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Abstract. Oil palm phenology has many advantages in managing the sustainability of oil palm
plantations. The phenology of oil palms is a key issue in harvest estimation, fruit bunch pro-
duction, estimating oil palm taxes, replanting, fertilization, and detecting oil palm disease. One
of the recently developed methods of oil palm phenology involves the use of remote sensing
technology. We evaluated and reviewed the current state of oil palm phenology based on remote
sensing and conducted an optimized systematic review of recent scientific publications, specifi-
cally focusing on scientific peer-reviewed papers published between 1990 and 2021, comprising
over 100 existing journal papers on remote sensing for oil palm phenology. The review includes
a description of the state of the art and the mapping of oil palm phenology based on sensors,
biophysical tree parameters, and classification techniques and also describes the state of the art in
the development of regression models of oil palm phenology based on wavelength, biophysical
tree parameters, and the type of regression model. Finally, the review provided an opportunity to
develop suitable techniques for the identification, classification, and the construction of regres-
sion models of oil palm phenology. There is a lot of potential in combining multisensor
approaches, suitable classification methods, and regression models for oil palm phenology. For
future studies on oil palm phenology, we recommend integrating machine learning with oil palm
biophysical parameters based on multisensor remote sensing technologies. © 2022 Society of
Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JRS.16.021501]
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1 Introduction

The oil palm (Elaeis guineensis Jacq.) is a species of palm planted extensively in Southeast Asia,
especially in Indonesia, Malaysia, and Thailand.1 It is an industrial plant, used as a basic material
for producing cooking oil, industrial oil, and fuel.2 Of the four main vegetable oils that account
for more than 85% of world consumption, the most consumed is palm kernel oil. Palm kernel oil
is extracted from the seeds or kernels of a hard mesocarp shell and contains about 80% saturated
fatty acids (oleic). It is mostly utilized in the oleochemical sector to make soaps, detergents, and
other products.3,4 Figure 1(a) shows the statistics of the oil palm consumption worldwide from
2015/2016 to 2020/2021. In 2019/2020, the palm oil usage amounted to over 73 million metric
tons worldwide. That increased to ∼75.45 million metric tons in the following year. Figure 1(b)
shows Indonesia and Malaysia produce the most palm oil in the world.

Oil palm cultivation is rapidly expanding in tropical countries, based on the fact that oil palm
production is a major economic factor.6 Oil palm is regarded as a major element of the economies
of palm oil-producing nations, with the potential to accelerate regional economic growth in these
countries.7
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Currently, two methods are being used to improve the productivity of national oil palm plan-
tations. The first step is to improve the productivity of existing oil palm plantations, specifically
young and mature plants, and the second strategy involves replanting with the latest high-yield-
ing varieties for existing oil palm plantations that are classified as old, because every year, there
are fields that have reached the old phase and must be replaced.8 According to the Indonesian Oil
Palm Research Institute (IOPRI), the quality of productivity obtained from an oil palm plantation
is the result of a synergy between the genetic potential of the plant variety, the environment in
which it grows, and the management of its cultivation.9 The main parameter derived from oil
palm productivity data is the sustainability of oil palm development, in this case, the age or
phenology parameters of oil palms.10

The phenology of an oil palm plantation has an impact on the physical and environmental
conditions of the plantation.11 One of the key parameters influencing the growth of fruit bunches
is the phenology of the oil palm, which is a crucial component in yield estimation,2,12 because the
growth of oil palms occurs in a certain way, and their morphological characteristics may be
utilized to determine their phenology.11 The oil palm can be economically cultivated up to the
age of 20 to 25 years.13 The plant is tall and difficult to harvest at more than 25 years of age, and
the quantity of fruit bunches is very limited, so it is no longer affordable to cultivate them beyond
that age.14

According to Fig. 2, plantation age affects oil palm yield (in FFB), with black lines indicating
average yield potential and red lines representing irrigation yield potential over a 25-year cycle.15

The first harvest occurs 5 years after planting, and peak production is attained at the age of 5 to
10 years after planting. With the number of trees around 128 to 148 trees per hectare, depending
on plant material, soil, and climate, with a triangular spacing of 9 m × 9 m, there are 143 trees

Fig. 1 (a) Production volume of palm oil worldwide and (b) countries that produce the most oil
palm.5

Fig. 2 The relationship of palm age and yield.15
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per hectare13 [Fig. 3(a)]. An indication of the results’ variability due to weather variability can be
seen in the band associated with it. Indicators of productivity are based on what can be achieved
(blue line). It is possible to increase productivity on existing plantation lands by adopting good
agronomic practices, which is defined as the difference between the actual yield and the achiev-
able yield.15 According to Corley,16 the production of oil palm fruit bunches rises quickly and
reaches a maximum at the age of 8 to 12 years, then gradually decreases as the plant ages up to
the economic age limit of 25 years.17 Three stages can be used to characterize the age of oil palm
plantations: the young immature phase (0 to 3 years), the young mature phase (4 to 8 years), and
the mature phase (over 8 years).4 Oil palm plantations begin to produce fruit bunches in the
young phase, 3 years after planting, and have a productive life in the mature phase up to 15
years after planting, then yields begin to decrease until the oil palm is replanted in the phase
of old age, 25 to 30 years after planting [Fig. 3(b)].7,18 Understanding plant growth in oil palm
plantations requires an understanding of the stages of flowering and fruit maturation. The pur-
pose of phenological observations on oil palm trees is to identify the sex ratios of flowers, phases
of flowering and fruit ripening, the age of each phase of flowering and fruit ripening, and to
estimate yields.14 The phenology of an oil palm has a significant impact on yield estimations
and is one of the key parameters affecting fruit bunch production.18 Furthermore, information on
oil palm phenology is important for precision agriculture to identify variations within a typical
phenology group within an oil palm plantation and to optimize planning and management
solutions.19 In other cases, according to Darmawan et al.,7 phenology information is required
for estimating oil palm taxes, replanting, and detecting oil palm diseases.7,20,21

Fig. 3 (a) The oil palm planting pattern13 and (b) oil palm growth.
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The physical and environmental conditions of oil palm plantations are affected by the age and
productivity of the oil palms.10 According to Chong et al.,11 morphological characteristics can be
used to predict the phenology of oil palms, since they are cultivated in specific ways. Previously,
the phenology of oil palms was traditionally documented when the oil palms were first planted
by labeling the land after the year of planting in standard management.11 This information, how-
ever, is not widely accessible and is generally too difficult to collect and verify, especially from
smallholders. Remote sensing has been used to monitor oil palms since the 1990s.6 Researchers
have widely utilized remote sensing technology, mostly for land cover classification in oil palm
plantations. Oil palm plantations have a standard planting pattern, which includes grouping
plants in blocks on a regular schedule based on plants with the same planting year. Remote
sensing can be utilized to analyze the phenology of oil palm plantations.19

