft-
ware,17,18 this work makes the additional contributions of analy-
sis of the other previously published metrics of 95th % and %
voxels above NAWM. While the other metrics did not prove to
be more resistant to intersoftware variability, they had different,
large effects on the intersoftware variability without eliminating

it. Additional new contributions were that the software packages
investigated were expanded to include IB Neuro, and interop-
erator differences were analyzed. Finally, the results were ana-
lyzed within a threshold-based framework, allowing for better
estimation of the effect on clinical practice of the measurement
differences.

The outcome-based GBM progression classification perfor-
mance analysis using three different definitions of pseudo-
progression did not detect a difference between the software
when receiver operating characteristic curves (ROCs) were
constructed with the software-specific threshold ranges.
However, when an optimal threshold found for one software
was used for the other software, there were many instances
of statistically significant differences in sensitivity and speci-
ficity. Previously published optimal thresholds for determining
tumor progression or recurrence have ranged from 0.719 to
1.4711 to 1.810 to 2.6.8 However, the discrepancy could be
attributed to differences in tumor types allowed in the studies,
some allowing tumors other than GBM or high-grade gliomas,
or differences in ROI approaches, with different numbers of
hotspot voxels or entire tumors being used. It was unclear,
though, how much of the difference could be due to the use

Table 7 Sensitivity and specificity at optimal thresholds for each software and magnet strength. Metric: 95% rCBV.

Class. criteria Software

1.5 T 3 T 1.5 T 3 T 1.5 T 3 T

IB Neuro FuncTool nordicICE

Thresh: 2.20 Thresh: 2.64 Thresh: 2.03 Thresh: 3.19 Thresh: 3.04 Thresh: 3.50

Sens Spec Sens Spec Sens Spec Sens Spec Sens Spec Sens Spec

Survival IB Neuro 0.63 0.56a 1.00 0.63a 0.69 0.44 0.60 0.75 0.19a 0.89 0.20a 0.75

FuncTool 0.53 0.56 0.80 0.50 0.67 0.56 0.80 0.75 0.07a 0.89 0.40a 1.00

nordicICE 0.88 0.22a 0.80 0.13a 0.94 0.22 0.80 0.63 0.44a 0.44 0.80a 0.88

Thresh: 2.25 Thresh: 3.41 Thresh: 2.00 Thresh: 3.31 Thresh: 2.78 Thresh: 3.50

Sens Spec Sens Spec Sens Spec Sens Spec Sens Spec Sens Spec

Treatment change IB Neuro 0.68 0.73b 0.71 0.80b 0.84 0.45 0.71 0.80 0.32c 0.82b 0.43c 0.80b

FuncTool 0.44c 0.55 0.57c 0.80 0.72b 0.45 0.57b 0.80 0.06d 0.91a 0.43d 0.80a

nordicICE 0.95c 0.36b 0.71c 0.60b 1.00b 0.27 0.71b 0.60 0.74c,d 0.45a,b 0.71c,d 0.60a,b

Thresh: 2.20 Thresh: 3.41 Thresh: 2.54 Thresh: 3.31 Thresh: 2.94 Thresh: 4.00

Sens Spec Sens Spec Sens Spec Sens Spec Sens Spec Sens Spec

Combined IB Neuro 0.75 0.67 1.00 0.86 0.33a 0.67 1.00a 0.86 0.25 0.83 0.33 0.86

FuncTool 0.73 0.33 0.67 0.86 0.45b 0.83 0.67b 0.86 0.09 0.83 0.67 1.00

nordicICE 1.00 0.33 1.00 0.72 0.92a,b 0.33 1.00a 0.71 0.50 0.50 1.00 0.86

Note: Operator 1’s data. Comparison of sensitivity and specificity performed by pooling the 1.5 and 3 T cases of disagreement before calculating the
test statistic.
aComparison p value ¼ 0.016
bComparison p value ¼ 0.031
cComparison p value ¼ 0.0047
dComparison p value ¼ 0.00053
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of different software for CBV computation. For the survival
classification criterion, 95% rCBV metric, and the 3 T images,
this study’s optimal thresholds ranged from 2.64 to 3.19 to
3.50 depending on the software used, with all other variables
fixed. For the mean rCBV metric, this study’s optimal thresh-
olds were 1.10, 1.33, and 1.39 depending on the software pack-
age. While the ROI approach or rCBV metric used clearly has a
significant effect on the optimal threshold values, the software
effect itself is not negligible.

One note of caution is that, in general, the 3 T rCBV values
were higher than the 1.5 T values despite the 3 T group having
more pseudoprogression cases than progression. This observa-
tion is further confirmation of a study that imaged 21 patients at
both 1.5 and 3 T and found that the 3 T rCBV was statistically
significantly greater for the tumors (p ¼ :0041).30 While that
study had differences in acquisition parameters besides field
strength, our study confirms those findings with the magnet
strength being the only variable. The superior performance of
3 T is likely due to the increased T1 and susceptibility weighting
for 3 T versus 1.5 T. For this reason, 1.5 and 3 T data should not
be pooled together for accuracy analysis since they likely have
different optimal thresholds. For the cases in this study, the opti-
mal thresholds shown in Tables 6 through 8 were always higher

for the 3 T dataset than the 1.5 T dataset, except for FuncTool’s
thresholds for the combined-classification criterion using the %
voxels above NAWM metric. This anomaly could be due to the
lower combined-classification number of cases as well as the
AUC being 0.500 for that combination of software, metric,
and ground truth criterion.

