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Abstract. Microgrid polarization cameras have histori-
cally experienced lower performance than is typical for
monolithic polarization systems. Specifically, their polar-
izer elements have had a lower extinction ratio and a
larger orientation error. We show how to use the calibrated
parameters of a nonideal polarizer to modify the polariza-
tion measurement model, effectively allowing one to
generate high-performance measurements from low-
performance elements. We demonstrate the effectiveness
of this approach on a commercial polarization camera and
estimate the signal-to-noise ratio penalty for using non-
ideal polarizers in this camera as being 1.25× versus a
system using ideal polarizers. © The Authors. Published by SPIE
under a Creative Commons Attribution 4.0 Unported License. Distribution or
reproduction of this work in whole or in part requires full attribution of the original
publication, including its DOI. [DOI: 10.1117/1.OE.58.8.080501]
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A polarizer can be used to estimate the orientation and
degree of linear polarization of light by rotating the polarizer
to the four angles: 0 deg, 45 deg, 90 deg, and 135 deg and
measuring the light intensity transmitted at each angle. In a
polarization camera, this can be done in a single snapshot by
combining the measurements of four adjacent pixels, each of
which have micropolarizers oriented at each of the four
orientation angles (Fig. 1).1 For incoherent light, we can use
the Stokes vector s ¼ ðs0; s1; s2; s3ÞT to represent the input
polarization state and the Mueller calculus to model the four
intensities Iθ measured at the detector:
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I0 ¼
1

2
ðs0 þ s1Þ þ n0;

I45 ¼
1

2
ðs0 þ s2Þ þ n45;

I90 ¼
1

2
ðs0 − s1Þ þ n90;

I135 ¼
1

2
ðs0 − s2Þ þ n135; (1)

for random noise values nθ. In the analysis to follow,
we will assume all of the noise terms to have zero mean,
i.e., hIi þ nii ¼ Ii and hnii ¼ 0. This causes no difficulties
for Poisson-distributed noise, since our definition of the sig-
nal I and noise n results in the mean value of the Poisson-
distributed variable to be incorporated into I while n retains
the zero-mean stochastic portion.

The four equations of (1) have the matrix form

EQ-TARGET;temp:intralink-;e002;326;556

0
BB@

I0
I45
I90
I135

1
CCA

|fflfflfflfflffl{zfflfflfflfflffl}
I

¼ 1

2

0
BB@

1 1 0 0

1 0 1 0

1 −1 0 0

1 0 −1 0

1
CCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
W

0
B@

s0
s1
s2
s3

1
CA

|fflfflffl{zfflfflffl}
s

þ

0
B@

n0
n45
n90
n135

1
CA

|fflfflfflfflffl{zfflfflfflfflffl}
n

(2)

or I ¼ Wsþ n, where W is the measurement matrix. By
inspection, we can obtain the input linear Stokes vector
elements as
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ŝ0 ¼
1

2
ðI0 þ I45 þ I90 þ I135Þ;

ŝ1 ¼ I0 − I90;

ŝ2 ¼ I45 − I135; (3)

or
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@ ŝ0

ŝ1
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ŝ

¼ 1

2

0
@ 1 1 1 1

2 0 −2 0

0 2 0 −2

1
A

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
A

0
B@

I0
I45
I90
I135

1
CA

|fflfflfflfflffl{zfflfflfflfflffl}
I

; (4)

i.e., s ¼ AI, where A is the analysis matrix. To evaluate the
performance of a polarization measurement, we can use
the measurement and analysis matrix elements to calculate
the Stokes vector covariance matrix K as2,3
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where sk is the k’th Stokes vector element in units of photo-
electrons and vd is the detector noise variance, also in units of
photoelectrons. For an ideal polarizer, this set of four mea-
surements produces variances in the Stokes vector compo-
nents as3*Address all correspondence to Nathan Hagen, E-mail: nh@hagenlab.org
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varðŝ0Þ ¼
1

2
s0 þ vd;

varðŝ1Þ ¼ s0 þ 2vd;

varðŝ2Þ ¼ s0 þ 2vd: (6)

The equally weighted variance (EWV) is often used to
summarize the measurement performance, such that in this
case EWV ¼ 5

2
s0 þ 5vd.