The aim of this study was to evaluate the current state of oil palm phenology based on remote
sensing and conducted an optimized systematic review of recent scientific publications, specifi-
cally focusing on scientific peer-reviewed papers published between 1990 and 2021. This review
is based on more than 100 existing journal papers on remote sensing for oil palm plantation
phenology. The structure of this review is as follows:

1. Introduction
2. Methods for Reviewing the Literature on Oil Palm Phenology Based on Remote

Sensing Data
3. State of the Art of Identification and Mapping Methods for Oil Palm Phenology

3.1. Based on sensors
3.2. Based on biophysical tree parameters
3.3. Based on classification techniques

4. State of The Art of Developing Regression Models for Oil Palm Phenology

4.1. Based on wavelength
4.2. Based on biophysical tree parameters
4.3. Based on the type of regression model

5. Results

5.1. Identification and Mapping of Oil Palm Phenology Based on Remote Sensing
5.2. Developing Regression Models of Oil Palm Phenology Based on Remote

Sensing

6. Challenges and Future Directions

6.1. Combining Multisensor Remote Sensing Data
6.2. The Most Suitable Classification Method and Regression Model
6.3. Future Direction in Oil Palm Phenology Based on Remote Sensing

7. Conclusions

2 Methods for Reviewing the Literature on Oil Palm Phenology Based
on Remote Sensing Data

In this study, we evaluate the current state of oil palm phenology based on remote sensing. Oil
palm phenology information is needed for harvesting, replanting, and determining the health of
oil palm plantation that can be identified through remote sensing.7 We adopted an optimized
systematic review approach of recent scientific publications.22 This technique closely follows
a set of scientific procedures that expressly strive to reduce bias, primarily by attempting to
discover, assess, and synthesize all relevant research to answer a specific question.23 Scopus
and Google Scholar were used to perform literature searches. These two databases are the most
comprehensive in the scientific discipline and are frequently utilized to conduct literature
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searches.22 The phrases used in Scopus were “TITLE-ABS-KEY (oil palm) AND (remote sens-
ing) AND (“age” OR “phenology” OR “health”) AND PUBYEAR > 1990” and in Google
Scholar, the terms “oil palm,” “remote sensing,” “age,” “phenology,” and “health” were used to
search the databases. The sources were then chosen based on publications published in journals
between 1990 and 2021.

The databases produced 392 papers, which were then whittled down by removing duplicates.
Then, by reading the abstracts, this collection of articles was selected to select only papers that
investigated oil palm phenology or age using classification approaches and identified oil palm
phenology or age using a regression model. This produced 53 articles that were relevant to the
issue. As a result, during the secondary filtering process, we removed several studies that did not
directly related to oil palm phenology. Following that, we manually removed irrelevant articles
by reviewing their whole text based on remote sensing systems, the data were then categorized
as either issues or studies related to oil palm phenology, and a total of 39 papers were chosen.
The database search and screening selection operations are shown in Fig. 4.

We analyzed all papers and created a literature visualization based on the number of times
each paper’s most important words were used from 1990 until 2021 (Fig. 5), with the highest
numbers in 2019. Furthermore, based on Fig. 6, we used VOS Viewer to find the terms from

Fig. 4 The process of database searching and screening.

Fig. 5 Sources of articles in this study.
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the title and abstract of all papers that highlighted the present problem of oil palm phenology
utilizing remote sensing from 1990 to 2021.

Most of the papers on oil palm were found in journal articles with 392 documents with the
large frequently article from International Journal of Remote Sensing, Remote Sensing, Applied
of Remote Sensing, and the Proceedings of IOP Earth and Environmental (Fig. 7). However,
oil palm publications, particularly in remote sensing-based phenology, is still limited, and this
will become a challenge in the future.

3 State of the Art of the Identification and Mapping Methods for Oil
Palm Phenology

Information about oil palm phenology is important for oil palm plantation management. For
accurate information on trees, phenology is very important for scientific and practical reasons

Fig. 6 Literature review based on keywords and time.

Fig. 7 Documents per year by source.
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because it determines trees’ productivity.11 Based on passive and active sensors, biophysical tree
parameters, and classification techniques, we reviewed the latest methods for identifying and
mapping the spatial distribution of oil palm phenology.

3.1 Based on Sensors

Remote sensing has the potential to provide significant support in oil palm monitoring and
potential oil palm plantation predictions.7 Several studies in agriculture and plantations, particu-
larly in oil palm plantations, have shown that remote sensing technology is capable of providing
accurate performance estimates of the derivation of the relationship between spectral character-
istics and vegetation indices in the form of canopy cover using the reflection of visual waves in
red, green, blue, and infrared wavelengths.24 The interaction between sensors and the Earth’s
surface can be categorized into two modes: passive sensors and active sensors.25

Passive sensors use solar radiation to reflect the Earth’s surface and detect surface reflections.
They normally absorb electromagnetic waves in the visible (430 to 720 nm) and near-infrared
(750 to 950 nm) ranges.26 Passive satellite sensors include those onboard Landsat, SPOT,
Pléiades, EROS, GeoEye, WorldView, and other satellites.11 Active sensors depend on internal
energy sources, whereas passive sensors rely on external energy source mainly sunlight.27 These
utilize electromagnetic waves in the visible and near-infrared ranges (a laser rangefinder or a
laser altimeter), as well as radar waves [synthetic aperture radar (SAR)].28 Because of their
potential to penetrate clouds and collect data under all-weather day/night environments, active
sensors have emerged as a promising technology in the field of remote sensing.29 TerraSAR-X,
Sentinel-1A, ALOS PALSAR, RADARSAT, LiDAR, and other active sensors are examples.
Passive and active sensors may be used to map oil palms based on the phenology or image
characteristics of oil palm plantations30 by measuring and classifying reflected energy using
spectral signatures.31

Several techniques have been established to map oil palm land cover throughout the tropics
utilizing satellite remote sensing data.32 Oil palm mapping and change detection methods have
been developed, with data sources derived from optical satellite Earth observations33,34 to micro-
wave datasets,35,36 spatiotemporal resolutions from the regional to the national scale37 and from
single to multidecadal mapping,6 interpretation methods ranging from manual to semiautomatic
and fully automatic identification,6,38–40 and products ranging from oil palm land cover maps to
more detailed datasets on plantation structure. These include methods based on phenology for
the classification of oil palm plantations,41–44 tree counting,34,36,38,40,45 age estimation,10,21,46,47

yield estimation,47–49 and a few studies have also focused on the detection of continuous oil
palm changes,50–52 allometric calculations of oil palm trees,53–57 above-ground biomass estima-
tion (AGB),54,58–62 carbon estimation,55,63–65 pest and disease detection.66–68

