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Abstract. Cerebral asymmetry is considered an important marker of the successful development of the human
brain. Recent studies have demonstrated topological asymmetries between structurally hemispheric networks in
the human brain. However, it remains largely unknown whether and how the functionally topological asymme-
tries evolve from childhood to adulthood, a critical period that constitutes the primary peak of human brain and
cognitive development. Here, we adopted resting-state functional near-infrared spectroscopy imaging data to
construct hemispheric functional networks and then applied graph theory analysis to quantify the topological
characteristics of the hemispheric networks. We found that the adult group exhibited consistent leftward hemi-
spheric asymmetries in both global and local network efficiency, and the degree of leftward asymmetry in local
network efficiency was significantly increased with development from childhood to adulthood. At the nodal level,
the degree of leftward asymmetry in nodal efficiency, mainly involving the frontal, parietal–occipital junction, and
occipital regions, increased with development. These developmental patterns of topological asymmetries sug-
gest that the protracted maturation of functional segregation in the left hemisphere could underlie language
development from childhood to adulthood and provide insight into the development of human brain functional
networks. © The Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported License. Distribution or reproduction of this work in
whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.NPh.6.2.025005]
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1 Introduction
Hemispheric asymmetries are fundamental organizational prin-
ciples of the human brain that are presumed to contribute to fast,
efficient information processing, and the specific functions of
language and reasoning in humans.1–3 Evidence shows that
the asymmetries between two brain hemispheres might be
altered in states of psychiatric or neurological disease, such
as autism spectrum disorder4,5 and attention-deficit hyperactiv-
ity disorder.6,7 Furthermore, healthy individuals also exhibit
dynamic changes in brain asymmetries throughout the
lifespan.8–12 These findings provide valuable information for
understanding underlying pathological mechanisms and lateral-
ized cognitive processes, such as language and motor control.

Recently, neuroimaging techniques have been widely applied
to human brain network studies. By constructing brain networks
within a hemisphere, many studies have demonstrated signifi-
cant topological asymmetry between hemispheric networks
across different age spectra, such as in neonates,13 adults,14

and elderly participants.15 Moreover, from a developmental per-
spective, Zhong et al. examined the change in structurally topo-
logical asymmetry of the hemispheric brain network from
adolescence to young adulthood.16 The authors found that both
adolescents and adults showed rightward asymmetry in network
efficiency, and the asymmetry significantly decreased over

development. Notably, these previous studies primarily adopted
structural neuroimaging technique and examined structural
asymmetry of hemispheric brain networks. It is known that
functional lateralization is putatively associated with structural
asymmetries.3 However, to date, few studies have reported
hemisphere asymmetry in brain functional networks. Moreover,
no study has reported how these topological asymmetries of the
brain functional network evolve during development.

Here, we utilized resting-state functional near-infrared spec-
troscopy (rs-fNIRS) imaging data to investigate functional net-
work asymmetry and the development of functional topological
asymmetries in children and adults. FNIRS imaging is an
emerging cerebral imaging technique that has been widely
used to study neural activity in the human brain.17–20 By mod-
eling the entire human brain as a network, fNIRS imaging has
revealed important topological organization principles underly-
ing the human brain network, e.g., small-worldness, modular
organization, and highly connected or centralized hubs.20 The
graph metrics of fNIRS brain network also exhibited good reli-
ability and validity,21,22 suggesting the feasibility of applying
fNIRS to the study of the topological asymmetry between hemi-
spheric brain functional networks.

In this study, we sought to determine whether there are topo-
logical differences across two brain hemispheres and how the
topological asymmetries are distinct between childhood and
adulthood, a critical period that constitutes the primary peak
of human brain and cognitive development.23–25 We hypothesized*Address all correspondence to Haijing Niu, E-mail: niuhjing@bnu.edu.cn
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the existence of differences in the functionally topological
asymmetry between hemispheric networks. Such differences
might underlie the development of specific human cognitive
functions, e.g., language ability and spatial working memory,
that take place during this period. To test this hypothesis,
we constructed hemispheric functional networks in healthy chil-
dren and adults and then applied graph theoretical approaches
to quantify multiple topological measures for the hemispheric
networks.

