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Abstract. This paper deals with the efficiency of measurements of carbon stock by remote sens-
ing techniques on Para rubber plantations in Thailand. These plantations could play an important
role in carbon budget and thus are part of the Clean Development Mechanism of the Kyoto
Protocol. Current methods of carbon stock estimations use middle resolution images and pro-
duce results with a large uncertainty. We use very high resolution images from the Thaichote
satellite, associated with field measurements to estimate the carbon stock and its evolution in the
Mae num Prasae watershed, Eastern Thailand. Using object-based classifications, the plantations
have been mapped and their age has been estimated from a parametric model derived from both
spectral and textural information and field data. The total biomass and carbon stocked are 2.23
and 0.99 Megaton with an uncertainty of 11%. One hundred and twenty one tons of carbon are
sequestered annually in the Para rubber plantations of the studied area. © The Authors. Published by
SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this
work in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10
.1117/1.JRS.9.096072]
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1 Introduction

CO2 is the most abundant atmospheric gas related to global warming. CO2 is responsible for
more than half of the radiative forces associated with the greenhouse effect.1 Forest may play an
important role in the short carbon dioxide cycle. In particular, tropical forests have the potential
capacity to sequester and to conserve carbon permanently.2,3 This is why the Clean Development
Mechanism recommended by the Kyoto Protocol advocates evaluating tree capacity of CO2

storage in humid tropical forest plantations.4 Para rubber is a perennial tree of economic impor-
tance in Indonesia, Malaysia, and particularly in Thailand for producing latex for the world-mar-
ket. The Para rubber has a high biomass, high growth rate, and strong potential for carbon
storage.5 Thailand is the leader of rubber production in the world; it produces around 37%
of the world’s annual rubber production.6

Today, very high resolution (VHR) sensors on board satellites can map tropical forest plan-
tations and provide valuable data to evaluate forest biomass and carbon stock evolution. VHR
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data has overcome the limitation of spatial resolution of the medium-low resolution sensors such as
Landsat 8 OLI (15 m) orMODIS (250 m). These sensors cannot capture tree characteristics such as
the crown canopy. Therefore, estimations of plantation biomass and carbon stocks from low res-
olution remote sensing data were inaccurate.7 The Thaichote satellite camera (previously named
THEOS) is a high resolution sensor with a 2-m resolution. It is the first Earth observation satellite
of Thailand. Its data are potentially an important data source for biomass and carbon stock esti-
mation of large surfaces. However, the evaluation of forest carbon stock is a complex task.
Numerous approaches have been proposed to estimate biomass using remote sensing tech-
niques.7–13 The spectral information contained in satellite data is classically used.10–13 The methods
developed with these data cannot differentiate biomass according to the tree species or tree age.7–9

We have identified two major problems in biomass estimation by remote sensing classifi-
cation techniques. The first problem is the noise in the image classification on VHR data.
Figure 1 shows “the salt-pepper noise problem” on the Para rubber plantation mapping. The
Thaichote image [Fig. 1(a)] was classified with a classical pixel based technique [Fig. 1(b)].
The result shows inaccuracies in terms of the surface geometry of the age class boundary
(or plantation limit). The legacy technique is derived from supervised and unsupervised methods
for assigning a class label to an individual pixel based on distance or similarity measures in
feature space.14 This approach was used as simple spectral information for class identification.

Fig. 1 (a) Thaichote false-color image (RGB: NIR, red, blue, spatial resolution of 2 m). (b) Para
rubber age-class map derived from pixel-based classification with coverage by “salt-pepper noise”
and misclassification of some age classes of Para rubber plantations. (c) Para rubber age-class
map derived from object-based classification.
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By contrast, the object-based classification [object-based image analysis (OBIA)] overcomes the
limitation of pixel-based classification. Figure 1(c) revised the Para rubber plantation mapping
derived from the OBIA approach. The OBIA process is done in two steps: image segmentation
and modeling for object identification. Segmentation can remove the image noise while the model
can identify the object by analyzing more information such as reflectance distribution, shape, size,
and texture.14 The second problem is the poor-quality relationship between field data and VHR
data when using spectral information for biomass estimation. Recently, methods based on the
texture measurement were developed to obtain better results than those using only spectral infor-
mation.7–9 The texture of image is a good description of the forest canopy architecture. It was
shown to have a certain relation with biomass volume.7–9 Classical pixel-based classification is
not a good candidate to determine the characteristics of the canopy. Most of the previous
works were used as simple spectral information for forest biomass estimation using medium res-
olution satellite images.11–13 Consequently, the established relationships between field data and
remote sensing data were weak.