Gutiérrez-Vélez and DeFries69 used Landsat to investigate the usage of spatial changes in
vegetation greenness to detect deforestation caused by large-scale oil palm expansion in the
Peruvian Amazon. McMorrow10 estimated oil palm age using Landsat by measuring the reflec-
tance value and showing the relationship between oil palm age. Sitoms et al. 70 also used Landsat
as well as Santos and Messina,71 Morel et al.,62 Vadivelu et al.,72 Lee et al.,33 Fitrianto et al.,73

Carolita et al.,21 Danylo et al.,74 Shaharum et al.,75 and Sarzynski et al.30

High-resolution satellite datasets can also produce optimal performance in estimating the age
of oil palm trees, as Chemura et al.1 demonstrated by integrating multispectral data with
WorldView-2 and performing regression analysis to reveal the oil palm age with biophysical
parameters. IKONOS was used by Thenkabail et al.55 and Agustin et al.41 Active sensors can
also focus on the physics of scattering processes. This method has primarily been used for iden-
tification purposes and is capable of understanding backscatter value using SAR data. Nordin
et al.76 used AIRSAR data in the classification of oil palm age based on biophysical parameters.
Other imagery that is commonly used is ALOS PALSAR. For example, Darmawan et al.47 used
ALOS PALSAR-2 to show a correlation between backscatter value and oil palm age. In another
case study, Yayusman and Nagasawa77 classified young oil palms and mature oil palms for a
smallholder plantation. Morel et al.61 estimated biophysical parameters to identify oil palm age,
and Tan et al.49 estimated tree height and diameter at breast height. Furthermore, recent studies
have investigated or made comparisons between sensors. For example, Avtar et al.78 investigated
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a model of oil palm age using ALOS PALSAR, RADARSAT, and TerraSAR-X data. Carolita
et al.21 made the comparison between active sensor (Sentinel-1A) and passive sensor (Landsat-
8). Darmawan et al.7 investigated an oil palm phenology scattering model based on TerraSAR-X,
Sentinel-1A, and ALOS PALSAR-2 data.

Recent studies have combined passive and active sensors with the aim of obtaining high
accuracy; for example, Lee and Bretschneider79 discovered that combining microwave and opti-
cal data could effectively map oil palm trees in a heterogeneous environment with an overall
accuracy of 94%, relative to using Landsat (84%) and PALSAR (89%) data separately. Sarzynski
et al.30 used Landsat-8 and ALOS PALSAR data for oil palm age classification. Danylo et al.80

mapped the extent and age of productive oil palm plantations using Landsat and Sentinel-1A
data.

Aside from the radar–optical combination, the integration of light detection and ranging
(LiDAR) and optical data has been used in oil palm mapping. LiDAR, which is recognized for
its extremely high spatial resolution, can generate three-dimensional (3D) details (measuring
canopy height and terrain elevation). It offers a 3D view of current oil palm plantation conditions
when combined with an optical image, which is incredibly useful for plantation management
and planning.45 For example, Avtar et al.81 used multispectral unmanned aerial vehicle (UAV)
LiDAR data for estimating biophysical parameters.

3.2 Based on Biophysical Tree Parameters

In traditional management practices, oil palm phenology is documented when the oil palms are
first planted in the field by labeling the field according to the year of planting.49 As oil palms
grow, they demonstrate an allometric formation, in which various tree parts grow at different
speeds.53 Individually, these biophysical structures of the oil palm may be calculated. They are
classified as biophysical parameters, and some of them are known to be associated with the oil
palms’ growth stages (young, mature, and old) and they may also be used to discriminate them
into specific phenology categories. These biophysical parameters include the oil palms’ leaf area
index (LAI), crown projection area (CPA), and height.53 Shadow, roughness, and spectral
response are examples of how these parameters are manifested.10

The concept of LAI is based on the area of one-sided leaf tissue per unit of ground surface.82

The basic concept of LAI is to identify the structure of trees by calculating the density of the
surface of the leaves in a canopy, which could result in the effective interception of light, air, and
water.46,83 Phenology would increase the LAI, with more fronds and leaves around the crowns of
the oil palms.84 This relationship thus makes LAI a valuable feature in the estimation of oil palm
phenology.84 CPA is similar to the percentage of canopy cover but is expressed as the canopy
area that is covered by an individual oil palm.10 To calculate the region of the oil palm’s crown,
high-resolution satellite imagery is needed. Satellite data contain different responses in various
spectral bands, which make it possible to distinguish, segment, and delineate an oil palm’s crown
core, rachis edges, and background.1 For example, the crown core appears brighter than the
edges and background. Oil palm crowns can be delineated using object-based image processing,
allowing CPA to be determined. In this area, a positive linear relationship with age is observed
with the projected oil palm crown area.1

The oil palm tree does not stop growing in height throughout its life. This feature of growth is
very useful in estimating oil palm age.19 Throughout its life cycle, the height of the oil palm
grows by 30 to 60 cm each year, depending on its physical condition and genetic factors.85

Different methods, such as interferometry synthetic aperture radar (InSAR), can be used to
obtain information about height.86 Using only field-measured information, oil palm height
showed a strong linear relationship with age.49 Tree height has proven to be a potentially useful
indicator for estimating oil palm phenology.53 Another biophysical parameter, diameter at breast
height, is insignificantly related to the phenology of oil palms since oil palm trunks do not grow
after 2 years of maturity.85

Several studies have used biomass to estimate the phenology of oil palms. Thenkabail et al.55

used stem height to estimate the aboveground biomass of young oil palm trees (aged from 1 to 5
years). Khalid et al.87 used total height as a descriptive variable to estimate biomass for
mid-mature (23-year-old) Malaysian oil palm plantations. SAR for oil palm plantations is an
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important parameter, extracted from normalized backscatter, that is related to AGB. Nordin
et al.76 used a biomass index and created an empirical biomass model for oil palms. The results
of SAR applications in tropical forests can be applied to oil palm plantations. Due to their stand-
ardized geometry, the use of the same plant species, and the identical ages of the trees planted in a
single plantation, the resulting data are easy to interpret. Kee et al.44 investigated oil palm tree
discrimination using three parameters—LAI, biomass, and height—to assess the backscattering
value of oil palms using data from the C-band and L-band. Lazecky et al.88 also analyzed an oil
palm plantation based on Sentinel 1 A (C-band) data.

