Comparing the theoretical performances of 1.65- and 3.3-μm differential absorption lidar systems used for airborne remote sensing of natural gas leaks (Erratum)

Ashwin Yerasi
William D. Tandy Jr.
William J. Emery
Rory A. Barton-Grimley
Comparing the theoretical performances of 1.65- and 3.3-μm differential absorption lidar systems used for airborne remote sensing of natural gas leaks (Erratum)

Ashwin Yerasi, William D. Tandy Jr., William J. Emery, and Rory A. Barton-Grimley
University of Colorado, Ann and H.J. Smead Department of Aerospace Engineering Sciences, Boulder, Colorado, United States

[DOI: 10.1117/1.JRS.12.029901]

This article [J. Appl. Remote Sens. 12(2), 026030 (2018)] contained a typographical error when it was published June 22, 2018. Two numbers in the following sentence in the abstract were transposed:

“The noise floors of the 1.65- and 3.3-μm instruments simulated in this particular analysis are ∼0.1 and ∼1.4 ppm m, respectively.”

The corrected sentence reads:

“The noise floors of the 1.65- and 3.3-μm instruments simulated in this particular analysis are ∼1.4 and ∼0.1 ppm m, respectively.”

All online versions of the article were corrected on 3 June 2018.