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Abstract

Significance: High-density diffuse optical tomography (HD-DOT) has been shown to approach
the resolution and localization accuracy of blood oxygen level dependent-functional magnetic
resonance imaging in the adult brain by exploiting densely spaced, overlapping samples of the
probed tissue volume, but the technique has to date required large and cumbersome optical fiber
arrays.

Aim: To evaluate a wearable HD-DOT system that provides a comparable sampling density to
large, fiber-based HD-DOT systems, but with vastly improved ergonomics.

Approach: We investigated the performance of this system by replicating a series of classic
visual stimulation paradigms, carried out in one highly sampled participant during 15 sessions
to assess imaging performance and repeatability.

Results: Hemodynamic response functions and cortical activation maps replicate the results
obtained with larger fiber-based systems. Our results demonstrate focal activations in both
oxyhemoglobin and deoxyhemoglobin with a high degree of repeatability observed across all
sessions. A comparison with a simulated low-density array explicitly demonstrates the improve-
ments in spatial localization, resolution, repeatability, and image contrast that can be obtained
with this high-density technology.

Conclusions: The system offers the possibility for minimally constrained, spatially resolved
functional imaging of the human brain in almost any environment and holds particular promise
in enabling neuroscience applications outside of the laboratory setting. It also opens up new
opportunities to investigate populations unsuited to traditional imaging technologies.
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1 Introduction

The investigation of human brain function has made dramatic progress since the introduction and
development of functional neuroimaging. Functional magnetic resonance imaging (fMRI) and
positron emission tomography (PET) have been at the forefront of this development, but they
are not free of limitations. Both impose significant constraints on the mobility of participants,
which hinders their application in challenging populations such as infants and in the study of
neural processes and behaviors that involve movement. Extended or repeated monitoring is also
difficult due to the associated costs, the confined scanner environment and (in the case of PET)
the use of radiotracers.1,2 In addition, fMRI has contraindications for electronic or metal implants
(such as pacemakers, cochlear implants, aneurysm clips, and surgical devices). Owing to the
large, fixed nature of MRI and PET equipment, and the requirement on the participant to lie
flat, it is very difficult to study the brain in everyday scenarios, such as during face-to-face
conversations.

Diffuse optical methods have shown great promise in overcoming some of these limitations
in recent years.3,4 Functional near-infrared spectroscopy (fNIRS) uses near-infrared light to inter-
rogate cerebral function. It employs an array of optical sources and detectors placed on the scalp
to monitor the changes in cerebral oxyhemoglobin and deoxyhemoglobin concentration and can
provide two-dimensional images with a spatial resolution on the order of 3 cm.5,6 High-density
diffuse optical tomography (HD-DOT) is an extrapolation of fNIRS methodology that employs a
high-density measurement array. Although the definition of “high density” in this context has not
been precisely established, an appropriate definition would be that a HD-DOT array provides
channels with several different source–detector separations spanning the “short separation (SS)”
(<15 mm) to “long” (≥30 mm) range and provides overlapping spatial sensitivity profiles at
each of these separations throughout the field of view. It is now well established that HD-DOT
can provide depth-resolved images of superior quality to fNIRS or other diffuse optical imaging
approaches.7–9 The mutual information obtained from the plurality of overlapping channel
measurements increases spatial resolution, and the use of multiple source–detector separations
improves both lateral and depth specificity. Furthermore, sampling at different source–detector
separations provides a means to reduce the influence of signals from extracerebral tissues.10,11

Zeff et al.7 first demonstrated the potential of HD-DOT by monitoring functional brain acti-
vation due to visual stimuli. Using a similar paradigm, Eggebrecht et al.9 produced cortical ret-
inotopic maps of the visual field and demonstrated that HD-DOT approaches the resolution and
location accuracy of fMRI at the level of the cortex. Using a motor paradigm, Habermehl et al.,12

resolved the somatotopy mapping of two fingers with a commercially available instrument
(DYNOT, NIRx Medizintechnik GmbH, Berlin, Germany). HD-DOT has also been used to ana-
lyze language processing13 and resting-state functional connectivity in adults14 and neonates,15

with results that are largely consistent with prior fMRI research. Earlier this year, Fishell et al.16

conducted cognitive experiments on children living in a resource-limited environment using a
portable, fiber-based HD-DOT system.

The introduction of HD-DOT has moved forward the limits of diffuse optical approaches, but
there is still potential for significant improvement. It has been demonstrated in recent years that
fNIRS devices can be built to be compact enough to be wearable, which opens up the possibility
of studying the brain in novel situations and using paradigms that are beyond what is possible in
the laboratory and clinical settings.17,18 This generation of wearable fNIRS devices has allowed
participants to be monitored as they move freely, and in naturalistic environments. For example,
fNIRS has been used in healthy adults to study the cognitive load in dual-task cognitive-motor
protocols. The primary task is usually walking, whereas the second activity has included a broad
range of tasks including performing mathematical operations,19,20 attention-demanding tasks,21

and memory tasks.22,23 Wearable fNIRS has also been used in patients with neurodegenerative
disorders and cognitive disabilities, for instance, mild cognitive impairment24 and Parkinson’s
disease.25 Other examples of wearable fNIRS experimentation include monitoring the brain dur-
ing table tennis,26 outdoor cycling,27 unconstrained street exploration,28 and even while actors
perform in a play.29 There is also growing interest in exploring brain function in other scenarios,
including the study of the social brain during real-world interactions using hyperscanning
approaches,30,31 for brain–computer interfaces, and neuroeducation.32 The signal conditioning
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necessary to undertake these studies, such as the removal of movement artifacts or the reduction
of systemic signals, is under intensive research.33

Although these applications show what is now achievable with wearable fNIRS, existing
devices maintain many of the same challenges as traditional, fiber-based fNIRS systems: poor
resolution, a lack of depth specificity (and therefore a vulnerability to superficial hemodynam-
ics), inconsistent spatial sampling, and a limited field of view.34 These issues are known to be
minimized by HD-DOT, but until recently, no wearable HD-DOT technologies had been dem-
onstrated. This is due to the significant engineering challenges associated with building a spa-
tially dense array, with all the associated electronics (sources, detectors, control electronics,
power supply, and communications), into a wearable form factor. The first paper to demonstrate
a wearable HD-DOT device came with Chitnis et al.,35 which showed motor activations in adults
using a modular, fiber-less HD-DOT device. Each module contained both source and detector
electronics, such that measurement channels are formed both within and across modules. This
modular approach allows the creation of dense networks of channels while still allowing the
device to conform to the scalp. More recently, Zhao et al.,36 using an extension of the same
device, demonstrated the feasibility of unconstrained brain imaging in a dual-task paradigm.
Following the same modular design principle, von Lühmann et al.37 presented a vision of a
multimodal wearable design that integrates high-density fNIRS, electroencephalography (EEG),
accelerometry, audio recording, and eye-tracking to study brain activity in the everyday world.