2 Materials and Methods

2.1 Participants

This study recruited 60 healthy participants, including 30 chil-
dren (14 males and 16 females, aged 7.0 to 8.9 years,
M� SD ¼ 8.1� 0.6) and 30 adults (16 males and 14 females,
aged 19 to 27 years, M� SD ¼ 23.2� 1.9). All participants
were right-handed according to the Edinburgh Handedness
Questionnaire. The participants or their parents gave written
informed consent before the initiation of the experiments.
Approval for this study was obtained from the Institutional
Review Board of the State Key Laboratory of Cognitive
Neuroscience and Learning, Beijing Normal University.

2.2 Data Acquisition

We used a continuous-wave near-infrared optical imaging
instrument (CW6, TechEn Inc., Massachusetts) to measure
the time courses of spontaneous changes in oxygenated hemo-
globin (oxy-Hb) and deoxygenated hemoglobin (deoxy-Hb).
The length of the time course was ∼11 min with a time sam-
pling rate of 50 Hz. Twelve light sources and 24 detectors inter-
lacing at a spatial distance of 3.2 cm were plugged into a soft but
inelastic plastic probe holder and placed on the head of the par-
ticipants. These source–detector pairs constituted 46 measure-
ment channels covering most cerebral regions of the whole
head [Fig. 1(a), left and right panels]. The probe arrays were
positioned in reference to the international 10 to 20 coordinate
system. Specifically, six detectors below channels 17 to 24 in
both hemispheres were set along a coronal line from the vertex
to the external auditory pores; thus, their middle point was local-
ized in Cz, and the leftmost and rightmost detectors were fitted
around T3 and T4, respectively. The spatial separation between
adjacent detectors along the bottom of the probe was set to 3 cm,
and it was 5.4 cm between two pieces of probes. As such, the
length of 11.4 cm (3 cmþ 5.4 cmþ 3 cm) of the whole probe
was comparable to a pitch of the 10 to 20 landmarks of the par-
ticipants’ heads. The pitches of the 10 to 20 landmarks at the low
of head circumference were estimated to range from 11.4 cm for
a head with 51 cm (7- to 8-year-old children) to 12.29 cm for a
head with 55 cm (adults). Thus, the measurement inconsistency
across two groups of participants with different head sizes was
in the range of 0.89 cm. Optical data from each channel were
collected at two different wavelengths (690 and 830 nm). For
each participant, we evaluated relative changes in oxy-Hb
and deoxy-Hb signals from an arbitrary 0 baseline at the begin-
ning of the measurement period in units of millimolar milli-
meter,26 using the modified Beer–Lambert Law with a
differential path-length factor of 6 (more details about the differ-
ential path-length factor could be found in Refs. 27–31).
For each participant, the rs-fNIRS data were collected for

∼11 min, and the participants were instructed to relax, keep
their eyes closed, and remain awake.

2.3 MRI Coregistration

To validate the positioning of the probes, a structural magnetic
resonance image (MRI) was acquired from one arbitrarily
selected adult subject. During MRI data acquisition, the partici-
pant lay supine with the probe arrays in an MRI scanner.
Vitamin E capsules were attached to each of the optode locations
in the probe arrays and were used as landmarks for coregistra-
tion [Fig. 1(a), middle panel]. T1-weighted structural MRIs
were acquired using a magnetization-prepared rapid gradient
echo (MPRAGE) sequence with a 3T Siemens Tim Trio MRI
scanner in the Imaging Center for Brain Research, Beijing
Normal University. Scanning parameters were as follows:
176 slices, repetition time (TR) = 2600 ms, echo time (TE) =
3.02 ms, field of view (FOV) = 256 × 224 mm2, voxel size ¼
1 mm × 1 mm × 1 mm, flip angle = 8 deg, and slice
orientation = sagittal. The MRIs were normalized into Montreal
Neurological Institute (MNI) space using the NIRS_SPM soft-
ware,32 and the MNI coordinates for each measurement channel
were determined according to the automated anatomical label-
ing (AAL) template.33 A similar positioning method was used in
previous fNIRS studies.34–36 The cortical position corresponding
to each measurement channel is shown in Table S1 in the
Supplementary Materials.

2.4 Data Preprocessing

Data preprocessing was conducted using the in-house FC-NIRS
package (Ref. 37), which was developed using MATLAB 2010b
in a 64-bit Windows 7 environment. After data preprocessing,
the optical density signal was transformed to the time courses of
spontaneous changes of hemoglobin concentration (i.e., oxy-Hb
and deoxy-Hb and total-Hb) using modified Beer–Lambert law.
Of note, the hemoglobin concentration signal was band-pass
filtered in the frequency range of 0 to 3 Hz.