The goal of this study is to improve the Para rubber biomass and carbon stocks estimation
using object-based classification combining both spectral and textural information from a
Thaichote satellite image that was acquired in December 2011 over the Mae num Prasae water-
shed (Thailand). In the following, the study area and the Para rubber tree characteristics are first
described. Then, the data and the remote sensing techniques are described and the results are
given and commented on. Finally, the consequences of the results are discussed.

2 Study Area and Para Rubber Plantation

The area chosen in this study is the Mae num Prasae watershed located near 12°58′22″N/101°32′
56″E (Rayong province, East Thailand) covering a surface of 232 km2 (Fig. 2). The average
elevation of the watershed is around 43 m above MSL and the average slope is 6 deg.
Rainfalls occur around 120 days/year and the cumulative rainfall is 1900 mm. The average tem-
perature is 28°C and humidity ranges from 60% to 90%.15

The rubber clone of Hevea brasiliensis RRIM 600 (Rubber Research Institute of Malaysia
No. 600) is planted in this area (Fig. 3). In 2011, 34% of the Rayong province area was occupied

Fig. 2 The Mae num Prasae watershed in Thaichote satellite data (band composite RGB:NIR,
red, green). The field data is shown in green dots.
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by Para rubber plantations. A rubber tree life cycle is around 25 to 30 years, after which the latex
production from the rubber is decreased. Replanting is thus necessary to maintain latex produc-
tion.Hevea brasiliensis needs a rainfall of 2000 mm (or more) with no severe dry season and 125
to 150 raining days/year. The minimum and maximum temperatures should be 20°C and 35°C,
respectively, and atmospheric humidity should be 80% to 90% with moderate wind and bright
sunshine for about 2000 h a year.16

3 Data and Methods

Classical methods are based on identification of forest plantations from classification of spectral
pixel information on remote sensing images. Our purpose is to improve the classification by
OBIA by combining both spectral and textural information from the images. The method devel-
oped here needs field data that will permit the building of a transfer equation model between field
and remote sensing data.

The girths of trees were measured in the field according to their age in 500 randomly chosen
plots. In each plot, the characteristics of 10 to 15 trees were measured and evaluated. The bio-
mass and the carbon storage for a single tree were estimated from already published allometric
equations.17,18 In parallel, the Thaichote satellite image (2 m) was corrected from atmospheric
artifacts and then classified according to the OBIA method.14 The first step of OBIA consists of
the image segmentation in order to identify the Para rubber plantations and to estimate the num-
ber of trees available per plantation. In a second step, textural and vegetation indices were con-
structed from the images using classical descriptors. The new images combined with the initial
bands were used as inputs in a classification process to extract a numerical relation between the
girths and ages of trees and the indicator values of the sampled plots. The empirical model
obtained from a simple linear multiple regression technique was used to estimate the age of
every plantation. Finally, the biomass and carbon stocked by Para rubbers in the Mae num
Prasae watershed were estimated from the map of the plantation, the age estimated for each
plantation and the relationship between the age and carbon stock for a single tree.