Building upon previous research over the last few years,35,36 in this work we applied the first
commercially available, wearable HD-DOT instrument (LUMO, Gowerlabs, Ltd.) to image the
adult brain. We used a battery of classic visual stimuli protocols to validate and compare the
performance of our device against larger fiber-based HD-DOT instruments. The visual cortex has
been extensively investigated, and its function is well documented from physiological and elec-
trical studies.38 Visual stimulation protocols have been previously used to validate fMRI and
PET,39–41 and more recently, to validate fiber-based HD-DOT.7,9,42 In this paper, we employed
lateralized eccentric/peripheral and rotating wedge reversing checkerboard stimuli to map the
visual cortex over 15 repeated sessions in one individual. In doing so, we sought to demonstrate
the quality of functional imaging that can now be obtained outside of the scanner environment,
using a wearable technology and with minimal constraints on the participants.

2 Materials and Methods

2.1 Wearable HD-DOT System

The HD-DOT device we applied is a 12-module LUMO system developed by Gowerlabs Ltd.,
currently intended for research purposes. The system consists of multiple, independent hexago-
nal modules [or “tiles,” Fig. 1(a)], each containing four photodiodes and three dual-wavelength
LEDs emitting at 735 and 850 nm. The tiles are mounted into “docks” [Fig. 1(b)], and a chain of
docks is fitted into a neoprene cap. Seven short plastic optical fibers, mounted together to form a
“light-guide” carry light from the tile, through the dock and hair to the scalp and back again. This
scheme provides extensive flexibility to position the tiles to suit the experimental paradigm while
adapting to the curvature of the head. It also makes moving tiles from one cap to another fast and
very simple. Figure 1(c) shows a 12-tile array fitted within a neoprene cap, designed to interrogate
the visual cortex. The full arrangement yields a total of 1728 dual-wavelength source–detector
channels [Fig. 1(d)], which were sampled at a rate of 5 Hz. Of this total number, ∼500 are
expected to fall within the 10-to 45-mm range and thus potentially provide viable signals.

2.2 Subject and Experimental Protocol

The study considered a single, healthy participant (author R. J. C., male, 36-year old) with nor-
mal vision. Fifteen experimental sessions took place over a period of 3 weeks and under lock-
down conditions due to the COVID-19 outbreak. The protocol employed was approved by the
UCL research ethics committee under application 1133/001; however, in this case, it was per-
formed by the investigator on himself in a home environment. Prior to commencing this study, it
was confirmed that this application was outside the remit of the UCL research ethics committee.
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Each experiment was carried out in a quiet and dimly lit room. First, the participant fitted himself
with the neoprene cap and adjusted it with a Velcro chin strap. The cap was positioned to ensure
that the same point on the cap (marked with a notch in the neoprene surface) was positioned
over the inion, the distance of the cap above the ears was approximately equal on both sides, and
the cap’s frontline sat just above the eyebrows. The participant sat in an adjustable chair in front
of a 27-in. computer monitor at a viewing distance of 90 cm; the full screen subtended a radial
angle of �12 deg. The participant then started a computer program that controlled the timing of
the visual stimuli, provided automated start/stop and synchronization of the LUMO system, and
controlled and synchronized a webcam video recording of a front view of the participant.

The video recording of the participant’s face and head was made for quality control and
attention monitoring purposes using an inexpensive consumer-grade webcam (1080p, Fusion5
Ltd.). Another researcher (EEVR), not present in the experiment due to COVID restrictions,
watched the recording of the full length of the experiment and verified that the participant com-
plied with the protocol, which included: sitting in a relaxed position, maintaining attention to the
screen, and remaining awake and alert. An ASCII character was automatically embedded into the
video of the participant’s face for synchronization with each stimulus onset, thereby indicating
which experimental condition was being shown on the screen at each moment. This helped to
verify that the subject maintained attention during the presentation of any given stimulus. No
trials were discarded for any session.

The protocol included three paradigms separated by rest periods set by the participant.
During the rest periods, the participant was free to move, but did not remove the imaging cap.
The first paradigm was 12 min of rest, in which the participant attended to a fixation cross dis-
played on a 50% gray background. This was followed by an eccentricity mapping and then a
polar angle mapping paradigm, each lasting 19 min. The timeline of the paradigm is displayed
in Fig. 2(a).

2.2.1 Polar angle mapping

The polar angle mapping paradigm consisted of a radial black and white grid rotating clockwise
at 10 deg ∕s for a full cycle of 36 s [Fig. 2(b)]. The grid extended over a polar angle of 60 deg
and a radial angle of 0.5 deg to 10 deg. A baseline period of 45 s was followed by 30 continuous
rotations and a return to baseline period of 30 s. This paradigm lasted a total of 19 min.

Fig. 1 (a) The LUMO tile module; (b) assembly of complete LUMO module showing the tile, dock,
and light guides; (c) neoprene cap fitted with a 12-tile LUMO system; (d) high-density array show-
ing channels with source–detector separation ≤40 mm; and (e) sparse array used for comparison
against low-density NIRS measurements. The NIRS channels have a source–detector separation
of ∼30 mm. Two SS channels 10-mm long on each hemisphere have been included.
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2.2.2 Eccentricity mapping

The visual stimuli for eccentricity mapping consisted of a black and white radial grid reversing at
10 Hz on a 50% gray background [Fig. 2(c)]. Central and peripheral stimuli were presented,
extending over radial angles of 0.5 deg to 1.7 deg and 2.5 deg to 10.5 deg, respectively, and
a polar angle of 70 deg for both. An initial baseline period of 15 s was followed by 10 s activation
and a resting period lasting a random duration between 15 to 20 s. Each stimulus was repeated
ten times in a random order for a total of 40 trials. This paradigm lasted a total of 19 min.

