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1 Introduction
A final optics assembly (FOA) is located at the output end
of an inertial confinement fusion (ICF) experimental device.
There are 48 FOAs in the Shenguang-III (SG-III) laser
facility, each containing nine large aperture optics, the aper-
ture size of which is 430 mm × 430 mm. Laser-induced
damage is easily generated under 351-nm high-power laser
irradiation.1–3 When the number of damaged sites increases
to a certain magnitude, these sites modulate the high-power
UV lasers in ICF experiments, thereby significantly affecting
the beam quality.4–7 The best way to rapidly and efficiently
detect and track the damage on an FOA surface is to design
an online imaging system for observing tiny defects in the
center of the target chamber. From the literature published
in recent years, there are mainly two research teams in
the field of damage online detection in ICF experiments for
large aperture optics: the Lawrence Livermore National
Laboratory (LLNL) and the China Academy of Engineering
Physics (CAEP). Each team has developed its own experi-
mental version of the final optics damage inspection
(FODI) system, namely, the NIF FODI developed for the
United States National Ignition Facility (NIF) by LLNL
scientists8,9 and the SG-III FODI we developed for the
SG-III laser facility at the CAEP.10 In general, FODI is an
online imaging system based on machine vision for rapidly
observing laser-induced damage. With edge illumination
technology in the dark field, FODI captures images of the
damage on an FOA surface and obtains the damage informa-
tion by image processing. LLNL scientists have conducted
much meaningful research in this field. Kegelmeyer et al.11

used the local area signal-to-noise ratio (LASNR) algorithm
to process FODI images to obtain all possible damage sites;
these sites are also called candidate sites or LASNR markers.
The FOA damage condition can be roughly obtained using
these LASNRmarkers. However, due to the presence of stray
light, a significant amount of noise is present in FODI images
in addition to true damage, as shown in Fig. 1(b), which is
referred to as false damage.6,12,13 These candidate sites can
generally be divided into these categories: damage site, hard-
ware reflection (HR), damaged CCD pixels (DC), reflection
of a damage site (RD), and attachments (Att).14 Damage sites
are also called true damage sites or true sites, and the others
are called false damage sites or false sites. How to accurately
remove all kinds of false damage while retaining the true
damage is a hot and challenging topic in the present research.
Abdulla et al. conducted machine learning of an ensemble of
decision trees to identify HR-type false sites from LASNR
markers with very high accuracy (99.8%, 10-fold crossvali-
dation). After the removal of HR-type sites, the remaining
false sites (Abdulla et al.15 referred to them as being of
the unknown type, here abbreviated as UN-type) and true
sites were mixed together. DC-type false sites are caused
by radiation or thermal noise generated by long-term oper-
ation in a vacuum environment and generally appear as ran-
domly distributed isolated pixels with high gray values.
These DC can be easily identified via machine learning or
other pattern recognition methods. To save time for later
machine learning classifications, we have identified these
pixels in the data-preprocessing step and removed them
from the FODI image. RD-type false sites are also easy to
identify and will be discussed in Sec. 2.1. Att-type false
sites are more similar to true sites than any other types of
false site when observed by the naked eye. The traditional
machine learning methods often struggle to identify them,
and almost no related studies exist in the field of damage
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online inspection. To solve this problem, we establish our
FODI detection system in the SG-III laser facility and
present a new solution for the classification of true and
false sites. Limited by the size of the workspace, the SG-
III FODI system is smaller than the NIF FODI system, as
shown in Fig. 1(a); its size is 0.35 m. The SG-III FODI sys-
tem obtains online images in a vacuum target chamber, in
which the distance between the FOA and FODI camera usu-
ally ranges from 3.7 to 5.1 m. This system can detect damage
larger than 100 μm with a sizing accuracy of at most �15%
and damage ranging from 50 to 100 μm with a sizing accu-
racy of at most�30%. For convenience of description, FODI
is herein used to refer to SG-III FODI unless specified as
NIF FODI.