These data support the use of 3 T DSC-MR imaging of GBM
patients as opposed to 1.5 T imaging for distinguishing tumor
progression or pseudoprogression with spin-echo acquisitions
using similar preload dosing. While the same patients were
not imaged at both 1.5 and 3 T for direct comparison, and the
numbers were small for 3 T, statistical significance was found
for the 3 T performance advantage. Due to the importance of this
finding, further investigation with larger numbers of cases is
indicated.

The lack of statistical significance in AUC differences
between software could be reflective of inadequacy of the sur-
vival- and treatment-based classification criteria, or the number
of cases. Additionally, the analysis can be susceptible to small
differences in treatment. Since intermediate survival cases were
excluded, the ROC curves using the survival criterion are opti-
mistic. However, as days survived is a surrogate marker for
another characteristic that is continuous in reality, progression,

Table 8 Sensitivity and specificity at optimal thresholds for each software and magnet strength. Metric: % above NAWM.

Class. criteria Software

1.5 T 3 T 1.5 T 3 T 1.5 T 3 T

IB Neuro FuncTool nordicICE

Thresh: 32.5 Thresh: 50 Thresh: 55.7 Thresh: 58.0 Thresh: 42.6 Thresh: 49.6

Sens Spec Sens Spec Sens Spec Sens Spec Sens Spec Sens Spec

Survival IB Neuro 0.63 0.56 0.60 0.88 0.31a 0.67 0.00a 0.88 0.44b 0.56 0.60b 0.88

FuncTool 0.67 0.33 1.00 0.50 0.47a 0.44 0.80a 0.63 0.67b 0.44 1.00b 0.50

nordicICE 0.75 0.22 0.60 0.75 0.25a 0.78 0.20a 0.88 0.56 0.56 0.60 0.75

Thresh: 32.5 Thresh: 54.2 Thresh: 38.6 Thresh: 56.8 Thresh: 35.0 Thresh: 49.5

Sens Spec Sens Spec Sens Spec Sens Spec Sens Spec Sens Spec

Treatment change IB Neuro 0.68 0.55 0.57 1.00 0.47c 0.55 0.58c 0.55 0.58b 0.55 0.57b 0.90

FuncTool 0.83 0.45 0.86 0.60 0.78c 0.45 0.83c 0.45 0.83b 0.45 0.86b 0.40

nordicICE 0.89 0.45 0.29 1.00 0.68 0.45 0.84 0.45 0.84 0.45 0.57 0.80

Thresh: 32.5 Thresh: 55.6 Thresh: 72.4 Thresh: 58.5 Thresh: 44.1 Thresh: 49.7

Sens Spec Sens Spec Sens Spec Sens Spec Sens Spec Sens Spec

Combined IB Neuro 0.83 0.33 0.67 1.00 0.17b 1.00 0.00b 1.00 0.50 0.33 0.67 1.00

FuncTool 0.91 0.17 1.00 0.71 0.45b 0.67 0.67b 0.71 0.82 0.17 1.00 0.57

nordicICE 1.00 0.17 0.33 1.00 0.17 1.00 0.33 1.00 0.75 0.33 0.67 0.86

Note: Operator 1’s data. Comparison of sensitivity and specificity performed by pooling the 1.5 and 3 T cases of disagreement before calculating the
test statistic.
aComparison p value ¼ 0.016
bComparison p value ¼ 0.031
cComparison p value ¼ 0.0078
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the potential bias effect is somewhat muted. The combined-clas-
sification criterion similarly has the potential to produce a higher
performance estimate than would occur in analysis of new,
unknown cases due to the excluded cases. However, it also
could be considered the stronger, more accurate classification
method than the other two separately since it eliminates cases
with a more uncertain classification from the analysis.

A common practice on the use of rCBV values, as described
in other papers, is for users to select ROIs using the rCBV
images. That practice is suboptimal because it introduces
dependency on the user and makes the method challenging
to reproduce. Because it is not matched to areas of enhancement,
it also is unclear what the hotspots represent on conventional
imaging. Nevertheless, the point of this paper is that the actual
rCBV values that one would see on an rCBV image will depend
heavily on the software used.

There is strong interest in promoting the use of quantitative
imaging, but the results here suggest that how rCBV is calcu-
lated must be more thoroughly examined before quantitation
can be broadly applied. Either some correction factor will
need to be found for each software/rCBV metric, an approach
not likely successful based on this study’s data, or the studies
published for a given software and CBV metric will need to be
reproduced with the other software and metric methods to deter-
mine the proper thresholds. We note here that the three packages
included in our study represent the vast majority of publications
that use FDA-cleared software. Because these are proprietary
commercial packages, certain details of the algorithm are not
available, making it difficult to understand, characterize, or cor-
rect for the differences. While there is an accepted general model
of the effect of gadolinium on DSC images, specifics of how the
baselines before and after the bolus are determined, how leakage
rates after the bolus are determined, assumptions about how to
correct for the observed leakage, and noise estimation methods
are all critical to computing the rCBV, but unless vendors share
their specific algorithms, it will be difficult to explain the basis
for the differences we found.