3.1 Field Data

In December 2011, field data were randomly collected on 500 sample plots (shown in Fig. 2 by
green dots). In the field, the diameter at breast height (DBH), girth, and age were measured on

Fig. 3 Ground-view characteristics of Para rubber plantations, latex extraction and crop manage-
ment (tree layout is approximately 3 × 7m).
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about 10 to 15 trees per plot. Random plots were used for the forest inventory associated to tree
age range from 4 to 25 years old. The age data were classified in eight classes (Fig. 4). DBH and
tree girth were measured with a diameter tape at heights of 1.3 to 1.7 m above the ground accord-
ing to the position of the latex tap on the skin of the trunk (Fig. 3). Cultivation of the Para rubber
plantation has a traditional spatial distribution. Trees are spaced 3 m apart in lines spaced 7 m
apart (Fig. 3). The density of a Para rubber tree stand is ∼76 trees per 1600 m2 or
0.0475 treem−2. Data were managed in a GIS database which included a topographic map
and satellite image projected in the Universal Transverse Mercator (UTM) 48N Zone on
World Geodetic System 1984 (WGS84). The Para rubber plantation statistics are shown
in Fig. 4.

3.2 Ground Biomass and Carbon Estimation

Biomass estimation was derived from the empirically allometric equation relating geometric
parameters of trees to their biomass and carbon content. The study used the allometric equation
proposed by Chantuma et al.18 specifically for Para rubber to estimate the biomass Eq. (1):

Y ¼ 0.0082X2.5623; (1)

where Y is the tree dry biomass in kg and X is the girth of a tree in cm. The coefficient of
correlation (R2) is 0.96. This equation was developed by measurements realized on plots located
in the North, North East, South and East of Thailand. The carbon mass of a given tree is propor-
tional to the biomass by a conversion factor of 0.4452.18 The rate of carbon sequestration (in
tC ha−1 y−1) is given by the following Eq. (2):

Fig. 4 Field data collected from December 2011 to April 2012: view from ground and view from
Thaichote satellite data (band composite RGB: NIR, red, green) for the Para rubber ages used in
this study.
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Carbon sequestration ¼ Carbon mass in 1 ha

Age of trees
; (2)

where carbon sequestration is the amount of carbon sequestered by each age class per year
expressed as tons of C per hectare per year (tC ha−1 yr−1). Carbon density is a total amount
of carbon stored by each age (years) expressed as tons of C per hectare (tC ha−1).

3.3 Thaichote Satellite Images Preprocessing

The Thaichote satellite image at level 1A containing both multispectral (Table 1) and panchro-
matic data was acquired on December 27, 2011, at 03:22 GMT, during the dry season where
cloud cover was <10%. The sun azimuth was 143.21 deg and the sun elevation was 44.42 deg.
The image was first pan-sharpened (2 m) and georeferenced19 in the Universal Transverse
Mercator projection Zone 48 North on World Geodetic System 1984 ellipsoid (UTM WGS-
1984 Z48N) and corrected from topographic distortion using ASTER Global Digital
Elevation (GDEM Version 2). The cosine of the solar zenith corrections20 was used to correct
the radiometry of the image.

3.4 Image Classification

The image classification technique was used to map Para rubber plantations and estimate the age
of each plantation. The technique developed here uses a combination of spectral information
(data from spectral bands and band ratios called in the following vegetation indices), textural
information and mask information.

Five classical vegetation indices obtained by Refs. 21–25 were calculated from the four spec-
tral bands (Table 2). Each index is a combination of the various bands’ ratios. The resulting
complete spectral dataset contained nine layers.

The texture of an image is related to the statistical characteristics of association of pixels at a
given scale. The texture of an image is a good descriptor of the forest canopy.7–9 The gray-level
co-occurrence matrix (GLCM) texture measurement26,27 was applied to the Thaichote image. A
15 × 15 pixels sliding window7 was used to generate a co-occurrence matrix. The Haralick et
al.26 equations were used for building texture descriptors. These equations refer to three groups
of descriptors that are the contrast group (contrast, dissimilarity, and homogeneity), the order-
liness group (angular second moment, entropy), and the descriptive statistics group (mean, vari-
ance, and correlation) (Table 2). Eight textural layers were computed from the original image.

We also used the Thai National Spatial Data Infrastructure GIS database 2011 obtained by the
Geo-Informatics and Space Technology Development Agency (GISTDA, Thailand) to extract
the Para rubber plantation areas and evaluate the areas that not considered in the study: (1) the
urban areas, other agricultural, natural forest areas and roads were selected for building mask
information, (2) the mask database was map referenced to the UTMWGS84, Z48, (3) the locali-
zation of bare soil and water bodies was evaluated by the inverse of normalized different veg-
etation index. These areas were masked on the Thaichote pan-sharpened image.