The goal is to combine all false sites together as one type,
identifying and removing all of them simultaneously rather
than identifying only one false site type or leaving other false
site types to be mistaken for true sites. The categories,
causes, and solutions of the candidate sites are summarized
in Table 1. To propose a new solution, we analyze the optical
principles of the generation of false damage and true damage
and the differences in the optical features of their images
generated by a CCD. The simulation and experiment reveal
that the light leakage caused by edge illumination forms stray
light, which is an important factor of the appearing of HR-
type, RD-type, and Att-type false sites in FODI images. As
shown in Fig. 1(b), the illuminated border on the adjacent
optics, the unmarked white strip, and the large bright spot
are all false sites. In this work, the greatest challenge is to

identify Att-type false sites. To effectively distinguish
them, this paper analyzes their scattering and imaging fea-
tures. Since a scratch is a lengthened pit, we need to analyze
only the luminous characteristics of a pit. The true damage
sites are shown in Fig. 1(b), e.g., sites B and E. Finally, we
use machine learning to perform high-accuracy classification
experiments on false and true damage.

Fig. 1 The SG-III FODI system, with the LASNR of each false and true damage sites indicated in the
FODI online image. (a) SG-III FODI system, which we developed for the SG-III laser facility at the CAEP;
it is also the experimental device used in our paper. (b) True and false damage sites in an SG-III FODI
online image.

Table 1 The types, causes, and solutions of candidate sites.

Type Cause Solution

True Pit High-power laser
irradiation

Feature vector and
K-ELM

HR FOA inner metal wall or
adjacent optics
illuminated by stray light

RD Defects on adjacent
optics illuminated by
stray light

False

Att Attachments illuminated
by stray light

DC Radiation or thermal
noise generated during
long-term operation in a
vacuum environment

Preprocessing
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2 Analysis of True and False Damage
Characteristics

2.1 Reason for the Occurrence of False Damage

An FODI system uses edge illumination as an imaging
technology.8,16,17 As shown in Fig. 2, all optics have two
microlaser diodes (MLDs) fixed in a metal frame as the illu-
mination light source. Two cases are shown in Figs. 2(a) and
2(b), in which the MLD illumination light wavelength is
808 nm, the divergence angle is 70 deg, and the degree of
light polarization is 0.9. In the case of a fused silica material
vacuum separator, the size is 430 mm × 430 mm × 10 mm.
For a nondamaging optic, the light emitted from the MLD is
irradiated onto its surface, and the total internal reflection
(TIR) propagates through the optic. When light is transmitted
to the other border of the optic, the TIR condition is
disrupted, and light scatters to the outside.18 This is the
main cause of stray light. Using the Monte Carlo ray-tracing
method in the TracePro simulation software (Lambda
Research Corporation, Littleton, Massachusetts), the optical
energy radiating outward (front, back, left, right, up, and
down) from the optics can be calculated. As shown in
Figs. 2(c) and 2(d), monitors of the front, back, left, right, up,
and down radiation are set outside the optics. We can calcu-
late the optical power incident on each monitor. For conven-
ience, Figs. 2(c) and 2(d) show 2.5% of the total simulated
light.

When the single MLD light power is 1.579 W, the power
Pi injected into the optic is 2 × 1.579 W. The data corre-
sponding to the incident light power on each position mon-
itor (Pleft, Pright, Pfront, Pback, Pup, and Pdown), the total power
radiated outward [Po, as shown in Eq. (1)], and the fraction
of leakage power (Po∕Pi) are shown in Table 2.

EQ-TARGET;temp:intralink-;e001;326;752Po ¼ Pleft þ Pright þ Pfront þ Pback þ Pup þ Pdown: (1)

The data presented in Table 2 show that the power of
leaked light accounts for nearly 1/4 of the luminous
power of the two MLDs. This leaked light interferes with
FODI imaging. In the FOA presented in Fig. 3, two damage
sites are shown: pit types A and B on optic1 and optic2. In
addition, a fused silica particle of Att-type C is shown in
optic2. The FODI system uses time-division-multiplexing-
independent edge illumination technology; thus, if the
inspected optic is optic2, only the MLDs on the optic2 edge
illumination light source are turned on, whereas the MLDs
on the others optics are turned off. Stray light leaked from
optic2 will be reflected onto the final inner metal wall or
adjacent optics3; A and C may also be illuminated by this
stray light. Although A represents true damage on optic1,
it is false damage for optic2 in the FODI image. For this
false damage, which Spaeth et al.14 called the reflection
of a damage site (RD-type false site), we can adjust the FODI
camera lens so that its imaging is blurry and easy to distin-
guish using a machine learning classifier. For the case of C, if
the contact area between C and the optic surface is small and
no extraneous stray light exists, C will not appear in the
FODI image. When extraneous stray light irradiates C, an
Att-type false site will appear in the FODI image of optic2.