It should be noted that the analyzed images were spin-echo
echo-planar T2Wacquisitions, and similar results may not occur
with gradient recalled echo acquisitions or spin-echo

acquisitions using different contrast administration protocols.
However, a decrease in variability was not seen when the 3
T acquired data were compared with the 1.5 T acquired data
(see Table 9), suggesting precise acquisition methods or sig-
nal-to-noise are not significant factors. Further studies are
needed to evaluate postprocessing differences using gradient
recalled echo data. Some have suggested that spin-echo acquis-
itions may be more appropriate for brain tumors because it
emphasizes the smaller vessels seen in brain tumors, compared
to the large vessel occlusions seen in vascular disease. While this
is a theoretical advantage, we are not aware of a study docu-
menting an advantage, and this question warrants further
study. Regarding other aspects of the acquisition protocols,
this was a retrospective study and their parameters could not
be altered since they were the clinical protocols used.
Increased matrix size might possibly increase the software diver-
gence due to increased noise, but lower magnetic strength (with
lower SNR) did not show increased divergence. Regarding
increasing the temporal resolution, we did look to see whether
there was a noticeable difference in variability when the cases
were limited to those with subjectively better bolus curves, and
did not find any. However, better temporal resolution might
indeed decrease the variability. The same NAWM and tumor
ROIs were used across operator and software, so sampling
effects should not have influenced the measured variability.

In this study, the ROI used is only the enhancing component
of the image. It is well-known that the region of enhancement
does not represent the true extent of infiltrating glioma. There-
fore, while the ROI for this study may not be entirely represen-
tative, it is exactly the enhancing component that requires differ-
entiation of progression versus pseudoprogression. Because the
software is proprietary, we do not have access to the model used
to estimate and correct for leakage, but this is likely one source of
variability between the software packages. Detecting progression
in areas of nonenhancement is clearly an important concern and
could ultimately yield intersoftware performance differences in
future studies. However, the regions of enhancement are pre-
sumed to provide the most intersoftware differences due to the
leakage correction variable. Similarly, lower-grade gliomas would
be expected to have decreased rCBV variability due to decreased
leakage, although this needs to be confirmed in future studies.

Limiting our patient cohort to GBM patients treated with
radiation and temozolomide represents a select group. How-
ever, this treatment regimen is quite common and is associated
with frequent occurrences of MRI changes for which perfusion
is selected as an important characteristic to interpret. Use of anti-
angiogenic agents will substantially alter the perfusion and
enhancement characteristics, and while used commonly in this
patient group, this very different clinical situation would poten-
tially confound our findings rather than improve it, and deserves
separate attention.

rCBV values were found to be useful for distinguishing
GBM progression from pseudoprogression, as previously shown
in the literature. However, as one specific software package or
rCBV metric did not provide more useful information than the
others, we cannot recommend a specific software package for
use in multicenter studies based on these study results. Further
studies are needed to evaluate DSC data acquired through other
methods (such as gradient recalled echo). It is critical, though,
that individual trials use the same software package and same
DSC acquisition methods to generate each patient’s rCBV
images. Additionally, these data show that acquiring images

Table 9 Intersoftware ICC—operator 1’s data.

Magnet
strength Metric

ICC (95% CI)

Agreement Consistency

1.5 T

Mean rCBV 0.851 (0.690, 0.930) 0.889 (0.807, 0.942)

95% rCBV 0.611 (0.172, 0.827) 0.798 (0.664, 0.891)

% voxels
above NAWM

0.737 (0.422, 0.881) 0.833 (0.717, 0.911)

3.0 T

Mean rCBV 0.651 (0.371, 0.847) 0.701 (0.453, 0.871)

95% rCBV 0.707 (0.393, 0.882) 0.787 (0.585, 0.911)

% voxels
above NAWM

0.487 (0.095, 0.774) 0.680 (0.422, 0.860)

Note: Agreement: Comparison of raw values; Consistency: Comparison
of values with software-specific means subtracted.
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at 3.0 T produces both different optimal thresholds and more
valuable information for determining GBM progression than
1.5 T for spin-echo acquisitions.

As more research is conducted regarding the use of rCBV,
clinicians are relying upon it more frequently for help with diag-
nosis and treatment planning. Consequently, accuracy and pre-
cision of rCBV measurements become increasingly important as
the analysis becomes more quantitative. This study’s implication
for clinical practice is clear: care must be taken to assure that if
thresholds are used in clinical practice that are based on the liter-
ature, the same software and processing methods must be applied.
Additionally, when comparing exams for the same patient or
pooling exams for an rCBV study, the same CBV calculation soft-
ware should be used. This report raises serious doubt about the
ability to use quantitative rCBV measures without requiring a
specific, consistent software for processing.
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