Table 1 Thaichote instrument characteristics. Thaichote was launched on October 2008.

Characteristics Multispectral Panchromatic

Spectral range Blue band 0.45 to 0.52 μm. Green band 0.53 to 0.60 μm.
Red band 0.62 to 0.69 μm. NIR band 0.77 to 0.90 μm.
(Nadir looking)

0.45 to 0.90 μm.
(Nadir looking)

Spatial resolution 15 m 2 m

Swath width 90 km 22 km

Pixel depth 8 bits 8 bits
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3.5 Para Rubber Age Class and Tree-Girth Classification

OBIAwas used to classify the Para rubber tree canopy properties. A complete description of the
OBIA is beyond the scope of the paper and can be found in Ref. 14. Two results were extracted
from image classification and modeling which are a map of the plantations and an estimation of
the girths and ages of the trees of each plantation. The map of the plantation was realized using
an image segmentation process. The girths and ages of trees of each plantation were estimated
from a linear regression equation built from the relationships between field data and image char-
acteristics measured at the emplacement where field data were acquired.

Para rubber plantation limits were automatically extracted from image multiscale segmen-
tation28,29 on Thaichote data. After the multiscale segmentation, the limits of the plantations were
obtained. The results of multiscale segmentation were tested by empirical visualization.29

Therefore, the total number of trees was estimated by GIS area calculation from the classical
density of plantations.

Values of the various vegetation and textural indices were extracted at the position of each
plot measured in the field. From that dataset and using a multiple linear regression model, a set of
linear equations relating the girth of the tree and the characteristics of the layers was extracted in
the form of Eq. (3). The confidence in this equation has been analyzed using Pearson’s corre-
lation coefficient.

The tree girth model (TGM) was generated using a linear multiple regression stepwise
method7,8 for predicting tree girth and tree age. The tree girth is a function of multiparamete-
rization of spectral and textural information. This is shown in Eq. (3):

Y ¼ aþ ½b1X1 þ b2X2: : : þ bnXn�; (3)

where Y is Tree girth (m), a is a constant, (b1bn) are coefficients of image parameters, and
(X1: : : n) are spectral and textural parameters (from four single bands, five vegetation indices,

Table 2 Layers used for image classification.

Image mining Formula References

aSingle bands Blue, Green, Red, NIR

aARVI NIR−2ðREDÞ−BLUE
NIRþ2ðREDÞ−BLUE Ref. 21

aGEMI nð1−0.25nÞ−RED−0.125
1−RED where n ¼ 2½ðNIR2−RED2Þ�þ1.5ðNIRÞ

1−RED Ref. 22

aIPVI NIR
NIRþRED Ref. 23

aMSAVI2 2NIRþ1−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2NIRþ1Þ2−8ðNIR−REDÞ

p
2 Ref. 24

aNDVI NIR−RED
NIRþRED Ref. 25

bGLCM contrast (CON) fCON ¼ PN−1
I;J¼0 PI;J ji − j j2 Ref. 26

bGLCM dissimilarity (DIS) fDIS ¼ PN−1
i ;j¼0 Pi;j ji − j j

bGLCM homogeneity (HOM) fHOM ¼ PN−1
i ;j¼0

Pi;j

1þði−jÞ2

bGLCM angular second moment (ASM) f ASM ¼ PN−1
i ;j¼1 P

2
i ;j

bGLCM entropy (ENT) f ENT ¼ PN−1
i ;j¼0 Pi;j ð− ln Pi;j Þ

bGLCM mean f μi ¼ μi
PN−1

i ;j¼0 iðPi;j Þ, f μj ¼ μj
PN−1

i ;j¼0 jðPi;j Þ
bGLCM variance f variance ¼ PN−1

i ;j¼0 Pi;j ði − μÞ2

bGLCM correlation f correlation ¼ PN−1
i ;j¼0

�
ði−μi Þðj−μj Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðσ2i Þþðσ2j Þ
p