2.2 Far-Field Light Intensity Features of True and
Att-Type False Damage

For optic2, our experimental results indicate that the pit
depth h is approximately one-fifth the lateral diameter d.
Assuming that the damage section of the pit is a smooth
arc or a burr arc, fused silica debris attachments are divided

Fig. 2 Two illumination modes showing light leakage. (a) Illumination mode 1. (b) Illumination mode 2.
(c) Light leakage of mode 1. (d) Light leakage of mode 2.
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into two types: the Att1-type, which is symmetrical with
respect to the pit, and the Att2-type with an elliptical section.
The two-dimensional (2-D) physical topography and the
sizes of pit, Att1 and Att2 are shown in Fig. 4. If the ampli-
tude of the internal reflection lighting S is set to 1.0, the inci-
dence angle range is 0 deg to 23.24 deg; if the amplitude of
the stray light N is 0.5, then the incidence angle range is
0 deg to 38.36 deg (the incidence angle ranges of S and
N can be calculated using TracePro). The illuminations of
pit, Att1, and Att2 are divided into the cases shown in
Fig. 4. 2-D simulation analyses of the intensity distributions
of pit, Att1, and Att2 at the position of the imaging lens and
the CCD surface are numerically calculated by the finite-dif-
ference time-domain (FDTD) method and Fourier optic
angle spectrum theory (AST).19,20

The far-field intensity distributions at the FODI camera
lens of pit, Att1, and Att2 are simulated using the FDTD
method in different illumination modes. The light intensity

distributions at the CCD surface are calculated using the
Fourier optic AST.20–22 The intensity distribution curves
for the smooth-shaped pit, Att1, and Att2 are shown in
Fig. 5. The light intensity distribution curves for the burr-
shaped pit, Att1, and Att2 are shown in Fig. 6.

Suppose that the maximum light intensity value of the
CCD in Figs. 5(b), 5(d), 6(b), and 6(d) is vmax, v1 ¼ 0.1vmax,
and v2 ¼ 0.9vmax, L is the total interval length along the
x-axis, L1 is the interval length of the light intensity value
greater than v1, and L2 is the interval length of the light
intensity value greater than v2. We refer to the light intensity
illuminated only with S as the signal light intensity and the
light intensity illuminated with S and N as the mixed light
intensity. An examination of Figs. 5(b), 5(d), 6(b), and 6(d)
shows that the light intensity distributions of the pit and
attachments differ, especially at the CCD surface, and that
this difference can be represented by a series of features
defined as follows: (1) effective light interval ratio [zð1Þ],

Table 2 Light power in all directions measured by the monitors (W ).

Monitor P i P left P right P front Pback Pup Pdown Po Po∕P i

Mode 1 3.16 0.16 0.19 0.42 0 0.03 0.02 0.82 25.94%

Mode 2 3.16 0.15 0.19 0.19 0.17 0.02 0.02 0.75 23.70%

Fig. 3 True damage and false damage (RD-type and Att-type) generated in FODI image.

Fig. 4 2-D topography and illumination conditions for pit, Att1, and Att2. (a) Smooth arc pit (S). (b) Smooth
arc Att1 (S). (c) Smooth ellipse Att2 (S). (d) Smooth arc pit (S + N). (e) Smooth arc Att1 (S + N). (f) Smooth
ellipse Att2 (S + N). (g) Burr arc Pit (S). (h) Burr arc Att1 (S). (i) Burr ellipse Att2 (S). (j) Burr arc Pit (S + N).
(k) Burr arc Att1 (S + N). (l) Burr ellipse Att2 (S + N).
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which is L1∕L; (2) sum of the signal light intensities [zð2Þ];
(3) sum of the noise light intensities [zð3Þ]; (4) average value
of the signal light intensity [zð4Þ]; (5) variance of the signal
light intensity [zð5Þ]; (6) average value of the noise light
intensity [zð6Þ]; (7) maximum value of the signal light inten-
sity [zð7Þ]; (8) maximum value of the noise light intensity
[zð8Þ]; (9) sum of the LASNR values [zð9Þ]; (10) signal-to-
noise light energy ratio [zð10Þ]; (11) saturated light interval
ratio [zð11Þ], which is L2∕L; and (12) saturated light energy
ratio [zð12Þ]. These 12 features ½zð1Þ; : : : ; zð12Þ� illustrate the
difference between Att-type false damage and true damage

