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Abstract. Spectral and polarization imaging (SPI) is an emerging sensing method that permits
the analysis of both spectral and polarization information of a scene. The existing acquisition
systems are limited by several factors, such as the space requirement, the inability to capture
quickly the information, and the high cost. We propose an SPI acquisition system with a high
spatial resolution that combines six spectral channels and four polarization channels. The optical
setup employs two color-polarization filter array cameras and a pair of bandpass filters.
We define the processing pipeline, consisting of preprocessing, geometric calibration, spectral
calibration, and data transformation. We show that, around specular highlights, the spectral
reconstruction can be improved by filtering the polarized intensity. We provide a database of
28 spectropolarimetric scenes with different materials for future simulation and analysis by the
research community. © The Authors. Published by SPIE under a Creative Commons Attribution 4.0
International License. Distribution or reproduction of this work in whole or in part requires full attribution
of the original publication, including its DOI. [DOI: 10.1117/1.OE.61.4.043104]

Keywords: polarization; spectral; imaging; acquisition; calibration.

Paper 20220067G received Jan. 18, 2022; accepted for publication Mar. 30, 2022; published
online Apr. 22, 2022.

1 Introduction

Conventional color image sensors, either charge-couple device or complementary metal oxide
semiconductor, acquire images in three different channels, red, green, and blue (RGB). In col-
orimetry or spectrophotometry, these devices can have inaccuracy due to their low spectral
resolution.1 Multispectral imaging (MSI) or hyperspectral imaging (HSI) aims at capturing images
with more than three channels across the electromagnetic spectrum. These techniques can enhance
the accuracy of the spectral and color estimation of a surface.2 The main difference between MSI
and HSI is the number of sensing channels in a given spectral range. HSI typically has a higher
spectral resolution but is an expensive technique that suffers from low spatial resolution, and it is
mainly encountered in remote sensing applications.3 MSI is a trade-off4,5 that is more appropriate
for a more extensive application board, such as medical imaging6 or quality inspection.7

The polarization property is another light attribute that complements the intensity and fre-
quency. Human eyes cannot differentiate different polarization states without extra devices.
Polarization provides information about the direction of the transverse electric fields that com-
prises the electromagnetic radiation. The light can be fully or partially polarized or even unpo-
larized. The predominant type of polarization can be categorized as linear, circular, or elliptical.
Polarization analysis can model the relationship between the polarization state of the light and
the physical interaction with matter, after reflection, refraction, or transmission. Polarization
imaging offers the possibility of capturing data in 2D and is useful in computer vision, e.g.,
to separate the diffuse or specular components,8,9 analyze the spatial variation of the index
of refraction,10–12 or estimate the surface normals.13,14

Some insects such as crickets or butterflies developed a vision system to perceive both spec-
tral and polarization signals. This capacity helps them to catch their prey or with navigation.15

The combination of both modalities has gained interest in various applications, such as canopy
and ice detection,16,17 medical imaging,18 or object tracking.19 Spectral polarization imaging
(SPI) also plays an effective role in imaging over critical weather or underwater conditions.20,21
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Based on a recent review that we conducted,22 snapshot SPI acquisition systems have been
categorized as a division of amplitude23–25 or polarization grating devices.26–28 Table 1 summa-
rizes the recent practical devices from the state-of-the-art systems. Many methods have signifi-
cant complexity and require either modulation processes, high-cost optics, or moving parts that
reduce the sampling resolution. Some imaging setups are also often big to accommodate for the
optical paths. We believe that a high resolution and simpler spectropolarimetric imaging system
is still to be investigated.

Polarization filter array (PFA) and color polarization filter array (CPFA) sensors, such as the
Sony IMX250 MZR or IMX250 MYR,33 have been integrated by several camera manufacturers
in affordable commercial devices. However, these sensors do not have sufficient spectral res-
olution for accurate spectral sensing as they capture only three spectral channels. Based on these
devices, this paper proposes a compact and cost-effective setup capable of a snapshot acquisition
of multispectral polarization data. Compared with other snapshot systems presented in Table 1,
this work has the advantage of a high spatial resolution, with a relatively good spectral resolution
in the full visible range.