�

aFor spectral information: NIR is near infrared band, ARVI is atmospherically resistant vegetation index, GEMI
is global environment monitoring index, IPVI is infrared percentage vegetation index, MSAVI2 is modified soil
adjusted vegetation index2 and NDVI is normalized difference vegetation index.

bFor textural information, GLCM: where Pi;j ¼ the probability matrix, i ¼ reference pixel, j ¼
neighborhood pixel and μi , μj , σi , σj ¼ the mean and standard deviation of Pi;j , respectively.
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and eight GLCM). The mean value of these parameters was assigned to each plantation. The root
mean square error (RMSE) and mean absolute percentage error (MAPE) were used to evaluate
the model accuracy. Equation (3) was used to estimate the girth of trees of each plantation delin-
eated at the segmentation step. Knowing the surface of the plantation and the age of the plan-
tation, the biomass of each plantation was calculated from the allometric equation. Carbon stock
was estimated using the conversion factor and carbon sequestration was estimated using Eq. (2).

4 Results and Discussion

4.1 Map of Para Rubber Plantation Limits

Ten thousand and sixty-nine crops of Para rubber plantation were identified with a maximum
surface of 0.23 km2 and a minimum surface of 1600 m2, while the mean surface was 15;329 m2.
The uncertainty of Para rubber plantation surface was calculated from a comparison of multiscale
segmentation and manual digitization. The total surface of plantations is 154.34 km2 (15,434 ha)
with an uncertainty of 11% (�17 km2). The number of Para rubber tree stands was calculated
using a constant value of 475 trees ha−1 obtained by field measurement. Thus, the total number
of tree stands is approximately 7,321,444 trees (�802;832 trees). Figure 5 shows a sample of the
map of Para rubber plantations obtained from the image segmentation process.

4.2 TGM and Para Rubber Tree Classification

The correlation between tree girth and values of the different layers obtained from the remote
sensing image was tested by Pearson’s correlation. All the parameters of texture and vegetation
indices were correlated to the tree girth (Table 3). The homogeneity has the highest correlation
with tree girth (0.875), while lowest is the mean (−0.496). For vegetation index, MSAVI2 has the
highest correlation with tree girth (−0.663), whereas ARVI has the lowest (−0.512). For the
bands of the satellite image, NIR (near infrared) is the band that correlates better with tree
girth (correlation coefficient of −0.679).

Different models were built from different layers (Table 4). A first model (TGM#1) used only
the spectral information. The coefficient of correlation of this model was poor (0.53). Thus, the

Fig. 5 Example of map of Para rubber plantations extracted from the multiscale segmentation.
Yellow line is Para rubber plantation limits.
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model (TGM#1) was rejected. The integration of the textural layers improved strongly improved
the model. The better fit by TGM#2 achieved a coefficient of regression of 0.87. It used the
layers GEMI, HOMO, DIS, CON and VAR. The equation of TGM#2 is shown in Eq. (4):

Y¼ 3.694−1.29ðGEMIÞ−2.740ðHOMOÞ−0.933ðDISÞþ0.068ðCONÞ−0.015ðVARÞ; (4)

where Y is the tree girth (m) and R2 is 0.87. The scatter plots of TGM#1 and TGM#2 are shown
in Fig. 6.

This equation was applied to the layers defining each plantation in order to estimate the girth
of the trees of each plantation. The model (TGM#2) was realized in the GIS built for this study.
From the tree girth map, a map of tree ages has been drawn (Fig. 7).

Old age classes (more than 18 years old) cover a surface of 54.55 km2 (35%, 5455 ha),
Young age classes (less than 12 years old) cover a surface of 51.12 km2 (33%, 5112 ha),
and middle age classes (from 12 to 18 years old) cover a surface of 48.68 km2 (32%,
4868 ha). The areas of each age class are listed in Table 5.

The obtained relationships between tree girth and layers used for image classification show that
texture parameters are better correlated than single bands and vegetation indices as shown by the
Pearson’s correlation coefficient values. The results of our study are in agreement with Eckert7

findings who observed the degraded forest stratum with high resolution WorldView-2 data.
The textures are better parameters than spectral data to estimate the age of the canopy. The

present work shows that the textural information has to be added to the spectral one for a precise
inventory of characteristics of forest or plantations in agreement with the works of Eckert7 and
Sarker and Nichol8 with high resolution WorldView-2 and ALOS AVNIR-2 used in Madagascar,
Hong Kong and Central Siberia for forest biomass modeling.