from the perspective of simulation. Hence, these 12 features
in the simulation provide the theoretical basis for extracting
features from FODI images. For example, for the burr-
shaped pit and attachments, if we combine Figs. 6(b) and
6(d), we can obtain the new figure shown in Fig. 7.

Figure 7 shows that due to the presence of stray light N,
the mixed light intensity is higher than the corresponding
signal light intensity. The noise light intensity can be
obtained by subtracting the signal light intensity from the
mixed light intensity. We suppose that a baseline exists in
Fig. 7 and that the curve above the baseline can cause the
CCD pixels to produce photoelectric induction. In the

Fig. 5 Light intensity distribution curves for the smooth-shaped pit, Att1, and Att2. (a) Illumination with S.
(b) Illumination with S. (c) Illumination with S and N. (d) Illumination with S and N.

Fig. 6 Light intensity distribution curves for the burr-shaped pit, Att1, and Att2. (a) Illumination with S.
(b) Illumination with S. (c) Illumination with S and N. (d) Illumination with S and N.
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case of illumination with S or S + N, the interval of pit above
the baseline is always longer than that of Att1 and Att2. This
means that a pit can form a larger spot on a CCD than attach-
ments when they have the same size. For the curves above
the baseline, the curve of pit is higher than that of Att1 and
Att2. This means that a pit can form a brighter spot on a CCD
than attachments when they have the same size. In other
words, the difference in zð1Þ between the pit and attachments
will result in different bright spot sizes on the CCD, the dif-
ference in zð2Þ between the pit and attachments will result in
different sums of the pixel gray values of the spot signal on

the CCD, and so on. A comparison of these features
½zð1Þ; : : : ; zð12Þ� for the burr-shaped pit, Att1, and Att2 in
the optical simulation is shown in Table 3.

2.3 True and Att-Type False Damage in an FODI
Image

In the SG-III laser facility damage inspection experiment,
Att1 and Att2 are attributed to Att-type false damage; they
are also UN-type false sites, as mentioned in the introduc-
tion. An FODI system is used to collect the images under
the same illumination conditions and with a pit and an attach-
ment located on the same optic surface. The pit and attach-
ment are ∼100 μm in size, and their images are shown
in Fig. 8.

An FODI image is usually considered to be the superpo-
sition of a signal image and a noise image. The signal image
can be obtained by processing an FODI image using a
Gaussian high-pass filter, whereas the noise image can be
obtained by processing FODI images using a Gaussian
low-pass filter.10,11 According to the 12 feature parameters
of the light intensity distribution on the CCD surface in
the simulation formed by pit, Att1, and Att2, we present
the 12 parameters that correspond to the former parameters
for describing true and false damage in the experimental
FODI images: (1) area (in pixels) in the FODI image,
which corresponds to the effective light interval ratio in
the simulation [xð1Þ ∼ zð1Þ]; (2) sum of the intensities in
the signal image, which corresponds to the sum of the signal
light intensities [xð2Þ ∼ zð2Þ]; (3) sum of the intensities in the
noise image, which corresponds to the sum of the noise light
intensities [xð3Þ ∼ zð3Þ]; (4) signal mean, which corresponds
to the average value of the signal light intensity [xð4Þ ∼ zð4Þ];
(5) standard deviation of the pixel values in the signal image,
which corresponds to the variance of the signal light intensity
[xð5Þ ∼ zð5Þ]; (6) noise mean, which corresponds to the aver-
age value of the noise light intensity [xð6Þ ∼ zð6Þ]; (7) maxi-
mum pixel intensity value in the signal image, which
corresponds to the maximum value of the signal light inten-
sity [xð7Þ ∼ zð7Þ]; (8) maximum pixel intensity value in the
noise image, which corresponds to the maximum value of
the noise light intensity [xð8Þ ∼ zð8Þ]; (9) sum of the
LASNR values, which corresponds to the sum of the
LASNR values [xð9Þ ∼ zð9Þ]; (10) ratio of signal energy-to-
noise energy, which corresponds to the signal-to-noise
light energy ratio [xð10Þ ∼ zð10Þ]; (11) saturation area ratio,
which corresponds to the saturated light interval ratio
[xð11Þ ∼ zð11Þ]; and (12) saturation intensity ratio, which cor-
responds to the saturated light energy ratio [xð12Þ ∼ zð12Þ]. To
describe the morphological differences between the pit and
attachment in the FODI image, we add two more features:
long axis of best fit ellipse [xð13Þ] and short axis of best
fit ellipse [xð14Þ]. For example, a comparison of these features
½xð1Þ; : : : ; xð14Þ� for the burr-shaped pit and attachment in the
FODI images shown in Figs. 8(c) and 8(d) is shown in
Table 3.