2.2.3 Optode registration

The 3D digitization of the optode locations was performed using photogrammetry. Each LUMO
tile has indentations in the upper surface that indicate the position exactly above each of the
three sources in the tile. A green fluorescent triangular marker was attached to each tile, with
each corner aligned over these indentations. The registration process began by having a second
individual record a video of the participant using a smartphone (iPhone XR, Apple Inc.). This
video consisted of three panning rotations around the subject’s head at different heights
[Fig. 3(a)], whereas the participant was seated and still, with their eyes closed. Each video was
∼90 s in length. The video was directly imported into a commercial software package
(Metashape, Agisoft LLC), and between 140 and 200 frames were extracted from the video and
used to produce a three-dimensional mesh model in the .ply format that comprised ∼3.5 × 105

nodes and 7 × 105 faces with a resolution (node spacing) of <1 mm [Fig. 3(b)]. A custom-made
program written in MATLAB (MathWorks, Inc.) allowed the manual selection of the locations
of the cranial landmarks and tile markers (the corner of each of the green triangles) that were
then used to determine the location of the sources and detectors on the subject’s scalp.
An example of the participant’s digitized head model is displayed in Fig. 3(c), along with the
cranial landmarks (yellow circles) and tile marker positions (red circles). Since the dimensions of
the tiles and light guides are fixed and known, the location of the seven optical contact points on
the scalp could be computed from the locations of the tile marker positions without further
approximation.

Fig. 2 (a) Timeline of the protocol, the rest period is user-defined and lasted <1 min on average.
(b) The rotating wedge of the polar angle paradigm used to map the visual field. (c) The eccentricity
stimuli, showing the four different radial grids (A, left central; B, left peripheral; C, right central; and
D, right peripheral).
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2.3 Head Modeling and Registration

MRI images of the participant were available from a previous experiment.36 The scan consisted
of T1- and T2-weighted anatomical MRI images that were linearly co-registered43 and used to
obtain a five-layer tissue head model using the unified segmentation algorithm.44 The head
model included scalp, skull, cerebrospinal fluid, gray matter (GM), and white matter tissue
layers, which were converted into a high-resolution tetrahedral mesh using Iso2mesh.45 The head
volume mesh contained ∼2 × 106 elements and ∼3 × 105 nodes [Fig. 4(b)]. The mesh included
the MRI-derived cranial landmarks, which were used to register the digitized source and detector
positions into the mesh by means of a rigid transformation. The final 3D model used in the

Fig. 4 (a) Anatomical MRI; (b) high-resolution tetrahedral mesh, landmarks are indicated with the
yellow circles; and (c) 3D model used for image reconstruction. Red and blue circles denote
source and detector locations.

Fig. 3 (a) A subset of frames used during the photogrammetry process, derived from a video
recording that comprised three full rotations of the head at different heights. (b) Internode distance
of the resulting 3D model of the subject’s head. On average, the resolution is <1 mm (c) final 3D
surface mesh model of the participant’s head showing the location of head landmarks (yellow
circles) and module markers (red circles).
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reconstruction stage is shown in Fig. 4(c). Additionally, a surface mesh of the GM was built to
aid the visualization of the imaging results. The pipeline for the registration process is illustrated
in Fig. 5.

2.4 Signal Processing

The data preprocessing pipeline is displayed in blue in Fig. 5. Each step in the pipeline was
undertaken using functions from the Homer2 fNIRS processing package46 or modified
versions thereof. In an initial assessment, channels were discarded based on their coefficient
of variation (rejected if mean of intensity/standard deviation of intensity ≤12.5, equivalent to
a coefficient of variation >8%). Intensity data were then converted to absorbance (OD), and
the remaining channels were motion-corrected using wavelet decomposition with the function
hmrMotionCorrectWavelet, with the iqr parameter set to 1.5. Data were then analyzed to detect
any residual motion artifacts using hmrMotionArtifact after the correction step. Any remaining
artifacts were flagged if the standard deviation changed by a factor >20 within a period of 2 s.
If any artifact coincided with the period from 5 s prior to a stimulus onset up to the length of that
stimulation block, that stimulus was excluded from further processing. Data from the rotation
stimuli were resampled to 1 Hz to obtain a time point per position of the rotating wedge, whereas
the eccentricity data were analyzed at the full sampling rate of 5 Hz. Each channel was band-pass
filtered using a fifth-order Butterworth filter with low- and high-pass band of 0.025 and 0.5 Hz,
respectively.

SS optodes (<15 mm) are mainly sensitive to superficial layers in the adult head, and they
have been used routinely to remove the systemic interference present in longer separation
channels.47 To account for extracerebral contamination, we employed a novel local SS regression
approach. Previous work has used a global regression approach, which seeks to remove the
signal created by averaging all the SS channels in an array,42 or a single SS regression approach

Fig. 5 Processing pipeline for head modeling, registration, data preprocessing, and the recon-
struction of images of hemodynamic changes.
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that selects an SS channel that is physically closest to the mid-point of the channel in question.
Our local SS regression approach consists of regressing the average of the signals derived from
all the short channels that share the source or the detector of the channel in question. The ration-
ale behind this approach is that extracerebral contamination of a long-channel signal is primarily
due to changes in hemoglobin concentrations directly beneath the source and detector,10 and thus
the single short channel closest to the mid-point of that long channel is unlikely to be the optimal
regressor. To complete the process, the averaged signal of the local SS channels is regressed out
from long distance measurements via least squares.

2.5 HD-DOT Image Reconstruction

The forward problem was modeled using the perturbation approach where the relationship
between measured absorbance changes and optical properties in the medium is expressed as
a linear mapping of the form:

EQ-TARGET;temp:intralink-;e001;116;567ΔAλi ¼ JλiΔμa;λi ; (1)

where ΔAλi is the change in absorbance between the active state and baseline.
48,49 For the eccen-

tricity mapping test, the baseline is the rest period immediately prior to the presentation of the
stimuli; while for the polar angle mapping experiment, the baseline is the temporal mean of
the full time series. Jλi is the Jacobian or sensitivity matrix where λi denotes the wavelength
ði ¼ 1; 2Þ, and Δμa is the change in the absorption coefficient.