3.3 Based on Classification Techniques

A classification image algorithm can be used to sort an image into age categories to provide
information regarding oil palm plantations.55 Oil palm identification has been used successfully
in a variety of image classification approaches. Image classification involves categorizing pixels
based on different features, such as spectral signatures, indices, contextual details, and many
more.89 The techniques of image classification can be divided into supervised and unsupervised
techniques.90 Supervised classification techniques include the use of support vector machine
(SVM), random forest (RF), spectral angle mapper (SAM), fuzzy adaptive resonance theory
supervised predictive mapping, Mahalanobis distance, radial basis function, decision tree
(DT), multilayer perception, naive Bayes, maximum likelihood classifier (MLC), and fuzzy logic
analyses.51

There are numerous classification techniques available, with MLC being the most common
parametric classifier due to its good classification performance. Santos and Messina,71 MLC for
the identification of oil palm yields. Tan et al. 49 separated the ages of oil palm trees, and
Vadivelu et al.72 also performed oil palm age classifications. Yayusman and Nagasawa77 also
classified young and mature oil palms. On the other hand, unsupervised classification techniques
include the affinity propagation (AP) cluster algorithm, fuzzy C-means algorithms, the K-means
algorithm, iterative self-organizing data (ISODATA), etc.91 Thenkabail et al.56 carried out unsu-
pervised ISOCLASS classification. Tan et al.,50 Razali et al.,92 and Danylo et al.75 also used
unsupervised classification (ISODATA) on a cloud computing Google Earth Engine (GEE)
to reveal the age of oil palms in Southeast Asia. Other researchers have used a combination
of classification methodologies to obtain the best level of accuracy. Morel et al.63 effectively
distinguished between forest and oil palm areas based on Landsat data using unsupervised
k-means and maximum likelihood methods with a DT, as well as calculating aboveground bio-
mass using ALOS PALSAR. A recent study performed by Carolita et al.21 showed a possible
method of mapping oil palm age based on a SPOT-6 normalized vegetation differential index
(NDVI) pixel-based classifier.

Object-based image analysis (OBIA) is another method of classifying oil palm phenology.
Instead of analyzing individual pixels, OBIA of remote sensing data requires the grouping
of pixels into homogeneous segments or objects.93 These segments provide additional informa-
tion about individual pixels, such as the mean, variance, and mean ratio values per band.93

Accumulating pixels into segments further reduces the computing costs involved with working
with finer-resolution satellite imagery, which is becoming more available as sensor quality
improves. This type of image segmentation algorithm is classified into four categories:
point-, edge-, and region-based, and combined algorithms.45 Oil palm mapping can be carried
out by combining pixels with identical values, clustering areas, and categorizing them based on
texture, context, and geometry.45 Rizeei et al.,46 for example, were able to estimated oil palm tree
counts and perform age predictions using WorldView-3 imagery and LiDAR data, utilizing an
optimized OBIA method. Chemura et al.1 used OBIA to estimate the age of oil palm plantations
(years after planting) by integrating high-resolution multispectral remote sensing data and
regression techniques.

In recent decades, machine learning classifiers have emerged as powerful classifiers and have
been widely adopted for classification purposes due to their higher accuracy and performance
compared to MLC.94 Analyses using artificial intelligence to identify oil palm land cover, such as
SVM, RF, classification and regression tree (CART), deep learning (DL), artificial neural net-
work (ANN), and other machine learning algorithms, have been used in an attempt to obtain
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significant improvements.95 Descals et al.96 used cloud computing and the RF classification
approach to discriminate between young and mature oil palms based on Sentinel 1 and
Sentinel 2 data. Ordway et al.39 also used RF models to classify imagery in 2000 and 2015
according to land cover types: forest, mature oil palms, immature monocultures, and other land
cover, based on Landsat data. De Alban et al.97 combined Landsat and L-band SAR data to
improve land cover classifications using the RF classification method in Google Earth
Engine. Shaharum et al.75 also used GEE to characterize oil palm land cover for the first time
across Peninsular Malaysia, using nonparametric machine learning algorithms such as SVM,
CART, and RF, obtaining the best accuracy using SVM, at 93.16%.

To address automation issues, more recent works have used DL in computerized oil palm
plantation analyses. For instance, the DL approach has been used in palm tree detection and
counting.40 The convolutional neural network (CNN), a widely used DL model, has achieved
great performance in many studies in the computer vision field, such as image classification.
Li et al.38 proposed using DL to detect plants instead of manual detection methods. They used
data from a manual count to train and improve the performance of a CNN system. Mubin et al.41

also used a CNN to distinguish between young and mature oil palm trees.

4 State of the Art of Developing Regression Models of Oil Palm
Phenology Based on Remote Sensing

Some other cases in the literature concern the identification of oil palm phenology using regres-
sion models. Regression models can be developed based on correlations between remote sensing
data and the ages of oil palms derived from field surveys. We reviewed the existing studies on the
use of regression models of oil palm phenology based on wavelength, biophysical tree param-
eters, and on the type of regression model.

4.1 Based on Wavelength

Depending on the wavelength, electromagnetic radiation may be available from a natural source,
or it must be transmitted by an instrument. Typical passive sensor systems on space platforms
include panchromatic systems, multispectral systems, and hyperspectral systems. A multispec-
tral sensor is a multichannel detector with a few spectral bands.25 Each channel is sensitive to
radiation within a narrow wavelength band. Visible light refers to energy in the blue (0.4 to
0.5 μm), green (0.5 to 0.6 μm), and red (0.6 to 0.7 μm) bands of the electromagnetic
spectrum.98 The middle-infrared region (often referred to as the short-wavelength infrared)
includes energy with a wavelength of 1.3 to 3 μm. The thermal infrared region contains light
at 3 to 5 μm and 8 to 14 μm. McMorrow10 used Landsat TM data to estimated age parameters by
analyzing the spectral band and infrared index. Sitoms et al.71 analyzed a phenology model using
the spectral index. Tan et al.50 performed comparisons using bands 1, 2, 3; NDVI; and surface
reflectance data from Landsat and UK-DMC. For high spatial resolutions, Carolita et al.99 suc-
ceeded in estimating age using NDVI based on SPOT 6 data.

Active sensors use frequencies from 1 to 90 GHz. The wavelengths of active sensors are
intrinsically linked to the penetration capabilities of the transmitted microwave signal, such that
longer-wavelength signals can penetrate deeper into vegetation canopies and soils.100 An active
sensor can obtain information in the electromagnetic spectrum bands K (1.1 to 1.7 cm), X (2.4 to
3.8 cm), C (3.8 to 7.5 cm), L (15 to 30 cm), and P (30 to 100 cm),101 with the polarization of
horizontal-to-horizontal (HH), vertical-to-vertical (VV), horizontal-to-vertical (HV), or vertical-
to-horizontal (VH), which have varying ranges and azimuth resolutions.101 SAR releases electro-
magnetic radiation in the microwave range of wavelengths and receives backscatter radiation
when interacting with objects on the Earth’s surface.29 Backscattering has been used in many
studies to describe vegetation dynamics, based on current microwave wavelengths in the X-, C-,
and L- bands.27 For example, Tan et al.50 applied the gray-level co-occurrence matrix (GLCM)
technique to ALOS PALSAR-2 data to determine the ages of oil palm trees. Carolita et al.21

developed a regression model based on the correlation backscattering value from SAR
Sentinel-1A data (band C) and age information collected from oil palm age-block data.
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Okarda et al.21 discovered that the relationship between age and backscattering has a strong
correlation for HH and HV polarized signals, and so the value of backscattering can be useful
for analyzing the height and age of oil palm trees.