Under constant illumination conditions, the differences in
the pit and attachment in an FODI image can be character-
ized by ½xð1Þ; : : : ; xð14Þ�, that is, we can use 14 features to dis-
tinguish between false sites and true sites with an appropriate
mathematical model. Because the SG-III FODI system uses

Fig. 7 Light intensity distribution curves for the burr-shaped pit, Att1,
and Att2.

Table 3 Pit and attachment features of light intensity simulation and
FODI images.

FDTD + AST simulation FODI experiment

No. Pit Att1 Att2 No. Pit Att

zð1Þ 0.35 0.24 0.20 x ð1Þ 5 4

zð2Þ 8.6 × 10−8 4.1 × 10−8 1.1 × 10−8 x ð2Þ 148,225 33,811

zð3Þ 1.1 × 10−8 1.6 × 10−8 3.1 × 10−8 x ð3Þ 19,605 9535

zð4Þ 3.3 × 10−13 1.6 × 10−13 4.1 × 10−14 x ð4Þ 29,645 8453

zð5Þ 5.2 × 10−23 1.1 × 10−23 5.9 × 10−25 x ð5Þ 8497 5189

zð6Þ 4.3 × 10−14 6.1 × 10−14 1.2 × 10−13 x ð6Þ 3921 2384

zð7Þ 5.8 × 10−10 2.8 × 10−10 6.8 × 10−11 x ð7Þ 37,721 17,277

zð8Þ 6.2 × 10−11 9.7 × 10−11 2.1 × 10−10 x ð8Þ 3924 2388

zð9Þ 9354 2953 377 x ð9Þ 309 69

zð10Þ 7.7 2.58 0.35 x ð10Þ 61 17

zð11Þ 0.17 0 0 x ð11Þ 0 0

zð12Þ 0.24 0 0 x ð12Þ 0 0

— — — — x ð13Þ 2.83 2.31

— — — — x ð14Þ 1.73 1.33

Optical Engineering 053112-6 May 2018 • Vol. 57(5)

Wei et al.: Automatic classification of true and false laser-induced damage in large aperture optics



edge illumination technology, it is affected by the inhomo-
geneity of the light field distribution within the optics. Using
TracePro simulations, we can obtain the internal light inten-
sity distribution, as shown in Fig. 9. When the same shape
flaw is located at different locations on the optic surface, the
scattered light energy generally appears to be different,
which causes variations in the light energy scattered to
the CCD; therefore, images with different brightness values
are generated. To express differences in the imaging caused
by this uneven illumination, image coordinates ðX; YÞ should
be added, with xð15Þ ¼ X and xð16Þ ¼ Y, and a total of 16
features constitute the feature vector xi ¼ ½xð1Þi ; : : : ; xð16Þi �T
for describing the i’th LASNR marker in the FODI image.