The Jacobian matrix was calculated using Toast++, which models the transport of light in
tissue using the diffusion approximation.50 The numerical solution of the forward problem is
obtained using the finite-element method. The optical properties at the wavelengths of interest
were linearly interpolated for each tissue using a database of values obtained from the
literature.51–53 For efficiency purposes, the Jacobian was calculated in a fine regular grid with
size 100 × 100 × 100 voxels and projected into the tetrahedral head model.50,54 The changes in
absorption coefficient Δμa;λi were calculated in the voxel space by minimizing an objective func-
tion given by

EQ-TARGET;temp:intralink-;e002;116;376arg min
Δμa;λi

kΔAλi − JλiΔμa;λik2 þ λFðμa;λiÞ: (2)

Due to the ill-conditioned and ill-posed nature of Eq. (2), the problem was solved using
zeroth-order Tikhonov regularization. In this case, the functional Fðμa;λiÞ is reduced to the iden-
tity matrix while the regularization hyperparameter λ was set to 0.1 for all the trials. The recov-
ered images of the change in absorption coefficient at the two wavelengths were then converted
to images of change in oxy- (HbO) and deoxy-hemoglobin concentrations (HbR) by means of
a spectroscopy analysis55 and projected to the tetrahedral head model.

2.6 Phase Encoded Data Analysis

The polar angle mapping data can be well represented by examining the phase of the oscillating
hemodynamic response at the rotational frequency of the rotating wedge stimulus. Phase maps
were, therefore, obtained by determining the phase of the oxyhemoglobin signal at the rotational
stimulation frequency for each GM mesh node via a Fourier transform of the associated time
series. A neurovascular lag of 6.0 s (∼1 radian) between the stimulus and the hemodynamic
response was found based on the phase data obtained from the Fourier analysis, which matches
the phase lag found in similar HD-DOT experiments42 and that reported in other physiological
experiments.56 Phase maps were therefore corrected by adding this lag to the calculated phase to
match the phase maps to the corresponding position of the rotating wedge stimulus. The maps
presented followed the convention to define the zero phase as the lower meridian.42

Vidal-Rosas et al.: Evaluating a new generation of wearable high-density diffuse optical tomography. . .

Neurophotonics 025002-8 Apr–Jun 2021 • Vol. 8(2)



2.7 Multi-Session Data Analysis

To investigate the repeatability of the hemodynamic response across sessions, two correlation
measures were computed. The first is simply the temporal cross correlation of the hemodynamic
response functions (HRFs) found at the mesh location of maximum ΔHbO response across all
possible pairs of sessions. The second measure provided a spatiotemporal correlation and con-
sisted of concatenating all the HRFs for all the nodes in the field of view (FOV) into a single
vector, and then correlating that signal across all sessions in a pair-wise fashion.

2.8 Sparse-Array Reconstructions

To directly compare the performance of this HD-DOT device to that of a more typical fNIRS
arrangement, we simulated a sparse fNIRS array by selecting a subset of the available channels
with source–detector separations equal to ∼30 mm, the standard separation used in adult fNIRS
recordings.5 As SS channel regression has been shown to reduce the influence of the systemic
signal from the extracerebral tissue in fNIRS studies,10,47 it is becoming increasingly common-
place; we also included a pair of channels with source–detector separation of 10 mm; one per
hemisphere. The sparse array we considered is shown in Fig. 1(d) and consists of a total of
29 fNIRS channels. Although the geometry of the measurement array prevents us from selecting
a regular 30 mm grid array, the simulated sparse array contains almost exactly the same number
of channels as a regular 30 mm grid would when applied to the same area. The processing pipe-
line used to produce sparse-array images followed the exact same steps as in the high-density
array, with the exception that SS regression was performed by calculating the mean of the two SS
channels, rather than the local regression approach described above.

3 Results

3.1 System Performance

Figure 6 displays a typical intensity versus source–detector separation scatter plot for this array
and participant during a single-rotation stimuli session. Note that data from both wavelengths are
included in this plot. Using an estimate of the system noise floor based on the mean signal
obtained for channels with a separation >70 mm, the system dynamic range is estimated to
be 109 dB, as measured in an in vivo experimental circumstance. Though many were above
the noise floor of the system, intensity measurements with a high coefficient of variation

Fig. 6 (a) The log10 of the temporal mean intensity values displayed as a function of the source–
detector separation at both wavelengths 735 and 850 nm for an example session. (b) The number
of dual-wavelength channels available as a function of channel separation.
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(>8%, blue circles) were deemed as low quality based on literature norms and were discarded
from further processing. For a channel to be passed, both wavelengths had to pass this threshold.
For the rotation study, data were resampled to 1 Hz, and on average we kept 100% (114) of the
SS (<15 mm) channels, 100% (191) of channels in the range 15 to 25 mm, 80% (136� 14) of
channels in the range 25 to 35 mm, and ∼34% (47� 13 channels) of the channels between 35
and 40 mm. The system therefore provided an average of 489 dual-wavelength channels that
were used for further analysis. Note that the equivalent values at 5 Hz (i.e., for the eccentricity
data) were marginally worse, with 100% (114), 99% (189� 19), 54% (91� 13), and 13%
(18� 9) for each source–detector separation range, respectively, yielding an average of 412
dual-wavelength channels for reconstruction.

3.2 Rotation Study

Three-dimensional reconstructions of oxyhemoglobin changes due to the rotating wedge stimu-
lus for a single recording session are presented in Figs. 7(a)–7(d). The responses corresponding
to one frame per quadrant are displayed (at −45 deg, 45 deg, 135 deg, and 225 deg). As
expected, the activations are contra-lateral to the stimuli. Note that the maximal change occurs