4.2 Based on Biophysical Tree Parameters

Plant biophysical parameters can be used to determine the phenological characteristics of oil
palms and are also recognized to be related to the growth stages of oil palms (young, mature,
and old) and can be categorized into various age classes.10,11 Assessing and quantifying bio-
physical parameters of vegetation cover are extremely important problems when monitoring land
cover and associated changes, identifying vegetation stress, and assessing yield. These param-
eters can be used to quantify the state of crops within agriculture monitoring tasks under the
global agriculture monitoring initiative, and they have already proved to be efficient for crop
yield and production predictions and estimates.102 Remote sensing data from space are the only
source of information that enable the regular and consistent estimation of biophysical parameters
at the regional, national, and global scales.103 Both optical and SAR imagery can be used to
extract biophysical values.

Phenology information is a good indicator for yield prediction as it influences the quality
and quantity of the fresh fruit bunches.1 To determine the phenology, many researchers have
investigated biophysical parameters. These parameters are used to identify the biophysical
characteristics of oil palms. Oil palm phenology begins at the age of zero; in this stage young
oil palms are not much affected by competition before the leaves start to overlap and yields per
palm in the first few years may be more or less constant up to quite high densities.16 Thus,
the optimum is very high when production starts, but this falls to below 150 palms/ha within
10 years.82 At any one age, quite a wide range of optimal densities has been recorded.16 Oil palm
fruits can be harvested throughout the year. In oil palms older than about 10 years, leaf area does
not change much, so the optimum might be expected to remain fairly constant after reaching a
minimum ∼12 to 13 years after planting, and the optimum density increases slightly in later
years.104 This has been attributed to better light distribution through the canopy as differences
in palm height become more marked, and light penetration through the canopy was found to
increase in year 13 from its minimum in years 9 to 11, with the variation in palm height increas-
ing with age.105 Another factor may be that the LAI is maximal at about 10 years and then falls
slightly.

An allometric equation is often used in forestry to relate the measurable parameters of plants
(such as age, diameter at breast height, and tree height) to carbon stocks.54 An allometric equa-
tion can be developed based on a strong statistical relationship between the carbon stocks
obtained from the plot-based measurement of certain parameters. Moreover, these parameters
provide an important piece of information to complete the allometric equation for the estimation
of biomass.49 This further indicates the carbon stock of oil palms and its environmental effects.19

In oil palms, parameters such as age and trunk height are applied in an allometric equation for
determining carbon stocks.60 For example, Shashikant et al.60 used different allometric equations
to investigate the relationship between radar backscattering and AGB data on age differences.
Kanniah et al.106 estimated the LAI and fPAR values of an oil palm ecosystem in Malaysia using
remote sensing. The data derived from near-infrared signals from UK-DMC 2 and LAI were
computed on the basis of hemispherical photos. The model was used to increase the LAI from
the plot to the region level. The results revealed a strong relationship between the LAI data and
the validation data. The authors discovered that the LAI and fPAR values from UK-DMC 2 and
MODIS matched well after comparing these results to MOD15A data.

4.3 Based on the Type of Regression Model

Awide range of studies have been conducted using different remote sensing approaches to esti-
mate the age of oil palms, which can be grouped into two main categories: radiative transfer
models and statistical regression models. The most common method for estimating phenology
is regression analysis.107 A regression analysis or other statistical technique is used to determine
a correlation or relationship between two sets of information.10 Regression models are used to
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understand how changes in the predictor values are associated with changes in the response
mean. There are a variety of regression methodologies based on the type of response variable,
the type of model that is required to provide an adequate fit to the data and the estimation
method, such as whether it is linear, multiple linear, or nonlinear.108 The most common
models are simple linear and multiple linear models. Nonlinear regression analysis is commonly
used for more complicated data sets in which the dependent and independent variables show
a nonlinear relationship. There are three purposes for regression analysis: (1) prediction,
(2) design of the model, and (3) assessment of parameters.109 This procedure has been specifi-
cally used to analyze the relationship between extracted features and ground-measured biophysi-
cal parameters.10

In the case of oil palm phenology, many studies have used linear and nonlinear regression
approaches, such as Nordin et al.76 using AIRSAR; Tan et al.,50 Avtar et al.,79 Darmawan et al.,48

and Darmawan et al.7 using ALOS PALSAR, who found that the relationship between age and
biophisycal parameters presented a nonlinear logarithmic equation, with R2 ranging from 0.4 to
0.8. McMorrow10 used Landsat data and Okarda et al.21 used ALOS PALSAR data, showing a
linear regression relationship between age and spectral index equation, with R2 ¼ 0.7. On the
other hand, a nonlinear quadratic equation, with an average R2 value of 0.8 using optical and
SAR data, has been demonstrated by Tan et al.,50 Carolita et al.,21 and Rizeei et al.,46 and
Darmawan et al.,7 using Sentinel-1A data.

McMorrow19 using Landsat TM data showed a negative nonlinear correlation between the
brightness of Landsat TM imagery and the age of the oil palms, meaning that a smaller reflec-
tance value indicated a younger age oil palm. Carolita et al.21using SPOT showed that variations
in NDVI can describe oil palm growth using the formula y ¼ −0.0004x2 þ 0.0107xþ 0.3912,
where x is the age of the oil palm and Y is the NDVI, with R2 ¼ 0.657. Comparison of the
utilization of Landsat 8 imagery with regression analysis techniques indicates that the age of
oil palm plants can be analyzed using spectral index NDVI data with R2 ¼ 0.85. Chemura
et al.1 also estimated the age of oil palms in Ghana by integrating multispectral data generated
from WorldView-2 high-resolution satellite imagery and regression analysis techniques.
Correlations between age and CPA can be used to evaluate oil palm age models. According
to the results of this study, there is a strong relationship between age and CPA in oil palms
over the age of 13 years. Correlations with biomass parameters were observed by Nordin
et al.77 using AIRSAR data. Different polarizations [horizontal (H) and vertical (V)] of radar
remote sensing data were utilized to investigate the ages of oil palms.47 Both studies using
the ALOS PALSAR series agreed that (1) HH was statistically related to the age of oil
palms better than HV and (2) the backscattering value increased with age due to the increase
in biomass.

Shashikant et al.59 tested the relationship between radar backscattering and AGB data with
certain allometric equations in relation to age variants. Tan et al.50 used ALOS PALSAR-2 data to
detect the age of oil palm trees using the GLCM technique. Pohl and Loong110 researched the
application of InSAR topography and developed high-profile oil palms; this information was
useful for mapping the age profile of oil palms. They analyzed the relationship between tree
height and the ages of oil palms, applying a linear regression model. This relationship resulted
in a height-to-age empirical model to form an equation that can derive age values from the
heights of oil palm trees in Malaysia.