Table 3 Pearson’s correlation between tree girth and layer parameters measured at field plot
positions. Only the layers with an absolute value of correlation coefficient better than 0.4 were
integrated in the final multilinear regression model.

Parameter Pearson’s correlation coefficient Sig.

GLCM homogeneity 0.875 0.000

GLCM entropy −0.853 0.000

GLCM dissimilarity −0.841 0.000

GLCM angular second moment 0.803 0.000

GLCM variance −0.801 0.000

GLCM contrast −0.787 0.000

GLCM correlation 0.754 0.000

NIR −0.679 0.000

MSAVI2 −0.663 0.000

GEMI −0.633 0.000

IPVI −0.540 0.000

NDVI −0.540 0.000

ARVI −0.512 0.000

GLCM mean −0.496 0.000

Red 0.215 0.000

Blue 0.083 0.052

Green 0.014 0.389
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4.3 Estimation of Biomass and Carbon Stocks

The total amount of biomass stock in the study area was estimated using the field data and remote
sensing data. The field data and Eq. (4) were used to predict the girth and age of every plantation.
Then the biomass stock was calculated using the allometric Eq. (1). In the study area, the highest
biomass stock in Para rubber plantations is obtained for 22 years old trees that sequester

Table 4 Model summary. The number of girth measurements is 388 samples. Method: Stepwise
regression, Criteria ¼ Probability in ð0.05Þ, Probability out(.10). Spectral information; NIR ¼
near-infra red band, RED ¼ red band, GEMI ¼ global environment monitoring index, MSAVI2 ¼
modified soil adjusted vegetation index 2. Textural information; HOMO ¼ homogeneous, DIS ¼
dissimilarity, CON ¼ contrast, VAR ¼ variance.

Model R2 Adj. R2
RMSE tree
girth (cm)

RMSE
biomass
(t∕ha)

RMSE
carbon
(tC∕ha)

MAPE
(%) Coefficient

TGM#1 0.531 0.526 11.26 1.93 0.86 15.43 (Constant) −16.435 NIR −95.441
RED 73.826 MSAVI2 55.867
GEMI 18.064

TGM#2 0.865 0.863 6.05 0.39 0.17 8.33 (Constant) 3.694 GEMI −1.290
HOMO −2.740 DIS −0.933
CON 0.068 VAR −0.015

Fig. 6 (a) TGM#1 derived from spectral information. (b) TGM#2 derived from a combination of
spectral and textural information.

Table 5 Para rubber classification, biomass and carbon stock in study area 2011. The uncertainty
on the carbon stock comes from the uncertainty on the surface and the uncertainty of the model.

Class
Age
(yr)

Area
(ha)

Biomass
stock (t)

C Stock
(tC)

Uncertainty
of C stock

(tC)
C sequestered
(tC ha−1 yr−1)

CO2 sequestered
(tCO2 ha−1 yr−1)

Young 4 52.05 1,275.55 567.88 72.16 2.73 10.01

8 899.26 34,309.54 15,274.61 1,845.45 2.12 7.79

12 4,160.34 311,479.13 138,670.51 15,987.87 2.78 10.19

Middle 16 1,965.42 223,062.92 99,307.61 11,363.43 3.16 11.59

18 2,902.70 436,121.53 194,161.30 21,820.70 3.72 13.64

Old 20 2,658.79 514,323.60 228,976.87 25,588.01 4.31 15.8

22 2,791.13 703,766.39 313,316.80 34,847.56 5.1 18.73

25 5.17 2,654.43 1,181.75 131.13 9.14 33.53

Grand total 15,434.87 2,226,993.09 991,457.32 111,656.32 (11.3%) 33.05 121.28
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approximately 32% of the total biomass (703, 766 tons). The lower biomass stock is found at 4
years (approximate 0.1% or 1276 tons) while at the age classes of 20, 18, 12, 16, 8 and 25 years,
the amount of biomass stocked is 23%, 20%, 14%, 10%, 1% and 0.1% respectively (Table 5,
Fig. 8). The carbon stock map is given in Fig. 9. The total biomass stock in the study area is 2.23
Megatons corresponding to 0.99 Megatons of carbon stock.