2.5 Noise and Artifact Removal via ICA

For the time courses of spontaneous changes in oxy-Hb and
deoxy-Hb, we first conducted a temporal independent compo-
nent analysis (ICA) to remove the typical motion-induced arti-
facts and systematic physiological noise.19,22 This procedure
was performed using publicly available software, FastICA
v2.5,38 and more details could be found in several previous
rs-fNIRS studies.19,22,39,40 Specifically, we identified typical
noise components (e.g., motion artifacts and systematic
physiological interference) according to the components’ tem-
poral profiles, spatial maps, and power spectra. A component
would be considered noise if it met one of the following con-
ditions:22 (1) the corresponding temporal profile included
sudden jumps, slowly varied U or inverted U-shaped spike,
or numerous intercurrent quick spikes (e.g., motion artifacts);
(2) the dominant frequency of power spectra of the component
was outside the range of 0.01 to 0.1 Hz; (3) the spatial map of
the component presented a global and spatially dispersive
pattern (e.g., physiological interference). The noise compo-
nents, e.g., motion and systematic physiological noise, were
visually identified for each participant. After identifying
these types of noise components, each concentration signal
was reconstructed with these particular components eliminated
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from the original rs-fNIRS time course by replacing zero in
the corresponding column of mixing matrix.40 To obtain the
low-frequency hemodynamic signals that emanated from spon-
taneous neural activity and to reduce the effect of high-fre-
quency noise and baseline drift,35,41,42 we conducted a band-
pass filter with cutoff frequencies of 0.009 and 0.08 Hz on
the ICA denoised time series. Figure 2 showed a direct exam-
ples of representative time traces before and after ICA as
well as after band-pass filtering. Notably, after ICA and
band-pass filtering (0.009 to 0.08 Hz), the noise with sudden
jumps and slow-varied U-shaped spikes were removed.
Finally, we extracted same amount of data, i.e., 10-min con-
tinuous time course, for all participants. The data were then

used to conduct functional connectivity analyses and network
topology analyses.

2.6 Construction of the Left and Right Hemispheric
Networks

We used MATLAB functions from the GRETNA toolbox43 to
construct two 23 × 23 symmetric correlation matrices, one for
the left hemisphere and the other for the right hemisphere.
Similarly, the correlation coefficient was calculated using
the Pearson correlation method. Due to the ambiguous biologi-
cal explanation of negative correlations in the correlation
matrix,44,45 we set all negative correlation coefficients to zero

Fig. 1 (a) fNIRS data collection and MRI neuroanatomical coregistration. The left panel shows the
arrangement of the 46 measurement channels across the entire head. The green and purple dots re-
present the sources and detectors, respectively. The digits represent the positions of the measurement
channels. The middle panel shows that MRI coregistration was conducted by having the participant wear
probe arrays with vitamin E capsules during the MRI scan. The right panel shows the anatomical position
corresponding to each measurement channel. (b) Flowchart for the procedure used to construct the
hemispheric brain functional networks.
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and restricted our analysis to positive correlations. These corre-
lation coefficients were then converted to z-values via Fisher’s
r-to-z transformation to improve the normality. Each correlation
matrix was thresholded to a weighted matrix with a fixed spar-
sity value (defined as the total number of edges in a network
divided by the maximum possible number of edges) and retain-
ing the suprathreshold weights. This sparsity-based thresholding
method ensured that the hemispheric networks in each age
group had the same number of edges and wiring cost.46,47

Therefore, a range of sparsity (i.e., 0.1 to 0.2) with an interval
of 0.01 was selected for graph theoretical analysis of the hemi-
spheric functional brain network to maintain the reachability of
the network and allow prominent small-world properties. To
provide a threshold-independent comparison between groups
in network properties, we calculated the area under curve
(AUC, i.e., the integral) for each network metric from sparsity
0.1 to 0.2 with an interval of 0.01. These AUC values were used
to perform further statistical analyses.48