3

A nonideal linear polarizer is a diattenuator defined by
its diattenuation D, its orientation α, and its efficiency η
(the average transmission of the diattenuator for all input
polarization angles):4
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for c ¼ cosð2αÞ and s ¼ sinð2αÞ. An ideal polarizer has
D ¼ 1, η ¼ 1, and orientation α. The polarizer’s extinction
ratio X is derived from the diattenuation as X ¼
ð1þDÞ∕ð1 −DÞ.

Modeling each pixel of a polarization camera as a non-
ideal polarizer, we can calibrate the diattenuation Dn and ori-
entation αn parameters at each pixel n, then use the Mueller
calculus to estimate the polarization state by combining mea-
surements Ii from each set of four neighboring pixels. This
produces the measurement model5
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The polarizer efficiency η does not appear here because it
typically cannot be separated from the pixel’s internal quan-
tum efficiency qint—the two appear together as the single
factor qext ¼ ηqint as the “external” quantum efficiency.
Because we do not calibrate the camera’s quantum efficiency
here, the equations below assume qext ¼ 1, so that the Stokes
parameters are represented in units of photoelectrons rather
than photons.

The general analytical form of A is quite complex, but if
we assume that the orientation errors are small then we can
use a Taylor expansion about their nominal values:
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cosð2α0Þ ¼ cosð2ϵ0Þ → 1;

cosð2α1Þ ¼ cosð90°þ 2ϵ1Þ → −2ϵ1;

cosð2α2Þ ¼ cosð180°þ 2ϵ2Þ → −1;

cosð2α3Þ ¼ cosð270°þ 2ϵ3Þ → 2ϵ3;

and
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sinð2α0Þ ¼ sinð2ϵ0Þ → 2ϵ0;

sinð2α1Þ ¼ sinð90°þ 2ϵ1Þ → 1;

sinð2α2Þ ¼ sinð180°þ 2ϵ2Þ → −2ϵ2;

sinð2α3Þ ¼ sinð270°þ 2ϵ3Þ → −1;

where ϵn represents the angular error about the nominal ori-
entation. Likewise, each diattenuation can be represented as
Di ¼ 1 − Δi, where the diattenuation errors Δi are assumed
to be small. For this first-order approximation regime, the
analysis matrix A in the Stokes vector estimation:
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simplifies to
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A00 ¼ 2þ Δ0 − Δ2 þ 2ϵ1 − 2ϵ3;

A01 ¼ 2þ Δ1 − Δ3 − 2ϵ0 þ 2ϵ2;

A02 ¼ 2 − Δ0 þ Δ2 − 2ϵ1 þ 2ϵ3;

A03 ¼ 2 − Δ1 þ Δ3 þ 2ϵ0 − 2ϵ2;

A10 ¼ 4þ Δ0 þ 3Δ2 þ 2ϵ1 − 2ϵ3;

A11 ¼ Δ0 − Δ2 − 4ϵ0 þ 2ϵ1 þ 4ϵ2 − 2ϵ3;

A12 ¼ −4 − 3Δ0 − Δ2 þ 2ϵ1 − 2ϵ3;

A13 ¼ Δ0 − Δ2 þ 4ϵ0 − 2ϵ1 þ 4ϵ2 þ 2ϵ3;

A20 ¼ Δ1 − Δ3 þ 2ϵ0 þ 4ϵ1 − 2ϵ2 þ 4ϵ3;

A21 ¼ 4þ Δ1 þ 3Δ3 − 2ϵ0 þ 2ϵ2

A22 ¼ Δ1 − Δ3 þ 2ϵ0 − 4ϵ1 − 2ϵ2 − 4ϵ3;

A23 ¼ −4 − 3Δ1 − Δ3 − 2ϵ0 þ 2ϵ2: (10)

Here, ŝ 01 indicates the calibration-corrected Stokes estimate,
while ŝi without a prime indicates the estimate assuming an
ideal polarizer. In Eqs. (9) and (10), note that it is generally
not useful to define α0 as anything but zero, since the system
reference axis is a degree of freedom that we have to choose
in most situations. In this case, we can set ϵ0 ¼ 0.