Fig. 7 (a)–(d) Example of the activation maps for a single session obtained from the clockwise
rotating wedge at each quadrant. Inset in (c) is the time course of the hemodynamic response
relative to the average of the full length of the rotation experiment in one single session for the
point of maximum ΔHbO in the third quadrant. (e)–(h) Group average ΔHbO and ΔHbR across all
15 sessions, thresholded at 50% of the maximum response.
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in the upper visual cortex [Figs. 7(c) and 7(d)] corresponding to the stimulation in the lower
visual field [Figs. 7(c) and 7(d), inset]. Each positive change in ΔHbO contralateral to the stimu-
lus is accompanied by a corresponding negative contrast in the opposite hemisphere, ipsilateral
to the stimulus. However, this does not imply a negative response. Rather, it is simply the result
of reconstructing images relative to the average of the data across each whole block (30 rota-
tions), areas that show a large activation for a given stimulation angle (ϕ), will show an inversion
(a “shadow”) of that response for (ϕþ π). The negative change in ΔHbO found in each case is
the approximate inverse of the positive response found for the opposite (antiphase) stimulus. The
same pattern is evident in ΔHbR images, particularly for panel (b)—the upper right quadrant
visual stimulation. This stimulus yielded the smallest contralateral functional response and the
images are therefore dominated by “shadows” from the lower left quadrant stimulation (panel c).
The time series in the inset displayed in Fig. 7(c) are the time-averaged responses at the node
with maximum ΔHbO in a single session, note the strong contrast each time the rotating wedge
passed this point. Figures 7(e)–7(h) show similarly organized figures but show the average
across all 15 sessions, thresholded at 50% of the peak change.

The phase map presented in Fig. 8 is a depiction of the relationship between the visual angle
(the position of the wedge) and the corresponding area in the visual cortex. Phase values
were obtained from the Fourier transform of the time series at each node location, following
a correction of ∼1 radian to account for the neurovascular lag.42 Note that the phase maps dem-
onstrate clearer phase contrast in the upper visual cortex, where responses had superior SNR.

3.3 Eccentricity Study

An example hemodynamic response shown in the traditional representation of fNIRS data
(“channel space”), due to visual stimulation of the lower left central region of the visual field,
derived from a single session, is displayed in Fig. 9(a). The central-left stimulus, shown inset,
produces an increase of oxyhemoglobin on the contralateral channels, with some smaller ampli-
tude activations also present in the ipsilateral hemisphere. Figures 9(b) and 9(c) show the 3D
reconstructions of ΔHbO and ΔHbR, displayed on the subject-specific GM mesh. Large hemo-
globin concentration changes are located in the contralateral (right) hemisphere, with some
residual increases and relative decreases in ΔHbO in the left hemisphere.

Figures 10(a)–10(d) show in the lower panels the group average HRFs, where the activation
contrast for all the conditions is robust and clearly distinguishable from the baseline or recovery
period. The peripheral-right condition showed the smallest concentration changes and the high-
est variability. Figures 10(e)–10(h) and 10(i)–10(l) are the grand average ΔHbO and ΔHbR

Fig. 8 Phase data obtained from the Fourier transform of the time series at each node location
at group level. The phase corresponds to the delay between the start of the stimulus and the
activation in each region of the cortex.
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images, respectively, for each condition. The central activations achieved higher concentration
change values in comparison to the peripheral stimuli. In particular, the peripheral-right activa-
tion is ∼70% smaller in amplitude than the maximum (central-left) response. Changes in ΔHbO
and ΔHbR are co-located but of opposite polarity, as is expected. On average, the absolute
magnitude of ΔHbR is ∼40% of ΔHbO for all the conditions ðjΔHbRjmax∕jΔHbOjmax × 100 ¼
A: 34.3% and B: 42%, C: 38.8%, D: 43.2%).

Figures 10(m)–10(p) show the sum of binary maps of ΔHbO response across sessions for
each condition. Each map therefore represents the number of sessions, in which a node location
lies within 50% of the maximum ΔHbO response. These distributions show clear areas, in which
the response was present in every one of the 15 repeated sessions, illustrating the consistency of
these images across sessions. The area where a response was present in at least seven of the
sessions occupies a large proportion of the area, for which there was a response in at least one
session: for conditions A to D, these proportions were 53%, 48%, 67%, and 49%, respectively,
averaging 55%. For the area showing a response in at least 14 out of 15 sessions, the proportions
are 19%, 20%, 26% and 7%, with an average of 18%. Figures 10(q)–10(t) are the equivalent
overlap maps forΔHbR for each condition. The regions are of similar extent, and with the excep-
tion of the peripheral-right response, show areas that were active in every one of our 15 sessions.
However, the area associated with only one or two overlapping sessions is clearly larger than that
for ΔHbO. The proportions of the area that shows a response in at least seven sessions relative to

Fig. 9 (a) Example single-session HRFs for a left central stimulus calculated using the block-
average approach and plotted in the channel space. The stimulus is displayed in the inset on the
top left corner. (b), (c) The corresponding reconstructed ΔHbO and ΔHbR image projected into
the GM mesh.

Vidal-Rosas et al.: Evaluating a new generation of wearable high-density diffuse optical tomography. . .

Neurophotonics 025002-12 Apr–Jun 2021 • Vol. 8(2)



the area where at least one session causes a response are 35%, 43%, 50% and 28% for conditions
A to D, respectively; and the average is 39%. For 14 out of 15 sessions, the equivalent propor-
tions are 12%, 14%, 11%, and 0%.

To compare the location of the activations across different sessions for all the conditions,
Fig. 11(a) shows the contours calculated at 75% of the maximum change in ΔHbO for each
condition and for each session. Four distinct regions of response can be distinguished, with

Fig. 10 (a)–(d) Upper panels: stimuli used for eccentricity experiment. Lower panels: group aver-
age HRF for each stimulus. The thick line indicates the mean HRF at the node with the highest
response and the shaded area indicates the standard deviation on that mean across sessions for
each of the four conditions. (e)–(h) and (i)–(l) Group average ΔHbO and ΔHbR across all sessions
for each condition, respectively. (m)–(p) and (q)–(t) Overlap of activations ΔHbO and ΔHbR for
each condition.
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a larger overlap between responses on the left hemisphere (peripheral and central-right stimuli).
Fig. 11(b) shows the location of the maximum ΔHbO value for each session and the contours of
a 3D Gaussian distribution at one, two, and three standard deviations (σx ¼ 2.2, 3, 3.9, and 5.2,
σz ¼ 3, 2.1, 2.2, and 2.9 for conditions A to D). Note that the peak responses are constrained to
a relatively small region in each case. Similarly, Figs. 11(c) and 11(d) show the corresponding
images for ΔHbR. Note that the shapes of the contours at 75% of the minimum are less uniform
and spread over a larger area, which is also supported by the larger dispersion of the 3D Gaussian
distributions shown in Fig. 11(d), likely due to the lower contrast of ΔHbR.