2.7 Network Analysis

Graph theory has been used to characterize the topological
organization of human brain functional networks, proving a
powerful and quantitative way to examine the segregation and
integration of brain networks.49 To examine the small-world

attributes of a network G that consisted of N nodes and K
edges, the normalized global efficiency (the normalized
Eglob ¼ Ereal

glob∕Erand
glob) and the normalized local efficiency (the

normalized Eloc ¼ Ereal
loc ∕Erand

loc ) were computed.50 Ereal
glob and

Ereal
loc are the global efficiency and local efficiency of a real net-

work, respectively, and Erand
glob and Erand

loc represent the means of
the corresponding parameters derived from 100 matched ran-
dom networks that have the same numbers of nodes, edges,
and distribution of degrees as the real brain network.
Typically, a small-world network should meet the following cri-
teria: the normalized Eglob ≈ 1 and the normalized Eloc ≫ 1.51

2.7.1 Global efficiency

The global efficiency Eglob of network G is a global measure of
the information transferring ability of the entire network and is
defined as the inverse of the harmonic mean of the shortest path
length between any two nodes:52

EQ-TARGET;temp:intralink-;e001;326;136Eglob ¼
1

NðN − 1Þ
X

i≠j∈G

1

dij
; (1)

where dij is the shortest path length between node i and node j.
The shortest path length was the minimum number of edges

Fig. 2 The fNIRS signals before and after ICA filtering. (a) The raw fNIRS signals (oxy-Hb). For con-
venient visual inspection, the raw rs-fNIRS data were detrended using the first and second polynomial
functions and then transformed into z-scores via subtracting the mean value and dividing by standard
deviation for each channel. A red ellipse indicates slow-varied U-shaped spikes and a red rectangle
indicates sudden jumps occurred in one channel. (b) The fNIRS signals after ICA filtering. Notably,
the noise with sudden jumps and slow-varied U-shaped spikes were removed after ICA filtering.
(c) The fNIRS signals after band-pass filtering. Notably, the noise with sudden jumps was removed,
but the noise with slow-varied U-shaped spikes could not be removed using the traditional band-
pass filtering (as indicated by the red ellipse). (d) The fNIRS signals after ICA and band-pass filtering.
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included in the path that connected these two nodes. N denoted
the number of nodes of the network G.

2.7.2 Local efficiency

The local efficiency Eloc of network G is defined as the average
of the local efficiencies of all nodes, where the local nodal effi-
ciency for a given node i is the global efficiency of the subgraph
composed of the nearest neighbors to node i:47,52

EQ-TARGET;temp:intralink-;e002;63;656Eloc ¼
1

N

X

i∈G
EglobðiÞ; (2)

where EglobðiÞ is the global efficiency of Gi, which is the sub-
graph of the neighbors of node i.

2.7.3 Nodal efficiency

Nodal efficiency represents the capacity of a node to commu-
nicate with the other nodes of a network, and the efficiency
of node i is measured as follows:

EQ-TARGET;temp:intralink-;e003;63;525EnodðiÞ ¼
1

N − 1

X

j≠i∈G

1

dij
; (3)

where dij is the shortest path length between node i and node j.
Nodes with a high nodal efficiency indicate that the network has
a high tolerance for the elimination of a given node, which is
associated with a high clustering of the neighborhood of this
node.47

2.8 Asymmetry Index

To characterize the degree of asymmetry for efficiency measures
(i.e., global efficiency, local efficiency, and nodal efficiency), we
calculated the asymmetry index (AI) using the following equa-
tion:

EQ-TARGET;temp:intralink-;e004;63;349AI ¼ ML −MR

MLþMR
; (4)

where ML represents measures in the left hemisphere, and MR
represents measures in the right hemisphere. For example, for
the AI calculation on network efficiency, ML and MR represent
the global or local efficiency of the left and right hemispheric
network, respectively. For the AI of nodal efficiencies, ML and
MR represent the nodal efficiency of corresponding channels in
the left and right hemispheric networks, respectively. Thus, AI
ranges from −1 toþ1, with a positive value of AI representing a
leftward asymmetry and vice versa.