To demonstrate this technique, we use a commercially
available polarization camera to measure the Stokes vector
elements of the light transmitted through a high-extinc-
tion-ratio Glan–Thompson polarizer as the polarizer is
rotated through a set of angles from 0 deg to 180 deg.
The polarization camera is a photonic lattice PI-110, having

Fig. 1 A polarization camera showing a 2 × 2 pixels group from the
detector array and their polarization filter orientations.
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1164 × 874 pixels of 4.65-μm size, 20-Hz frame rate, 12-bit
depth, and 520� 20-nm wavelength range. Figure 2 shows
the resulting Stokes parameter estimates before (ŝ1 and ŝ2)
and after (ŝ 01 and ŝ 02) applying the correction, corresponding
to using the ideal polarization analysis matrix [Eq. (4)] or a
corrected analysis matrix [Eq. (10)]. We can see that the cor-
rected curves display a higher contrast than the uncorrected
curves, so that the mean values of the Stokes parameter
(averaged across all camera pixels) at each angle of the input
polarizer are closer to the correct values. Looking closely at
the curves, we can also see that the standard deviation of the
corrected result is slightly larger than for the uncorrected
measurement.

To see why the corrected result has higher noise, we can
use Eqs. (5), (8), and (10) in their analytical form to calculate
the general equation for the variances. To keep the expres-
sions as simple as possible, and because our experimental
data show that the diattenuation errors are much larger than
the angular errors in our system, we set the angular errors
to zero (ϵi ≈ 0). Thus, in the detector-limited noise regime
(uniform Gaussian noise), the variances become
EQ-TARGET;temp:intralink-;e011;63;254
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≈ vd;
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≈ 2vd½1þ Δ0 þ Δ2�;
varðŝ 02Þ ¼
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4
½8þ 3Δ2

1 þ 3Δ2
3 þ 2Δ1ðΔ3 þ 4Þ þ 8Δ3�

≈ 2vd½1þ Δ1 þ Δ3�; (11)

where the variances are the diagonal elements of the Stokes
vector covariance matrix, varðŝ 00Þ ¼ K00, etc. The approxi-
mations in Eq. (11) assume small errors so that only the
first-order terms are retained. In this approximation, varðŝ 00Þ
is independent of the diattenuation errors Δi, while varðŝ 01Þ

increases linearly with Δ0 and Δ2, and varðŝ 02Þ with Δ1 and
Δ3, respectively. The Stokes parameters are often expressed
in normalized form s̃i ¼ si∕s0, for which the expressions in
(11) need to be modified. The normalized parameter varian-
ces are related to their unnormalized counterparts by6
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1

hs 00i2
varðs 0i Þ þ

hs 0i i2
hs 00i4

varðs 00Þ; (12)

which together with Eq. (11) gives
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varðs̃ 01Þ ¼
vd
s20

ð2½1þ Δ0 þ Δ2� þ s̃21Þ;

varðs̃ 02Þ ¼
vd
s20

ð2½1þ Δ1 þ Δ3� þ s̃22Þ; (13)

and where we have replaced the corrected parameter means
with the true parameter values: hs 00i → s0, etc.

To see how these variance equations behave quantita-
tively, we can look at an example group of 4 pixels on the
polarization camera. For this group, we obtain calibrated dia-
ttenuations of
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D0 ¼ 0.8277; D1 ¼ 0.7435; D2 ¼ 0.8133; D3 ¼ 0.7338;

and calibrated orientation angles of
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α0 ¼ 0 deg; α1 ¼ 49.650 deg;

α2 ¼ 88.694 deg; α3 ¼ 134.399 deg;

so that the differences from the nominal angles are 0 deg,
4.650 deg, −1.306 deg, and −0.601 deg. Converting the
angular errors to radians for the ϵi values, we obtain the error
parameters:
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Δ0 ¼ 0.1723; Δ1 ¼ 0.2565; Δ2 ¼ 0.1867; Δ3 ¼ 0.2662;

ϵ0 ¼ 0; ϵ1 ¼ 0.0811; ϵ2 ¼ −0.0228; ϵ3 ¼ −0.0105:

(14)

With these parameters, the variances (11) in the detector-lim-
ited noise regime (uniform Gaussian noise) become, via
Eq. (5),

EQ-TARGET;temp:intralink-;e015;326;269varðŝ 00Þ ¼ 1.00vd; varðŝ 01Þ ¼ 3.23vd; varðŝ 02Þ ¼ 3.01vd;

(15)

for detector noise variance vd. In comparison to Eq. (6), we
see that the corrected nonideal measurement for this pixel
group suffers an increase in the variances for measuring
s1 and s2 by factors of 1.62 and 1.51, respectively, while the
variance for s0 is basically unaffected. These correspond to a
loss in signal-to-noise ratio (SNR) by factors of 1.27 in s1
and 1.23 in s2.