The average horizontal shift between the peak ΔHbO response to the left and right central
stimuli across all sessions is ΔxAC ¼ 44� 5 mm; whereas in the vertical direction, it is ΔzAC ¼
−10� 3 mm. For the central-left and peripheral-left, the horizontal shift isΔxAB ¼ −2� 2 mm,
and the vertical shift is ΔzAB ¼ 9� 2 mm. The horizontal shift between central-right and
peripheral-right responses is ΔxCD ¼ −9� 6 mm, whereas the corresponding shift in the ver-
tical direction is ΔzCD ¼ −1� 3 mm.

Figures 12(a) and 12(b) depict the HRFs for the central-left condition at the node associated
with the maximum change in HbO for ΔHbO (a) and ΔHbR (b), respectively. Note the high
degree of similarity among all the curves across sessions for both chromophores. The consis-
tency of the response is further confirmed by the HRF temporal correlation matrices displayed in
Figs. 12(c) and 12(d), which show the temporal correlation between the average HbO (c) and
HbR (d) response curves for the central-left stimulus at the peak node for each session and that of
every other session. All these values are remarkably high. For HbO, r is always >0.87 and for
HbR r is always >0.65. Figures 12(e)–12(h) are the spatiotemporal correlation matrices for
ΔHbO, where each element is the correlation between the concatenated time series of the
responses at all nodes across two given sessions. Activations due to central stimuli achieved

Fig. 11 (a) Contours at 75% of maximum ΔHbO for each session and (b) the location of maximum
ΔHbO increase per session is indicated with the filled circles. Color denotes condition. The ellip-
tical curves are the contours of the 3D Gaussian probability density functions at one, two, and
three standard deviations. Similarly, (c) each line is the contour at 75% of minimum ΔHbR for
each session. (d) The location of the minimum ΔHbR per session is indicated with filled circles.
Each condition is color coded as indicated in the legend.
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higher correlation values than the peripheral stimuli, with the peripheral-right stimuli having the
lowest correlations, overall, the correlation value is around R ∼ 0.7 except for the peripheral right
condition which is R ∼ 0.5. Similarly, Figs. 12(i)–12(l) show the group spatiotemporal corre-
lations for ΔHbR, note correlation is still evident albeit with lower values (typically around
R ∼ 0.4 for conditions other than peripheral right). This is expected given the lower SNR of
the ΔHbR changes.

3.4 Sparse-Array and High-Density Reconstructions

Figures 13(a)–13(d) (lower panels) show the group average hemodynamic responses obtained
with the simulated sparse array, at the node with the largest HbO response. Note the lower ampli-
tude of the activations in comparison with those obtained for the high-density array displayed in
Figs. 10(a)–10(d), especially for the peripheral-right condition. Figures 13(e)–13(h) are the
recovered changes in ΔHbO for each condition, respectively. In general, while the peak changes
are broadly lateralized to the correct hemisphere, the responses are noticeably more diffuse than
those of Fig. 10 (e.g., panel f), the peak change often occurs at a different cortical location (e.g.,
panels e–g), and in some cases the images demonstrate multiple separate foci (e.g., panels g and
j). The magnitude of the increase in ΔHbO is also consistently lower than that of the HD-DOT
array, which provides on average fivefold larger amplitude (ratio of max ΔHbOHD-DOT to max

Fig. 12 (a), (b) Temporal changes of maximum oxy- and deoxy-hemoglobin for the central-left
stimulus. Each curve represents a session. (c), (d) The temporal correlation matrix of the HRF
at the peak node for each session for ΔHbO and ΔHbR, respectively. Note that the responses
across all sessions are very similar; the average Pearson correlation coefficient is 0.95.
(e)–(h) Spatiotemporal correlations for all sessions for ΔHbO: each element in the correlation
matrix was calculated by correlating the HRFs for all node locations across all 15 sessions.
Similarly, panels (i)–(l) are the spatiotemporal correlations at group level for ΔHbR.
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ΔHbOLD-fNIRS ¼ 3.6, 8.5, 5.1, and 5.1 for conditions A to D). Also, on average, the HD array
doubles the SNR provided by the low-density array (1.8, 1.9, 2.9, and 1.3 for conditions A to D,
respectively). Figures 13(i)–13(l) show reconstructed changes inΔHbR where similar features to
the ΔHbO images can be seen. Again, the contrast observed with the low-density array is notice-
ably lower than that of the HD-DOT array. The HD-DOT ΔHbR images provide an SNR that,
on average, is twice as large as the low-density equivalent (1.4, 2.3, 2.7, and 2.5 for conditions
A to D, respectively).

Fig. 13 (a)–(d) Upper panels: stimuli used for eccentricity experiment. Lower panels: group aver-
age HRF obtained with the sparse array indicated in Fig. 1(e). The thick lines indicate the mean
ΔHbO, ΔHbR, and ΔHbT across all repetitions, and the shaded bands indicate the standard
deviation. (e)–(h) and (i)–(l) Group average ΔHbO and ΔHbR across all sessions for each con-
dition, respectively. (m)–(p) and (q)–(t) Overlap of activations ΔHbO and ΔHbR for each condition.
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Figures 13(m)–13(p) show the overlap maps for ΔHbO. Only the response to the central-left
condition yields a region that was active in all 15 sessions, though the centre-of-mass of that
response is clearly off-set in comparison to that of Fig. 10(m). The overlap maps for the other
conditions show poorer performance. The proportions of the area that shows a response in at
least seven sessions relative to the area where at least one session causes a response are 50%,
17%, 30% and 24% for conditions A to D, respectively, yielding an average of only 30%. These
percentages are lower for ΔHbR: 43%, 9%, 21%, and 12% for conditions A to D, respectively,
averaging 21%.

4 Discussion

Fiber-based HD-DOT has demonstrated a resolution and accuracy approaching that of blood
oxygen level dependent-fMRI in the adult brain.9,13 In this work, we sought to demonstrate that
comparable imaging quality is now achievable in a wearable form factor. We introduced a new
HD-DOT system (LUMO, Gowerlabs, Ltd.) that is built upon a modular design architecture and
provided dense DOT sampling in a compact and ergonomic form. We demonstrated the perfor-
mance of the system by replicating a series of classical visual paradigms which have been pre-
viously validated with fiber-based HD-DOT7,42 and undertaking test–retest comparisons in a
single, extensively imaged individual. Although this N ¼ 1 study can say nothing about the
performance of this device across a population, our results show that the location accuracy, mag-
nitude, and spatial extent of the activation maps that can be obtained with this device are broadly
comparable to those of larger, fiber-based HD-DOT systems, and that such measurements can be
obtained with relative ease, even in a home setting.