2.9 Statistical Analysis

Hemispheric asymmetry of topological organization has been
suggested to be associated with gender.15,53 Thus, we first evalu-
ated whether gender had an influence on topological organiza-
tion using a univariate analysis of covariance (ANCOVA) with
group (children and adults) as a between-subject factor, hemi-
sphere (left and right) as a repeated-measures factor, and gender
(male and female) as a covariate. However, the “gender × hemi-
sphere” interaction was not significant for any of the efficiency
parameters. Therefore, we excluded gender and performed a
two-way mixed-design analysis of variance (ANOVA) with

group (children and adults) as a between-subject factor and
hemisphere (left and right) as a repeated-measures factor. If
any main effect survived a threshold of p < 0.05, a further t-
test (paired t-test for the hemisphere effect and two-sample t-
test for the group effect) was performed. Moreover, to assess
age-related effects on the AI of the network’s global efficiency,
local efficiency, and nodal efficiency, we performed a two-tailed
two-sample t-test on the AI of each parameter. For global/local
efficiency, p < 0.05 was considered significant. For nodal effi-
ciency comparison between two hemispheres (23 nodes in each
hemisphere) in each age group, the false discovery rate (FDR)
procedure was applied to correct for multiple comparisons,54

and q < 0.05was considered significant. In addition, when com-
paring the AI of nodal efficiency between two age groups (23 AI
values for each age group), FDR was also applied to correct the
multiple comparisons, and q < 0.05 was considered significant.

3 Results

3.1 Group Differences of Hemispheric Functional
Connectivity

Figure 3 showed the group-averaged hemispheric functional
connectivity for both children and adults, respectively. For
each participant, the sparsity thresholds from 0.1 to 0.2 with
an interval of 0.01 were used to construct hemispheric brain net-
work. For left hemispheric network, the edge-density thresholds
of 0.1 and 0.2 corresponded to the strength of functional con-
nectivity (i.e., Pearson-r values) of 0.66 (sparsity = 0.2) and
0.78 (sparsity = 0.1) for adults, and 0.58 (sparsity = 0.2)
and 0.68 (sparsity = 0.1) for children, respectively. For right
hemispheric network, such edge-density thresholds corre-
sponded to Pearson-r values of 0.61 (sparsity = 0.2) and

Fig. 3 Group-averaged hemispheric functional connectivity matrices
for both children and adults, respectively. Digits in functional
connectivity matrices represent 23 measurement channels for each
hemisphere.
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0.73 (sparsity = 0.1) for adults, and 0.55 (sparsity = 0.2) and
0.67 (sparsity = 0.1) for children, respectively.

The group comparisons in functional connectivity (i.e.,
Pearson-r) were calculated at three chosen threshold values
(e.g., 0.1, 0.15, and 0.2) using two sample t-tests, respectively.
For left hemispheric network, we found no significant difference
at sparsity = 0.2 (p > 0.05) and significant differences at spar-
sity = 0.1 and 0.15 (p < 0.05), respectively. For right hemi-
spheric network, we found no significant differences at three
different sparsity threshold values. These results demonstrated
asymmetry of the development in hemispheric functional con-
nectivity from children to adults.

3.2 Economic Small-World Organization

Small-world topology in each hemispheric network was
observed across both children and adults. As shown in
Fig. 4, for each hemispheric functional network, the normalized
Eloc was larger than 1, and the normalized Eglob was nearly 1
across these two age groups. This finding indicates that the
hemispheric networks exhibited prominent small-world proper-
ties, consistent with previous whole-brain fNIRS network
studies.19 The small-world organization principle within hemi-
spheric functional networks suggests that each cerebral hemi-
sphere maintains a balance between local segregation and
global integration for both children and adults.

3.3 Within-Group Asymmetry of Global and Local
Network Efficiency

The global and local network efficiencies were calculated using
an integrated threshold (i.e., the AUC, including sparsity from
0.1 to 0.2 with an interval of 0.01). For global network effi-
ciency, a significant hemisphere main effect was observed

[Fð1;58Þ ¼ 9.76; p ¼ 0.003]. Further paired t-test analysis
revealed significant leftward asymmetry in adults [t ¼ 2.51,
p < 0.05; Fig. 5(a)] and a trend toward leftward asymmetry
in children [t ¼ 1.95, p ¼ 0.06; Fig. 5(a)]. However, for
local efficiency, both the significant hemisphere main effect
[Fð1;58Þ ¼ 10.43; p ¼ 0.002] and hemisphere × group interac-
tion effect [Fð1;58Þ ¼ 8.34; p ¼ 0.005] were significant.
Further paired t-test analysis suggested that only the adult group
showed significant leftward hemispheric asymmetry [t ¼ 3.57,
p ¼ 0.001, for adults; t ¼ 0.33, p ¼ 0.74, for children,
Fig. 5(b)].