The paper is organized as follows. In Sec. 2, we present the hardware and the preprocessing
steps of the developed prototype. In Sec. 3, we define the procedure to calibrate the spectro-
polarimetric data. We then describe the transformation of the data, before providing a discussion
in Sec. 5 and a conclusion in Sec. 6.

2 Hardware and Preprocessing

2.1 Hardware

The proposed SPI setup consists of two Triton TRI050S-QC 5.0 MP color polarization cameras,
manufactured by Lucid Vision Lab. These cameras embed the SONY IMX250 MYR sensor,33

the properties of which are shown in Fig. 1(a). This is a division-of-focal-plane sensor,
in which each pixel senses one spectral channel and one polarization channel. The filter arrays
are composed of three spectral channels (c ∈ R;G; B) spatially organized in a Quad-Bayer
arrangement34 and four polarization channels (p ∈ f0;45;90;135g deg) arranged in a Chun
pattern35 [see Fig. 1(b)].

As shown in Fig. 1(d), the two cameras are in a stereo configuration. In front of each camera,
a lens with a fixed focal length of 12 mm is added. They are configured not to perform any

Table 1 Comparison of the existing and proposed snapshot SPI systems.

Reference Optical instruments
Polarization

mode
Spectral
range

Spectral
bands

Spatial
resolution

Tu et al. 23 2 CPFA, QWP Full-Stokes Visible 3 1.9 MP

Garcia et al.29 PFA, Foveon’s vertically
stacked photodetectors

Linear-Stokes Visible 3 0.9 MP

Fu et al.30 PFA, rotated prism Linear-Stokes 505 to 650 nm 8 0.07 MP

Kim and Escuti26,27 Polarization gratings, QWP Full-Stokes 500 to 700 nm 51 0.01 MP

Tsai and Brady31 Two birefringent crystals,
coded aperture, relay optics

Two Stokes
components

400 to 680 nm 19 1.9 MP

Mu et al.24 CFA, PFA, optical mask
with slits, Amici prism

Linear-Stokes 450 to 650 nm 3 0.48 MP

Soldevila et al.32 Digital micromirror device Linear-Stokes 490 to 660 nm 8 1 pixel

This work Two CPFA, two bandpass
filters

Linear-Stokes Visible 6 2.6 MP

Note: QWP, quarter-waveplate; WP, wollaston prism; PFA, polarization filter array; CPFA, color polarization
filter array; CFA, color filter array.
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analog/digital gain or white balance corrections, to ensure that the raw data are linear and not
corrupted by any preprocessing.

MSI usually requires complex and expensive acquisition devices. One can reduce the com-
plexity by assuming that the reflectance spectrum is smooth across the visible wavelengths and
thus by limiting the number of spectral channels. Examples in the literature demonstrate that MSI
in the visible can be achieved using six channels with a relatively good spectral estimation.36 A
practical method is to use conventional RGB cameras combined with a set of spectral bandpass
filters.1,37,38 This is usually done in multiple shots, placing one filter at a time. We use a similar
technique by combining each of the two cameras with a fixed bandpass filter, so the two cameras
have different spectral sensitivities. The first bandpass filter is a blue–green BG39 filter (noted
bg), and the second one is a yellow GG475 filter (noted y), both manufactured by Schott Glass
Technologies. We selected the same filters as those of Berns et al.37 The bandpass filters are
directly mounted on the objective lenses. From these combinations, we obtain six spectral chan-
nels in the visible range. Figure 2 shows the spectral sensitivities of the global system, along with
the acquisition configuration.

A uniform, unpolarized light source is positioned approximately normal to the base of the
configuration.

In the next sections, we will describe the processing of the images from the setup. The steps
are shown in Fig. 3.

2.2 Preprocessing

First, two preprocessing are applied to each of the raw images: a demosaicking algorithm and
a flat-field correction.