The relationship between age and backscattering on mineral soils and peatlands has a strong
correlation for HH and HV, as found by Okarda et al.20 According to Okarda and colleagues, the
importance of backscattering may be useful in analyzing the height and age of oil palm trees.20

Carolita et al.21 produced a regression model with a correlation between backscattering value
from SAR Sentinel-1A data (band C) and age obtained from oil palm age-block data. In the C-
band, the researchers found that tree cover pixels were considered oil palms if the VV/VH differ-
ence was greater than 7.4 dB and VH backscattering was less than −13 dB.111 However, smaller
wavelengths such as the C-band have been used successfully to predict phenology.111 Darmawan
et al.7 aimed to explore the potential analysis of phenology characteristics using SAR data with
X-, C-, and L-band measurements. The results showed that the most promising region was the
C band, with VV polarization, with R2 ¼ 0.85.
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5 Results

5.1 Identification and Mapping of Oil Palm Phenology Based on Remote
Sensing

Previous researchers have investigated classification methods to distinguish between oil palm
plantations and other land cover elements and have then used these classification methods to
distinguish between age groups (Table 1).

Many classification techniques in machine learning, such as RF, SVM, and ANN, have
improved in terms of accuracy, with error levels around 80% to 90%. Hyperspectral imagery
can provide improved levels of detail on oil palms for phenology analyses using biophysical
parameters. However, all techniques should be applied when adopting methods for one location
and applying them to other locations as there are various factors that affect the accuracy of the
classification outcomes, such as scale, phenology, and variations in topography and background
signals. There is no single type of data that is suitable for all oil palm areas.115

Machine learning with RF, SVM, and CNN techniques showed higher accuracy than other
techniques. Gutiérrez-Vélez and DeFries69 used RF classification based on vegetation index with
an accuracy of 96.3% using Landsat imagery data. Using the same technique, Lee et al.34 iden-
tified immature oil palms based on Landsat data with a cloud computing GEE, showing an accu-
racy of 91.2%. Amirruddin et al.114 made a comparison of RF and DT based on hyperspectral
imagery with accuracies of 98.77% for RF and 90.48% for DT. Sarzynski et al.31 used RF based
on a fusion of Landsat 8 and ALOS PALSAR-2 techniques, with an accuracy of 84%. A CNN
method was developed by Mubin et al.41 based on WorldView-3 for the identification of young
and mature oil palms, with an overall accuracy of 95.11% for young oil palms and 92.96% for
mature oil palms. Furthermore, an SVM technique showed an average accuracy of 84.91% for
Rizeei et al.45 and Shaharum et al.76 achieved 93.16% accuracy.

5.2 Developing Regression Models of Oil Palm Phenology Based on
Remote Sensing

Aside from classification methods, one approach to determining the ages of oil palms is through
modeling algorithms that use regression to show the correlation between oil palm age parameters
based on wavelength and biophysical parameters (Table 2).

All remote sensing data can be applied in developing oil palm phenology models. The choice
depends on the biophysical parameter used for estimating oil palm age. For passive sensors,
Landsat imagery is commonly used to extract oil palm parameters using spectral indexes, such
as NDVI and a quadratic nonlinear regression model. Furthermore, the use of WorldView
imagery was applied by Chemura et al.,1 using the biophysical parameter CPA, with R2 ¼
0.88. Many studies have chosen L-band penetration in active sensors because it provides the
ability to detect and measure biophysical parameters with moderate coefficient determination,
using aboveground biomass, for example, and the model involves logarithmic nonlinear regres-
sion. Nordin et al.,77 for example, demonstrated a coefficient determination of 0.8 using
AIRSAR data with biophysical parameters relating to biomass. This means that biomass has
a strong correlation with standing age. Tan et al.50 analyzed the biophysical parameters of height
tree and diameter at breast height of oil palms based on ALOS PALSAR data, with R2 ¼ 0.9. On
the other hand, comparisons of Sentinel-1A data with VV polarization conducted by Darmawan
et al.7 showed quadratic linear regression with a higher R2 value of 0.85. Nonlinear regression
was applied for the purpose of better coefficient determination (R2), with quadratic and loga-
rithmic types giving R2 values ranging from 0.5 to 0.8, from moderate to strong correlations.

6 Challenges and Future Directions

Remote sensing technology generates information for the purpose of describing oil palm
conditions, as well as processing and reanalyzing the data using customized management
practices.24 The use of active and passive sensors with a variety of wavelengths, biophysical
tree parameters, and classification and regression methods can involve challenges, particularly
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Table 2 Oil palm phenology models.

Author Phenology model R2 Parameter Sensor

76 y ¼ 85.634LnðxÞ þ 77.993 0.80 Biomass AIRSAR

y ¼ 68.51LnðxÞ þ 62.388 0.80

10 y ¼ 1.888 − 0.260x 0.7 Spectral Band Landsat TM

y ¼ −0.03746þ 0.07861x 0.8 Infrared index

70 y ¼ 61.3 − 0.54x1 þ 39.39x2 − 42.3x3 0.69 Spectral index Landsat TM

49 y ¼ − 10.80 lnðxÞ þ 123.40 0.76 Band 1 UK-DMC-2

y ¼ − 1.79 lnðxÞ þ 24.08 0.20 Band 2 ALOS

y ¼ − 3.00 lnðxÞ þ 24.58 0.40 Band 3 PALSAR

y ¼ − 0.001 lnðxÞ þ 0.68 0.01 NDVI

y ¼ −0.14 lnðxÞ þ 5.36 0.02 SR

y ¼ −0.01 lnðxÞ þ 1.01 0.01 SAVI

y ¼ −0.13 lnðxÞ þ 0.013 0.80 ShadowFraction

y ¼ −2.07 lnðxÞ þ 15.54 0.79 Band 1 GLCM

y ¼ −0.59 lnðxÞ þ 2.23 0.43 Band 2 GLCM

y ¼ −0.11 lnðxÞ þ 20.36 0.19 Band 3 GLCM

y ¼ 2.00 lnðxÞ − 13.48 0.49 LAI

y ¼ 1.05 lnðxÞ − 15.65 0.27 LAI

y ¼ −0.09 lnðxÞ þ 0.88 0.26 Tree height

y ¼ 0.000x3 − 0.030x2 þ 0.714x − 0.892 0.96 DBH

y ¼ 0.492x 0.90

y ¼ −0.002x þ 0.704 0.02

78 y ¼ 1.2598 lnðxÞ − 18.577 0.49 HV PALSAR, RADARSAT,
TerraSAR-X

y ¼ 1.144 lnðxÞ − 9.8119 0.62 HH

y ¼ 1.3666 lnðxÞ − 17.496 0.77 HV

1 Age ðyearÞ ¼ 0.59þ 0.15 × CPAðm2Þ 0.88 CPA WorldView-2

47 y ¼ −0.2783x þ 23752 0.23 FFB ALOS PALSAR 2

y ¼ 0.8845 lnðxÞ − 13.655 0.63 HH

y ¼ 0.6445 lnðxÞ − 20.497 0.42 HV

99 y ¼ −0.0004x2 þ 0.0107x þ 0.3912 NDVI SPOT 6

45 y ¼ 1.2803x − 0.9951 0.88 LRF WorldView and LiDAR

y ¼ 0.0404x2 þ 0.4605x þ 1.9856 0.91 PRF

y ¼ 2.8103e0.1218x 0.90 ERF
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in improving and developing suitable techniques for identification and classification, and devel-
oping regression models of oil palm phenology.