3 Automatic Classification Method and
Experimental Results

Machine learning is an effective method for managing com-
plex classification problems. In this paper, we use the kernel-
based extreme learning machine (K-ELM) to solve the auto-
matic classification problem for true and false damage.23–25

The K-ELM is a fast learning algorithm for single-hidden-
layer neural networks, and compared with traditional
machine learning methods, such as the error backpropaga-
tion neural network (BPNN) and support vector machine
(SVM), it has the advantage of being able to perform
rapid learning and to obtain highly accurate results.26,27

The K-ELM classification model we used in this paper is
as follows:

EQ-TARGET;temp:intralink-;e002;326;386fðxÞ ¼

2
64
Kðx; x1Þ

..

.

Kðx; xMÞ

3
75
T�

I
C
þΩtrain

�
−1
T: (2)

Here, Kðx; xiÞ is the kernel function, x ¼ ½xð1Þ; : : : ; xð16Þ�
is the input sample site to be classified, xi ¼ ½xð1Þi ; : : : ; xð16Þi �
ði ¼ 1; : : : ;MÞ is the training sample site, M is the
number of all training samples, I is the unit matrix, C
is a constant, Ωtrain is a kernel matrix composed of training
samples, ðΩtrainÞi;j ¼ Kðxi; xjÞ, ði; j ¼ 1; : : : ;MÞ, and
T ¼ ½y1; : : : ; yM�T is a column vector composed of the
class labels of the training samples. In our experiment,
Kðx; xiÞ ¼ expð−γkx − xik2Þ, with γ being a constant.
The machine learning classification process for the identifi-
cation of true or false damage is shown in Fig. 10.

The K-ELM is a supervised learning method. The training
data consist of a set of samples, with each sample being a
pair consisting of a feature vector xi and a class label yi
(also called the type of site). We match the FODI offline
image to the FODI online image to complete the collection
of samples. Detailed steps, as well as an example of our
experiment, are as follows:

Step 1: Collect the FODI online image of an inspected optic
vacuum isolator, mark all possible damage sites using
the LASNR algorithm, as shown in Fig. 11(a), and
characterize these markers with a feature vector xi.
We refer to these sites as online sites.

Fig. 8 True and false damage formed by the pit and attachment. (a) The pit observed under a micro-
scope. (b) The attachment observed under a microscope. (c) The pit observed in an FODI image. (d) The
attachment observed in an FODI image.
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Step 2: Remove the inspected optic vacuum isolator from
the SG-III laser facility and place it in a nondisturb-
ing light environment after cleaning the attachments
on its surface. Use the FODI offline system to
collect an offline image, and mark all sites (referred
to as offline sites) using the LASNR algorithm, as
shown in Fig. 11(b). Since the attachments have
been cleaned away, Att-type false sites do not
appear in Fig. 11(b). HR-type false sites are also
not generated in the offline image in the nondisturb-
ing light environment; hence, all the offline sites can
be considered to be true damage sites.

Step 3: Perform a geometric transformation to match the
offline sites to the online sites. The sites in the
FODI online image that can be matched with offline
sites represent true damage sites; the other sites in
the FODI online image that cannot be matched with
offline sites represent false damage sites. As shown
in Fig. 12, after matching, we obtain false sample

sites and true sample sites. Moreover, let yi ¼ 1 for
the i’th true online site and yi ¼ −1 for the i’th false
online sites; thus, all online sites can be recorded
as T ¼ fðxi; yiÞjxi ∈ R16; yi ¼ �1; i ¼ 1; : : : ; Pg.
We randomly divide the sample T into two parts:
T train and T test. The training data set is T train ¼
fðxi; yiÞjxi ∈ R16; yi ¼ �1; i ¼ 1; : : : ;Mg, and the
testing data set is T test ¼ fðxi; yiÞjxi ∈ R16; yi ¼
�1; i ¼ 1; : : : ; Ng; here, M ¼ N ¼ P∕2.

Step 4: Use the K-ELM to conduct learning on the training
data set T train. Then, optimize the parameters ðC; γÞ,
as shown in Fig. 13.

Step 5: Use the K-ELM classifier with the optimized param-
eters ðC�; γ�Þ after training to verify the classifica-
tion accuracy rate on the testing data set T test.
The testing accuracy rate R is expressed as follows:

EQ-TARGET;temp:intralink-;e003;326;91R ¼ NTtoT þ NFtoF

N
: (3)

Fig. 10 True or false damage classification process using a machine learning classifier.