3.4 Between-Group Differences in the Asymmetry
of Global and Local Network Efficiency

Two-sample t-tests revealed that there was no significant
difference in the hemispheric asymmetry of the global effi-
ciency between groups [children: AI ¼ 0.06� 0.03; adults:
AI ¼ 0.05� 0.02; t ¼ 0.35, p ¼ 0.73, Fig. 6(a)]. However,

Fig. 5 Within-group asymmetry of the global and local network effi-
ciency. (a) Global efficiency (Eglob) and (b) local efficiency (E loc).

Fig. 6 Between-group differences in the AI of the global and local net-
work efficiency. (a) Global efficiency (Eglob) and (b) local efficiency
(E loc). Group comparison within each hemisphere in (c) global effi-
ciency (Eglob) and (d) local efficiency (E loc).

Fig. 4 Small-world characteristics of the hemispheric functional net-
works for children and adults. The graphs show the changes in nor-
malized global and local efficiency as a function of sparsity thresholds.
Error bars indicate the standard errors of all participants in each
subgroup.
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for local efficiency, the hemispheric asymmetry showed a sig-
nificant increase over development [children:AI ¼ 0.00� 0.02;
adults: AI ¼ 0.07� 0.02; t ¼ −2.57, p ¼ 0.01, Fig. 6(b)]. Post
hoc analysis using a two-sample t-test within hemisphere
showed no significant age effect on global efficiency in the
left (t ¼ −0.63, p ¼ 0.53) or right hemisphere [t ¼ −0.53,
p ¼ 0.60, Fig. 6(c)]. However, a significant increase in local
efficiency was observed from childhood to adulthood in both
the left (t ¼ −4.57, p < 0.001) and right hemispheres
[t ¼ −3.12, p ¼ 0.003, Fig. 6(d)].

3.5 Within-Group Asymmetry of Nodal Efficiency

For each group, the group-averaged map of nodal efficiency is
shown in Fig. 7(a). Visual inspection suggested that the spatial
patterns of the mean nodal efficiency were very similar across
these two hemispheres. Quantitatively, for each group, the linear
correlation analysis across all nodes revealed a very high corre-
lation between the two hemispheres [Fig. 7(b), r ¼ 0.82,
p < 0.0001, for children; r ¼ 0.90, p < 0.0001, for adults].
Figure 7(c) shows the hemispheric network nodes that showed
significant between-hemisphere differences in nodal efficiency
(uncorrected p < 0.05). For each of these two groups, primarily
leftward asymmetry was observed, but the proportion of left-
ward asymmetry was obviously higher (17.4%) in adults than
in children (8.7%) [Fig. 7(c)]. For children, the positions of
these asymmetries were mainly located in the frontal region

(channels 7 to 8 and 23 to 24); for adults, the positions of
these asymmetries were mainly located in the frontal (channels
19 to 20) and parietal (channels 35 to 38) regions and outside of
the occipital (channels 39 to 40) regions. The adult group only
showed a rightward asymmetric node near the occipital region
(channel 41/42).

3.6 Between-Group Differences in the Asymmetry
of Nodal Efficiency

The significant group difference in the AI of nodal efficiency is
shown in Fig. 8(a). Over development, some nodes showed left-
ward asymmetry (e.g., red spheres), and these nodes were pri-
marily distributed in the frontal, parietal–occipital junction, and
occipital regions (channels 17, 18 to 35, 36, 39, and 40) [uncor-
rected p < 0.05, Fig. 8(a)]. Some nodes showed that children
displayed leftward asymmetry, whereas adults displayed right-
ward asymmetry (blue spheres), and these nodes were mainly
located in the frontal regions associated with the default network
and the frontal–parietal control network [channels 15 and 16;
uncorrected p < 0.05, Fig. 8(a)]. Overall, these nodes showed
less rightward asymmetry in the adults than in the children.
For each hemisphere, the average nodal efficiency based on
these significant left-lateralized and right-lateralized nodes
did not show any significant differences between the two age
groups [Figs. 8(b) for significant left-lateralized nodes and
Fig. 8(c) for significant right-lateralized nodes, respectively].