4.1 System Performance

An earlier example of a modular HD-DOT device was presented by our group in Ref. 35, which
included four square modules with all the optics and the majority of the acquisition electronics
integrated within them. These 35 mm modules were daisy-chained together and connected to a
central on-bench control unit. This design yielded the first functional images obtained with a
fiberless, HD-DOT system. Earlier in 2020, an extended version of this “micro-NTS” system
was used to demonstrate functional imaging capability during a walking paradigm.36

The system presented here represents a fundamental redesign of a modular, wearable HD-
DOT technology. The aim of this study was to validate the capabilities of this new system. Key to
this is the dynamic range—which relates to the range of source–detector separations that are
obtainable. Figure 6(a) shows the initial quality assessment applied to our data. Using an esti-
mate of the system noise floor based on the mean signal obtained for channels with a separation
>70 mm, and given the known measurement ceiling, the system dynamic range exceeds 100 dB,
as measured in an in vivo experimental circumstance. The red circles indicate channels with
SNR > 12.5. Data that were of sufficient quality to be used in image reconstruction were
obtained across a broad range of source–detector distances, from 10 to 45 mm. In this paper,
we did not precisely characterize the device performance using laboratory-based testing and
phantom measurements. Instead, we chose to pursue a practical assessment of performance
based on in vivo measurements in a non-laboratory setting. The quality of the data shown in
Fig. 6 (spanning multiple source–detector distances) demonstrates the utility of this device, and
that it can be applied easily in a real experimental scenario.

4.2 Polar Angle Mapping

Polar angle mapping is a classic cortical imaging task that was pioneered by Engel et al.40,41 to
study the visual cortex non-invasively. In this study, retinotopic mapping of the phase stimulus
was made possible due to the large number of measurements available in an FOV that covers a
large portion of the visual cortex (Fig. 1). Figures 7(a)–7(d) show the activation maps corre-
sponding to the rotating wedge stimulus being present in each quadrant of the visual field.
Note that for each frame, the response is always maximal in the opposite quadrant in relation
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to the stimulus. The large negative ΔHbO in the opposite quadrant does not imply a decrease in
HbO in response to this stimulus, but is effectively an artifact of the reconstructions being rel-
ative to the average of the signal over the full block.7,9,42 The largest activation in Fig. 7 is located
contralateral to the stimuli in three out of four quadrants for the single-session results; however,
the grand-average results shown in Figs. 7(e)–7(h), correctly locate the largest activation for all
the conditions in the contralateral hemisphere to the stimulus. Similar results were obtained in
the eccentricity study, as we explain below, where the activations in the right hemisphere showed
smaller contrast compared to those obtained in the left hemisphere. The inset in Fig. 7(c) shows
the time trace of HbO, HbR, and HbT for this single selected session. Note that clear responses
are evident to individual stimuli with remarkably large contrast evident each time the rotating
wedge activates this region.9

Figure 8 shows the phase map associated with these cortical activations, note the smaller
spatial extent of the regions corresponding to the upper visual fields; this is consistent with pre-
vious observations.42 These results are potentially due to the system achieving poorer sensitivity
where the lower visual cortex folds inward, away from the array. Retinotopic phase mapping of
this form requires a continuous map of coded phases, each one corresponding to a visual angle,
and thus requires spatial continuity and high sensitivity across the visual cortex. To date, visual
cortex studies using traditional fNIRS have been mostly limited to differentiating activation
versus rest or left or right lateralization.57–61

4.3 Eccentricity Mapping

High-density diffuse optical imaging relies on a large channel count to achieve densely spaced
overlapping samples and provide increased spatial resolution and accuracy. Figure 9(a) high-
lights the dense number of measurements in the channel space provided by this system, which
contributes to the robust reconstructed activations shown at the single-session level in Fig. 9(b).
The maximum observed change in HbO is around 0.5 μM, and there is some more diffuse acti-
vation in the hemisphere ipsilateral to the stimulus. This is similar to responses that have been
obtained with fiber-based systems.7,42

Our test–retest results provide strong evidence that the HD-DOT system introduced in this
study can recover activations over multiple sessions very reliably. This is despite the removal and
reapplication of the cap for each session, and the fact that in this case the cap was self-applied.
The group average HRFs displayed in Figs. 10(a)–10(d) (lower panels) show that the activations
are robust, and the contrast is high in comparison to the baseline and rest periods. Additionally,
the small standard deviation apparent on the HRF curves shows that the responses are consistent
across all sessions, which is further confirmed by the correlation analyses shown in Fig. 12. The
group average ΔHbO and ΔHbR maps displayed in Figs. 10(e)–10(l) show robust concentration
changes on the contralateral hemisphere to the visual stimuli in both chromophores.

The overlap maps for ΔHbO and ΔHbR shown in Figs. 10(m)–10(p) and Figs. 10(q)–10(t),
respectively, highlight the high degree of consistency and repeatability for all the conditions
across sessions; only the peripheral-right condition shows larger spatial and temporal variability.
Figure 11(a) shows that the region of the activation for the peripheral-right condition spans a
larger area than the other conditions, and the activation is more diffuse and overlaps extensively
with the central-right stimulus. Given the symmetry of the array, we have no reason to suspect
that the weaker response to the central-right stimulus is due to any technical limitation of the
instrument. Rather, we suspect that the hemodynamic response to the peripheral right stimulus
was genuinely smaller in this subject. This is supported by the fact that the response to the
stimulus was consistently lower in amplitude than the other three conditions across all 15 ses-
sions, despite the inherent variation in the exact positioning of the array from session to session.
This hypothesis is also supported by the rotating wedge experiment, where the phase map is not
fully symmetrical, and the cortical regions for angles that closely match the location of the
peripheral-right stimulus (phase angle ¼ π∕4) are mapped into only a small region (i.e., they
are likely to represent lower SNR data). Another possibility is that the location of the activation
to the peripheral right stimulus is more lateral than that of the peripheral left, which would mean
it may not be entirely covered by the FOVof the array. Note that in Fig. 11(a), the locations of the
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active regions (contours at 75% of maximum ΔHbO) for the peripheral right stimulus are the
outermost of all the conditions.