The accuracy of the model was evaluated using the RMSE and the MAPE. The RMSE and
MAPE are 0.17 tC ha−1 and 8.33%, respectively. The errors from the surface and the model were
summarized. Consequently, the total uncertainty of the carbon stock estimation is 111,656.32
tons (11.3%) (Table 5).

The evaluation of CO2 sequestration by Para rubber trees by age is reported in Table 5. We
found that Para rubber has the higher C sequestration at 25 years (33.53 tC ha−1 yr−1), whereas
the lower C sequestration is found at 8 years (7.79 tC ha−1 yr−1). In 2011, the investigated area
sequestered 33.05 tC corresponding to 121.28 t CO2 by Para rubber plantation assuming that
1 tC represents 3.676 t of CO2.

Fig. 7 (a) Map of Para rubber age classes. (b) Thaichote false color-image. (c) Zoom map of Para
rubber age classes.

Fig. 8 (a) Bar graphs: biomass, carbon stock, and uncertainties data. (b) The rate of CO2 seques-
tration by Para rubber of each age class.
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The result of our estimation confirms the strong potential of Para rubber for CO2 capture as
suggested by Chuntuma et al.18 based on the tree physiological characteristics. Our results show
that the rate capture of CO2 is 33.53 tCO2 ha

−1 yr−1 that is on the same order of magnitude of the
values of CO2 capture found in Ghana (35.30 tCO2 ha

−1 yr−1), Malaysia (38.33 tCO2 ha
−1 yr−1)

and Indonesia (29.30 tCO2 ha
−1 yr−1) for Para rubber.30

These amounts of CO2 captured by Para rubber plantations can be compared to natural car-
bon sequestration estimated for the ocean. Borges et al.31 show that the sequestration of CO2 by
the ocean is around 4.45 gCm−2 yr−1, while Para rubber plantation can sequester up to
914.3 gCm−2 yr−1. We believe that agriculture and human intervention may play a critical role
in the extraction of CO2 from the atmosphere and thus in the short carbon cycle.

5 Conclusions and Further Research

This study explored the potential of Thaichote satellite data to estimate Para rubber biomass and
carbon stock. Despite the fact that Thaichote data do not contain medium infrared data (MIR) as
used in other studies,32,33 the results of our study have shown a high potential for forest biomass
evaluation. The Para rubber plantation is a non-evergreen forest type. In the study area, the leaves
of Para rubber fall between February and May. The method developed in this paper considered
green plantations. Additional work remains to be done to test the potential of Thaichote data
acquired during the period when trees have no leaves.

The results of this study show that these data can be used to map Para rubber plantations and
distinguish the age classes of trees in the plantations. We propose that textural information is
more useful than spectral information to capture tree canopy architecture and thus the age of the
canopy. Moreover, it has been possible to build a model equation relating some textural param-
eters to the age of the plantation. This equation has been obtained from multiple linear regression
analysis with a correlation coefficient of 0.87 and thus can be used with confidence on the study
area. Around 154 km2 of the 232 km2 of the studied area are covered by Para rubber plantations.
The class of age for each plantation has been estimated as follows: 33% of the crop surface
belongs to the young class (from 4 to 12 years), 34% of the crop surface belongs to the middle
class (from 12 to 18 years), and 33% belongs to the old class (older than 18 years). The total
amount of biomass and carbon stock is 2.23 Megatons and 0.99 Megatons C, respectively, with

Fig. 9 (a) Map of Para rubber carbon stock. (b) Thaichote false color-image. (c) Zoommap of Para
rubber carbon stock.
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an uncertainty of 11%. In 2011, the total area sequestered 121 tCO2 by Para rubber plantations.
Such a value is two orders of magnitude higher than the carbon sequestered in the ocean.
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