Fig. 7 Within-group asymmetry in the nodal efficiency across the brain. (a) The group-averaged nodal
efficiency for the two hemispheric networks was projected onto the cortical surface. Color represents the
mean efficiency values across all subjects, with larger values indicating higher information processing
ability for the nodal regions, vice versa. (b) The between-hemisphere correlation of the mean nodal effi-
ciency across all nodes. Each circle represents a node within the hemisphere. (c) Statistically significant
nodal efficiency asymmetry for children and adults. The red spheres indicate the significant left-lateral-
ized positions, and the blue spheres indicate the significant right-lateralized positions.
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4 Discussion
In this study, using rs-fNIRS techniques and graph theory analy-
sis, we investigated the development of the hemispheric asym-
metry of functional networks from childhood to adulthood. At a
hemispheric level, we provided the first report of brain function-
ally topological asymmetry associated with development. Using
an fNIRS imaging technique, we revealed efficient topological
architecture within both right and left hemispheric networks for
children and adults, respectively. We found leftward asymmetry
(or trend) in hemispheric network efficiency and noted that the
degree of leftward hemispheric asymmetry in network local effi-
ciency significantly increased with development. The findings
suggest that the protracted maturation of functional segregation
in the left hemisphere may underlie language development from
childhood to adulthood and provide insight into the develop-
ment of human brain functional networks. These findings are
discussed in greater detail below.

4.1 Small-Worldness of Hemispheric Functional
Networks

The small-worldness architecture supporting efficient informa-
tion segregation and integration with low energy and wiring cost
advances our understanding of the topological organization of
complex brain networks.55–59 In recent studies, a small-world
organization has been consistently observed in the whole-
brain structural and functional networks across different age
spectra.55,60–62 In this study, at a hemispheric scale, we also
observed that the brain was organized into a small-worldness
organization across both children and adults, suggesting that
each cerebral hemisphere, similar to the whole-brain network
architecture, is also organized in an efficient and compact man-
ner to preserve fast information segregation and integration.
Notably, this fNIRS finding is also consistent with previous
functional and structural MRI studies exploring brain asymme-
try between hemispheric networks.13–15,63 Collectively, this
accumulated evidence demonstrates that small-world topology
is a fundamental principle of the organization of brain networks.
Therefore, our observations extend these earlier findings and
provided new evidence to indicate that the brain in childhood
maintains a balance between local segregation and global inte-
gration within each hemisphere.

4.2 Hemispheric Asymmetries in Brain Functional
Networks through Childhood and Adulthood

With a functional optical imaging technique, we found that the
hemispheric brain also showed leftward asymmetries (or trends)
in hemispheric network efficiency, which indicates that the left
hemisphere in children and adults exhibited more efficient func-
tional segregation and integration than the right hemisphere to
adapt to left-lateralized functional needs. The current findings
are consistent with prior observations from structural network
studies of hemispheric asymmetry.13,15,53,63,64 For instance,
Ratnarajah et al.13 found that the neonate brain showed greater
global and local efficiency in the left hemisphere than those in
the right, demonstrating that such left-lateralized efficient topo-
logical organization plays crucial roles in specific lateralized
brain functions (e.g., motor, memory, language functions) at
birth. Dennis et al.64 found that the global efficiency was greater
in the left hemisphere in early adulthood. Caeyenberghs and
Leemans15 reported that the left hemisphere was significantly
more efficient than the right hemisphere from young adulthood
to old age. Sun et al.63 found that older adults (60 to 82 years)
showed a leftward asymmetry in both global and local effi-
ciency. However, there are several results53,63 inconsistent
with these current lateralization findings, demonstrating sym-
metric functional network topology or rightward lateralization
in network efficiency. These contrasting findings may be
attributed to the age range of the subject sample, various imag-
ing methods, network construction methods, and network
complexity.

In line with the well-documented leftward asymmetry in
language, motor, and visual functions,65 our findings revealed
brain regions with significant leftward asymmetry in nodal effi-
ciency in frontal (channels 7 to 8 and 23 to 24 for children,
channels 19 to 20 for adults) and parietal–occipital junction
(channels 35 to 38 for adults) regions and in regions outside
of the occipital (channels 39 to 40 for adults) regions, indicating
that these lateralized cerebral regions exhibited more efficient
communications in the left hemisphere than the right homo-
logues in the right hemisphere. Therefore, the leftward asymme-
try in motor and language functions observed in most right-
handed people66 allowed us to speculate that these left-
lateralized brain regions identified in the current study may
contribute to a more integrated network topology in the left
hemisphere.