Using the same Eqs. (2), (5), and (10), we can obtain sim-
ilar results for the Poisson noise regime, for which the vari-
ance equations become

Fig. 2 Themeasured uncorrected linear Stokes parameters ŝ1 and ŝ2
and corrected parameters ŝ 0

1 and ŝ 0
2 obtained while rotating the input

angle of polarization from 0 deg to 180 deg. Note that the Stokes
parameters, here, are shown in their normalized form: ~s1 ¼ s1∕s0 and
s̃2 ¼ s2∕s0. Each curve is obtained as an average of the results from
all pixels of the camera, while the grayed regions astride each curve
give the standard deviation of the result, also calculated using all pix-
els on the camera. The dashed curves indicate the measurement
result using the ideal polarization analysis matrix [Eq. (4)] and the
solid curves give the measurement with the corrected analysis matrix
[Eq. (10)].
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varðŝ 00Þ ≈
1

2
s0 þ

1

8
s1ðΔ0 − Δ2Þ þ

1

8
s2ðΔ1 − Δ3Þ;

varðŝ 01Þ ≈ s0ð1þ Δ0 þ Δ2Þ þ s1ðΔ2 − Δ0Þ;
varðŝ 02Þ ≈ s0ð1þ Δ1 þ Δ3Þ þ s2ðΔ3 − Δ1Þ; (16)

where only the first-order terms are retained. As we expect,
the variances of Eqs. (11) and (16) approach those of the
ideal polarizer system3 as the diattenuation errors approach
zero (Δi → 0).

For mixed Gaussian–Poisson noise, the Gaussian and
Poisson expressions (11) and (16) are simply added together
to get the total variance. Using the example diattenuation
errors of Eq. (14), the Stokes parameter variances under
Poisson noise become
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varðŝ 00Þ ¼ 0.500s0 − 0.001s1 − 0.002s2;

varðŝ 01Þ ¼ 1.542s0 þ 0.092s1 þ 0s2;

varðŝ 02Þ ¼ 1.381s0 þ 0s1 þ 0.014s2: (17)

The results of Eqs. (15) and (17) and Fig. 3 demonstrate
an SNR penalty due to reduced diattenuation that is similar to
that calculated by Tyo and Wei,7 where the authors con-
cluded via numerical simulation that polarizer extinction
ratios as low as 3 give a 3.5 dB (i.e., a factor of 2.2) penalty
in SNR. Although the measurement system analyzed by Tyo
and Wei is not the same as the one we consider, here, the
SNR penalty is similar in magnitude. Our results also agree
with those of Roussel et al.,8 who analyzed microgrid polari-
zation cameras and concluded that diattenuations of 0.75 to
0.85 will increase the variance in the estimated degree of
polarization by 1.6 to 3. What is different from Roussel et al.

is that the analytic dependence of the Stokes parameter vari-
ance is expressed here in terms of the calibration parameters
directly, allowing us to see more clearly the effect of mis-
alignment or low diattenuation on the measurements.

In Fig. 2, we can see that the mean values of the corrected
curves come close to the ideal behavior of a cosine curve
oscillating between þ1 and −1. The shaded regions sur-
rounding each curve describe the values within one standard
deviation about the mean, where we can expect to find the
data most of the time. The noise fluctuations result primarily
from the shot noise of the measurements, but are also influ-
enced by any error in the calibration parameters. As we can
expect for any linear estimation procedure, as the estimate
approaches the ideal cosine curve, noise fluctuations cause
some of the data at the peaks and valleys to extend beyond
the physically valid region between þ1 and −1.

From these results, we can see that most polarimeters can
tolerate a surprisingly low diattenuation if calibrated well. As
often is the case for indirect measurements, it is the accuracy
with which one can calibrate the system measurement model
that limits the measurement performance more than the
inherent accuracy of the components themselves. If we work
with low-extinction-ratio polarizers, we can still achieve
high-accuracy measurements, but only if we take extreme
care in the calibration and in ensuring the accuracy of our
reconstruction.9 For example, we should keep in mind that
the diattenuation value of a pixel is a spectrally dependent
quantity, so that the measurement spectrum must be similar
to the spectrum used during calibration in order for the
results to be accurate.10
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