6.1 Combining Multisensor Remote Sensing Data

The use of active and passive sensors has proven to be successful in classification applications
and algorithm models with high accuracy have been developed. Passive sensors are generally
used to analyze oil palm phenology simultaneously at the regional scale and can also be used to
identify vegetation indices and biophysical parameters such as LAI and forest canopy density
(FCD). Active sensors can also be used for identifying oil palm age using biophysical param-
eters, such as aboveground biomass, tree height, and canopy height.

Active sensors can only obtain complex data under various transmitting and receiving polar-
izations and biophysical parameters can only be extracted through regression models or machine
learning.117 With the advancement of active sensors (SAR), multipolarization SAR methods
are evolving, which involve adaptions to the shape and orientation of vegetation components.
According to Izzawati et al.,118 the key variables influencing the accuracy of tree height esti-
mations are canopy shape, tree density, and slope. According to Pohl et al.119 and Tan et al.,50

active sensors can provide important information on tree height to complete the list of

Table 2 (Continued).

Author Phenology model R2 Parameter Sensor

20 y ¼ 213x þ 26.03 0.55 Mineral soil ALOS PALSAR-2

y ¼ 0.63x þ 16.55 0.37 Mineral soil

y ¼ 0.46x þ 9.20 0.36 HH and peatland

y ¼ 0.57x þ 14.74 0.28 HV and peatland

21 y ¼ −0.0003x2 þ 0.0068x þ 0.4388 0.85 NDVI Landsat 8

y ¼ −0.0222x2 þ 0.4579x − 17.311 0.77 HV Sentinel 1

y ¼ −0.0219x2 þ 0.4594x − 9.8191 0.68 HH

116 y ¼ −0.0003þ 0.0068x þ 0.438 0.84 NDVI Landsat, SPOT, Pleiades,
and Sentinel 2

y ¼ −0.00032þ 0.0055x þ 0.8393 0.81

y ¼ −0.0002þ 0.0071x þ 0.78 0.8

y ¼ −0.0002þ 0.0071x þ 0.4388 0.85

y ¼ −0.0002þ 0.0081x þ 0.8272 0.96

y ¼ −0.0008þ 0.0017x þ 0.797 0.61

y ¼ −0.0005þ 0.0111x þ 0.817 0.85

y ¼ −0.0002þ 0.0084x þ 0.792 0.7

y ¼ −0.0002þ 0.0084x þ 0.792 0.7

y ¼ −0.0002þ 0.0058x þ 0.874 0.88

6 y ¼ −0.2153x − 9.9086 0.66 HH TerraSAR-X, Sentinel-1A,
and ALOS PALSAR-2

y ¼ −0.0072x2 þ 0.1787x − 9.0757 0.81 VH

y ¼ −0.0046x2 þ 0.1071x − 15.858 0.85 VV

y ¼ 1.756 lnðxÞ − 22.069 0.71 HV

y ¼ 2.0916 lnðxÞ − 19.379 0.77 HH
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biophysical parameters used to estimate the productivity of a plantations using polarimetry and
interferometric techniques (PolInSAR). These techniques can be used to estimate tree height by
subtracting a digital terrain model from an InSAR height estimate or using dual PolInSAR data
generated from X-band, C-band, L-band, and P-band data.120 PolInSAR seems to be a very
effective instrument for ecology and forestry because it can provide highly accurate estimations
of canopy height and forest biomass,119 but it has not yet been implemented in oil palm phe-
nology studies.

Furthermore, the use of passive and active data to identify oil palm plantations emphasizes
the usefulness of multisensory and data fusion techniques, which combine various data features
to improve accuracy.30 According to Rashid et al.,94 for oil palm classification, the fusion of data
from multisensors is highly recommended. Mohd Najib et al.121 have also combined multisensor
data using ALOS PALSAR-2 and Landsat TM to detect mature and young oil palms and their
results showed an accuracy of 98.36% in Peninsular Malaysia. Sarzynski et al.31 evaluated the
use of a semiautomated approach with an RF method as a classifier and combined optical and
radar datasets to classify oil palm land-cover in 2015 in Sumatra, Indonesia, using Google Earth
Engine with an overall accuracy of 84%. Danylo et al.18 used Sentinel 1 to generate an oil palm
plantation map, and a Landsat time series was used to analyze an oil palm plantation, first
detected using NDVI and BSI. In other plantations, the fusion of data from various remote sens-
ing sources has already been undertaken; for example, optical and SAR analyses of paddy fields
were effectively combined for rice identification and mapping,119 with high accuracy.

6.2 Most Suitable Classification Method and Regression Model

Machine learning approaches have been shown to be able to utilize different kinds of remote
sensing data. The recent evolution in artificial intelligence, such as development of DL, promises
to bring remote sensing technology to new standards of performance, with improvements in
detection and classification.122 This information is critical for determining crop health and pro-
ductivity and serves as an essential measure for agriculture planning and management.123 In
relation to oil palm management practices, recent studies have proposed the use of remote sens-
ing technology using various data sources and advanced image processing methods based on
machine learning and DL. According to Chong et al.,11 in a general sense, for the discrimination
of oil palms and other plantations, classification is carried out by classifying pixels of similar
attributes/values depending on the used classifier. Machine learning methods, based on RF clas-
sifiers, are very effective in the identification and mapping of oil palms. According to Sarzynski
et al.,31 RF is a class of DTs that can increase the precision of classifying and detecting planta-
tions, for example, in oil palms, depending on the data they collect. Furthermore, according to
Shaharum et al.,76 the RF algorithm derived oil palm information better than the other classifier
used, and the RF algorithm enhanced classification when the RF trees were ensembled into a
forest.69 Moreover, according to Attarchi and Gloaguen,124 nonparametric RF models can
accommodate a large number of correlated input variables and biased data, while avoiding over-
fitting. As a result, RF models are highly useful for mapping heterogeneous landscapes. In addi-
tion, incipient developments in deep machine learning approaches, such as CNNs, are gaining
attention due to their promising capability for automatically extracting valuable contextual infor-
mation from remote sensing data, with potential usefulness in large-scale classifications.97 Li
et al.38 proposed using DL to detect plants instead of manual detection methods. According
to Toh et al.,125 DL classification requires a large dataset for optimal classification training.
In addition to being very accurate, according to Bonet et al.,126 the DL approach, such as the
use of CNNs, is very flexible as it can be used straightforwardly to identify similar plants, or
those of different varieties, decreasing the number of misclassified oil palms. All these classi-
fication techniques show improvements in accuracy up to 90%.