Fig. 8 (a) Between-group differences in the AI of nodal efficiency. The red spheres indicate the signifi-
cant left-lateralized positions, and the blue spheres indicate the significant right-lateralized positions.
(b) Group comparison in the mean nodal efficiency in the left-lateralized nodes (i.e., red spheres) within
each hemisphere. (c) Group comparison in the mean nodal efficiency in the right-lateralized nodes (i.e.,
blue sphere) within each hemisphere.
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4.3 Developmental Effects on the Topological
Asymmetry of the Functional Network

In this study, we found that the degree of leftward asymmetry in
network global efficiency is statistically equivalent between
children and adults [Fig. 6(a)]. These findings are supported
by the lack of observed developmental effects in network global
efficiency in each hemisphere [Fig. 6(c)]. In line with these
observations, previous studies of the development of whole-
brain functional networks demonstrated no significant differ-
ence in network global efficiency across development.67–69

Notably, compared with children, adults showed significantly
increased leftward asymmetry in local network efficiency
[Fig. 6(b)]. Specifically, our data showed a larger developmental
increase in local efficiency in the left hemisphere than in the
right hemisphere [Fig. 6(d)]. The protracted maturation of func-
tional segregation in the left hemisphere may underlie language
development from childhood to adulthood. Many studies have
demonstrated that the greatest asymmetries of structure are
clearly localized to the perisylvian language area (see a review,
Ref. 3). For example, Szaflarski and his colleagues70 found that
language lateralization to the left hemisphere increases between
the ages of 5 and 20 years and plateaus between 20 and 25 years,
which reveals that there might be hemispheric differences in
white matter maturation, perhaps during the many regional
growth spurts in myelination that occur in childhood.71

Except for the development of language, the maturation of
other cognitive functions is likely associated with the degree
of left lateralization. For instance, a leftward asymmetry in para-
cingulate cortex thickness was related to better spatial working
memory in healthy subjects aged 16 to 51 years.72 Therefore,
our observed dramatic developmental changes in leftward asym-
metries in network local efficiency likely suggest that the left
hemisphere plays a leading role in highly demanding cognitive
processes, such as language and memory, which may require
more segregated functional subnetworks across development.
Moreover, although Zhong et al.16 found the degree of rightward
asymmetry in both global and local network efficiencies signifi-
cantly decreased from adolescence to young adulthood, these
developmental patterns in network asymmetry may, to some
extent, reflect the rapid development of the left hemisphere
in charge of language.

4.4 Further Considerations

There are some potential limitations of the current study. First,
this study did not investigate the relationship between network
asymmetry and behavioral measurements. In the future, mea-
surements involving language abilities and social cognitive
evaluation are expected to further consolidate the primary find-
ings in this study, such as the development of left lateralization
in network local efficiency from childhood to adulthood.
Second, the present results were based on a cross-sectional data-
set; follow-up, longitudinal developmental dataset is highly
desired to validate the current findings. Third, we utilized the
same probe geometry for data collection in both child and
adult participants. Head circumference constitutes an important
index in the characterization of brain development for children.
Fourth, we did not record the level of motion of all participants
during the stage of data acquisition, therefore, motion compo-
nents were purely visually identified for all analyses. In the
future, a more objective or automatic component identification
strategy should be adopted, such as template-matching. Finally,

our study contained a relatively small sample size, and future
work should enroll more subjects and investigate how handed-
ness and gender factors modulate the hemispheric topological
asymmetry.

5 Conclusion
In sum, we provided new evidence to indicate that the brain in
childhood keeps a balance between local segregation and global
integration within two hemispheres, like that in the adult brain.
For network global and local efficiency, we found that children
exhibited relatively symmetric network efficiency, while adults
showed significant leftward asymmetry. Notably, the degree of
leftward asymmetry in network local efficiency showed a sig-
nificant increase from childhood to adulthood. The developmen-
tal patterns of topological asymmetries suggested that the
protracted maturation of functional segregation in the left hemi-
sphere may underlie language development from children to
adults and provided insight into the development of human
brain functional networks.
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