Fig. 9 Light intensity distribution at the inner optic surface. (a) Light intensity distribution at the inner optic
surface under illumination mode 1. (b) Light intensity distribution at the inner optic surface under illumi-
nation mode 2.
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Here, NTtoT is the number of true sites accurately classi-
fied, NFtoF is the number of false sites accurately classified,
and N is the number of testing data sets.

We wrote our codes using the Halcon software (MVTec
Software GmbH, Munich, Germany) to perform the above

steps. In our training and testing samples, which include
true sites and all types of false sites, the damage size
range is 50 to 1200 μm. As shown in Table 4, the testing
accuracy rate of the K-ELM with 16 features and the opti-
mized parameters ðC�; γ�Þ is verified on the testing data set.

Fig. 11 Online and offline FODI images. (a) Online sites, which include true and false sites. (b) Offline
sites, which include only true sites in the FODI offline image. (c) Enlarged view of the green frame in
Fig. 11(a). (d) Enlarged view of the green frame in Fig. 11(b).

Fig. 12 Sample sites in FODI online image. (a) Only false sample sites in the FODI online image. (b) Only
true sample sites in the FODI online image. (c) Enlarged view of the green frame in Fig. 12(a).
(d) Enlarged view of the green frame in Fig. 12(b).
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For comparison, we test the accuracy of the ensemble of
decision trees with 12 features (denoted as EDT1) proposed
in Ref. 15 and the ensemble of decision trees with 16 features
(denoted as EDT2) proposed in this paper. Lastly, we also
provide the classification results obtained using the BPNN
and SVM methods in Table 4 (T: true sites, F: false sites).

4 Discussion
Overall, the results in Table 4 show that the testing accuracy
rate of the K-ELM is the highest among these classifiers.
From the perspective of training speed, the speed of the
K-ELM is the fastest, which is due to the structure and char-
acteristics of the algorithm, regarding which this paper offers
no further discussion. The rapid training speed helps to
reduce the time required to obtain the optimal classifiers.
From the perspective of testing speed, the speed of the K-
ELM is only slightly lower than that of the SVM and higher
than that of all other classifiers. The rapid testing speed has
important practical significance in terms of practical
application.

Further analysis shows that because the testing accuracy
rate of EDT2 is higher than that of EDT1, the 16 features
presented in this paper are more effective in characterizing
the difference between true and false damage. Thus, it is
meaningful to analyze the optical principle of true and
false damage. In addition, choosing the appropriate classifier
can further improve the classification accuracy, as well as
help to reduce the training time and testing time.

5 Conclusions
This paper presents an automatic classification method for
the identification of true and false damage sites in an

FODI online image, and it solves the problem of false dam-
age interference, especially from Att-type false damage,
which cannot be identified by the human eye and regarding
which the previous literature in the field of damage online
inspection makes little reference. This method accurately
aligns the FODI system inspection results with the FOA
damage condition, thereby improving authenticity and cred-
ibility. First, stray light caused by edge illumination is an
important factor of the generation of false damage sites,
as determined by the Monte Carlo ray-tracing method.
Second, the FDTD and Fourier optic AST for Maxwell’s
equations are used to analyze the far-field light intensity
characteristics of the pit and attachments, and the multipara-
meter-characterized differences in light intensity distribu-
tions on CCD surfaces are analyzed theoretically. The
multiparameter-characterized differences provide a key theo-
retical basis for selecting features in machine learning.
Finally, the K-ELM model is used to realize intelligent clas-
sification of true and false damage sites based on feature vec-
tors consisting of multiple parameters. The experimental
results show that the 16 features proposed in this paper
can improve the classification accuracy of true and false
damage sites, including false damage site types such as
HR, DC, RD, and Att. In the field of damage online inspec-
tion, the K-ELM model is also more suitable for the classi-
fication of true and false sites than the existing methods. The
accuracy rate of the K-ELM classifier is 97.46% for the test-
ing data set, for which the damage size range is 50 to
1200 μm, and its calculation speed is relatively good, thus
meeting the technical requirements for the FODI online
system.
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