In one study, OBIAwas found to be more accurate than pixel-based analysis. Chemura et al.1

adopted WorldView-2 data to investigate oil palm age using an OBIA classification method to
identify the crown area, combined with a regression technique. Their results showed an overall
accuracy of 72.8%, a segmentation goodness of fit of 0.69, and a correlation with field-measured
crown area of 0.9, which indicated the successful delineation of individual tree crowns using
OBIA.
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The modeling of oil palm phenology based on regression models does not always display
linear behavior. Oil palm phenology normally exhibits a nonlinear type of relationship.127

Nonlinear machine learning techniques are a type of highly efficient regression approaches that
have been used successfully in the analysis of biophysical parameters. According to Frost,128

nonlinear regression also requires a continuous dependent variable, but it provides a greater
flexibility in the fitting of curves than linear regression. According to Chong et al.,11 the bio-
physical characteristics of the tree have also proved to be potentially reliable indicators for the
estimation of oil palm age. Most nonlinear models have one continuous independent variable,
but it is possible to have more than one.129 According to Ali et al.,130 such techniques can learn
and estimate even complicated nonlinear mappings, using advanced machine learning methods
and the information contained in a series of comparison samples. ANNs are among the most
frequently used techniques in the field of biophysical parameter retrieval, and these have been
widely investigated in many application domains.

Recent studies have involved the use of ANNs in oil palm studies. Hilal et al.127 showed that
ANN was a significant modeling instrument, showed terrific potential for the optimization of
prediction models, with high precision in many related areas of study. All regression models can
show improved coefficient determination (R2) values, ranging from moderate (0.4) to strong
(0.9) relationships. Furthermore, machine learning techniques do not always produce high-pre-
cision results because good results depend on the machine-learning model set-up, the training
samples, and the input parameters.127 In addition, in the case of paddy fields, the best classi-
fication methods are SVM and RF, and CNN and recurrent neural network techniques will
require phenology and textural feature information to improve the accuracy of their data.126

6.3 Future Direction in Oil Palm Phenology Based on Remote Sensing

According to Refs. 106 and 131, LAI can identify phenology based on optical sensor spectral
values derived from NDVI. According to Refs. 45, 95, and 125, machine learning classifiers (RF,
SVM, DT) have emerged as effective classifications and have been extensively utilized for clas-
sification applications due to their better accuracy and performance. According to Refs. 95, 127,
and 132, machine learning-based regression algorithms such as RF, CNN, and SVR could be
very useful for predicting oil palm production including phenology. Furthermore, rather than a
single algorithm, an ensemble of numerous algorithms should be considered to improve the
robustness of the prediction model. Sarzynski et al.30 demonstrated improved accuracy based
on machine learning RF classification in the analysis of oil palm plantations using multisensor
and data fusion techniques. Descals et al.133 used a DL CNN for semantic segmentation with
98% overall accuracy. According to Ref. 132, the detection and classification of oil palm trees
using DL need to be performed using high-resolution images and requires field survey data to
study the important biophysical characteristics of oil palm trees and to evaluate the reliability of
the results.

According to Refs. 81, 103, 119, 125, 131, and 134, regression models of oil palm phenology
must be created to be developed based on biophysical tree parameters, researchers can make
estimates about oil palm phenology by analyzing the canopy layer, fruit bunch, and tree height
using allometric techniques. Regression model is used to analyze the relationship between bio-
physical characteristics extracted from an image with data from measurements in the field.
Regression model-based algorithms using machine learning could be very effective in making
predictions about oil palm phenology.

In the oil palm industry, UAV-based imaging provides low cost flexible data acquisition with
less weather constraints and higher spatial/temporal resolution, as compared with high-resolu-
tion satellite data.81 There are various applications of UAV, such as monitoring canopy structure
and condition, mapping biomass, and precision agriculture.135 Yarak et al.132 applied high-res-
olution imagery from a UAV, combined with the DL approach, for the automatic detection and
health classification of oil palm trees using three important biophysical characteristics: crown
size, crown color, and crown density. According to Pohl,69 classification of polarimetric and
interferometric (PolInSAR) data to estimate heights (biomass) information and to provide infor-
mation on oil palm frond shapes and changes as well as moisture parameters of plants and soil.
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In the future, remote sensing technology is expected to evolve into high-tech industries, in
which systems are coupled with artificial intelligence and big data136 to examine the relationship
between environmental and socioeconomic indicators.137 For future direction, we recommend
some parameters, remote sensing data sources, and methods in Table 3. According to Table 3, we
have recommendation for further studies on oil palm phenology based on remote sensing to
identify, classify, and mapping can be use parameter such as LAI, canopy density, and
NDVI derived from Landsat, high resolution images, and UAV LiDAR based on machine learn-
ing such as RF, SVM, DT, and OBIA method. For developing regression model can be use LAI,
canopy height, biomass derived from SAR, PolInSAR, and UAV LiDAR based on nonlinear
regression using machine learning method. This recommendation, we believe will be more accu-
rate for identification, classification, and mapping, also developing regression model. However,
the accuracy is influenced by testing and validation data, climate factors, precision errors, soil
characteristics, spatial mixtures, and other external factors.

7 Conclusions

The results showed that the identification and mapping of oil palm phenology can be conducted
based on sensors, including passive sensors, which estimate oil palm age by analyzing the spec-
tral response, using data from MODIS, Landsat, SPOT, IKONOS, WorldView, etc. In active
sensors, backscattering characteristics were analyzed, with the use of data from sources, such
as TerraSAR-X, Sentinel-1A, ALOS PALSAR, LiDAR. Many studies used biophysical param-
eters approach such as LAI, CPA, and tree height were carried out through shadow, roughness,
and spectral responses for estimating oil palm phenology. Machine learning (such as SVM, RF,
and CNN) was used to identify images and predict oil palm phenology using a technique based
on classification methods and regression models with the accuracy levels around 98%. Aside
from that, OBIA offers an accuracy of more than 90% for a small area. However, the remaining
challenge is the improvement of suitable techniques for the identification, classification, and
development of regression models for oil palm phenology. This challenge can be suggested for
future studies by integrating machine learning with oil palm biophysical parameters using multi-
sensor remote sensing technologies, and CNN machine learning can be further developed for
classification and regression models with a large number of parameters.
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