Figure 11(a) shows contour maps of activation at 75% of the maximum for all sessions.
This figure shows that the average difference between the left central and peripheral centroids
was ΔzAB ¼ −9� 2 mm and the corresponding difference for the right centroids is
ΔzCD ¼ −9� 6 mm, which are comparable with the value reported at the group level previously
using a fiber-based HD-DOT of −4� 7 mm for the right stimuli.7 The horizontal difference
between the activations was ΔxAC ¼ 44� 5 mm which is again close to those ranges reported
in the same publication (ΔxAC ¼ 37� 4 mm). The vertical difference is −10� 3 mm which is
larger than the equivalent feature reported previously (ΔzAC ¼ 1� 5), however, this is likely due
to the inherent subject variability. The eccentricity experiment allowed us to demonstrate the
consistency of the activation maps across multiple sessions. Furthermore, Fig 11(b) indicates
that the regions of activation and the location of the maximum change are clearly consistent
within the condition and distinguishable from one condition to another.

Figures 12(a) and 12(b) show the HRFs across all sessions for the central-left condition. The
amplitude and morphology of the responses are remarkably consistent across different sessions,
which occurred over the span of several days and weeks. This is confirmed by the HbO and HbR
HRF temporal correlation matrices shown in Figs. 12(c) and 12(d), where the lowest correlation
between the responses for any two sessions was 0.65. Figures 12(e)–12(h) show the spatiotem-
poral correlation matrices across all sessions and eccentricity mapping conditions. Note that the
correlation values are high across all conditions except the peripheral right condition. This result
was not unexpected since the response to this condition was of a lower amplitude and is thus
more susceptible to noise. Figure 10(d) (lower panel) shows that this condition has the highest
temporal variability and Fig. 10(p) indicates that the overlap for this condition is also the lowest.
However, in general, the overlap and correlation maps of Figs. 11 and 12 clearly demonstrate that
the observed activations are highly consistent in time and space across all 15 sessions. This is
particularly remarkable when considering the fact that the cap was removed and reapplied for
each session, and that the sessions occurred over a period of weeks. Comparing this result to
test–retest examinations of traditional fNIRS systems,59,62 which generally show poorer repeat-
ability, these results support the hypothesis that HD-DOT devices provide superior repeatability
than fNIRS, this is likely due to the high amplitude and spatially continuous distributions.
The spatiotemporal correlations for ΔHbO, obtained by concatenating the time series of the
responses at all nodes across any two given sessions, show remarkably high correlation values
(typically around R ∼ 0.7), only the peripheral-right stimulus responses show lower values. The
equivalent values for ΔHbR also demonstrate clear correlations, but lower values (typically
R ∼ 0.4) than ΔHbO due to the smaller contrast of the ΔHbR response.

4.4 Sparse Array fNIRS and HD-DOT Comparisons

To complement the results presented in this work and to explicitly examine the differences in
performance that relate to high-density sampling, we included results and reconstructions from a
simulated sparse array, shown in Fig. 13, which was obtained from a subset of the available high-
density channels. We followed the same processing pipeline as with the HD array, but the SS
channel regression was performed globally using the average of two SS channels in each
hemisphere.63,64 In summary, our results show that when compared with sparse measurements,
HD-DOT provides remarkably improved SNR, greater spatial specificity, and greater consis-
tency across sessions. Figures 13(a)–13(d) show larger error bands associated with the hemo-
dynamic responses for sparse measurements for all conditions. These time series emphasize the
problem of low SNR with a sparse array, which is particularly evident for HbR responses and the
central-right stimulus. In contrast, the temporal changes obtained with the high-density array
show a much clear distinction between the rest and activation periods [Figs. 10(a)–10(d)].
On average, the SNR associated with HD-DOT derived HbO responses was approximately
double (1.98 times) that of the sparse array. For HbR, the value was 1.67 times. Comparing
Figs. 10(e)–10(l) and Figs. 13(e)–13(l) shows that a sparse array yields noisier reconstructions,
often with foci that are offset by several centimeters relative to those obtained with HD-DOT.
The sparse array also yields multiple activation foci in three out of four conditions. Finally,
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Figs. 13(m)–13(t) illustrate that the location of the response to each condition is less consistent
across sessions for sparse measurements, particularly when the physiological signal is of a lower
contrast (i.e., for HbR and the peripheral right condition). Taken together, these results demon-
strate the dramatic improvements in spatial accuracy, robustness, and repeatability that can now
be readily achieved with an HD-DOT approach.

4.5 Future Directions

In this work, we have introduced a new, wearable HD-DOT system with performance capabil-
ities comparable to what were previously state-of-the-art, fiber-based HD-DOT devices.
We employed a 12-module device, which was sufficient to cover the full adult visual cortex.
However, the system is designed to allow expansion toward whole-head coverage in the adult.
This development would permit high-density, full FOV DOT sampling of the human cortex for
the first time. Such a technology would enable a huge expansion of possible DOT applications
and would enable a standardization of measurement and analysis approaches across the field, as
it would spell the end of array designs that vary with research lab, paradigm, and population.

The fiberless, light-weight, and wearable nature of the system demonstrated here offers great
versatility for experimental application. It potentially supports prolonged recordings and cru-
cially will permit unrestricted brain imaging in almost any environment. It should therefore pro-
vide a new tool to investigate cognitive function in ecologically valid settings. It is also important
to mention the new possibilities offered by this system to study the infant brain; a population that
has not benefited from the improvements offered by HD-DOT as much as others, largely due to
physical constraints imposed by existing research devices.

Our current efforts are focused on enabling and validating these (and similar) technologies in
other experimental circumstances, including outside of the laboratory. Combining this technol-
ogy with eye-tracking and EEG holds particular promise, as it would potentially enable the
acquisition of unprecedented levels of information about the brain as participants move, nav-
igate, interact, and communicate in everyday environments, potentially encompassing the full
human lifespan. Given the developments demonstrated here, we believe the stage is now set for
wearable HD-DOT to become a standard neuroimaging tool across the neuroscience domain.
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