2.2.1 Demosaicking

CPFA images have a resolution of 2448 × 2048 pixels, with each sensor pixel sensing only one
spectral band among three and one polarization direction among four. Similar to color filter array
(CFA), CPFA images need their spatial resolution to be reconstructed to avoid misinterpretation in
channel registration for image analysis. This is especially important because CPFA images are
composed of 12 channels, and thus the spatial distribution of channels is more sparse compared
with that of CFA. Color and/or polarization artifacts may occur at the edges of objects. A dedicated
demosaicking algorithm is therefore required to recover the incomplete color and polarization sam-
ples per pixel position. To this end, we employ the recent state-of-the-art demosaicking algorithm
dedicated to CPFA, which is the Edge-aware residual interpolation.39 It is adapted to the specific
spatial arrangement of the Sony IMX250 MYR sensor. The full-resolution output is thus a
12-channel image. We call the pixel response ρi, where i ¼ fc; θg indexes the channel with
c ∈ R;G; B and p ∈ f0;45;90;135g deg.

(a) (b)

Fig. 1 The color PFA (CPFA) sensor: (a) sensor characteristics and (b) spatial arrangement of the
SONY IMX250 MYR sensor. Each pixel is covered by one linear polarization filter and one spectral
filter.
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2.2.2 Flat-field correction

The linearity behavior of the cameras was verified using the procedure described in Ref. 40, and
we found that there is no need to correct for nonlinearity. Nevertheless, fixed-pattern noise, i.e.,
the dark noise and the spatial nonuniformity of the illuminant, has to be characterized and

Fig. 3 Practical imaging pipeline.

(a) (b) (c)

(d)

Fig. 2 (a) The CPFA camera spectral sensitivities (only the 0-deg polarization channel is shown
because the four polarization channels are very similar). The sensitivity is obtained by character-
izing the sensor with a spectral resolution of 10 nm from 370 to 750 nm. (b) Spectral transmission
of the bandpass filters provided by the manufacturer. (c) Total spectral sensitivities of the cameras
after combination. (d) Setup configuration.
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corrected. The dark noise is measured by capturing an image with the cap on the camera (called
the dark image), producing a dark uniform field. For correcting the spatial nonuniformity of the
lighting, an image of the Xrite ColorChecker white balance chart is acquired (called the white
image), which produces a white uniform field. The flat-field correction method is from
Hardeberg41 and is implemented in the Colour toolbox from Westland et al.40 The correction
is done for each pixel of the demosaicked image and for each channel i as follows:

EQ-TARGET;temp:intralink-;e001;116;663ρ 0
i ¼

ðρi;w − ρi;dÞðρi − ρi;dÞ
ðρi;w − ρi;dÞ

; (1)

where ρi;w and ρi;d are the pixel responses of channel i in the white and dark images, respectively,
and ρi;w and ρi;d are the mean values over all pixels in the white and dark images, respectively.

3 Calibration

Two calibrations are done after preprocessing: (1) a geometric stereo calibration to establish the
correspondence between the image pair from the two cameras and (2) a spectral calibration to
estimate the reflectance of the scene. (Using the polarimetric characterization in Ref. 42, we
found that the polarization measurement is near to ideal for these sensors (very high extinction
ratios of the micropolarizers), so there is no need to calibrate polarimetrically.)

3.1 Geometric Stereo Calibration

The stereo camera calibration aims at finding a geometric transform between two cameras in a
world coordinate, which is mathematically modeled by a projection matrix. The projection
matrix consists of a pair of intrinsic and extrinsic matrices, which are relative to the camera
position, orientation, focal length, and lens distortion coefficients. The determination of these
parameters is done by taking multiple image pairs of a checkerboard with known dimensions and
oriented at different angles. Then, a rectification step projects the images onto a common image
plane in such a way that the corresponding points are located on the same row.43 This is followed
by the disparity map computation through semiglobal matching44 to find the displacement
between conjugate pixels in the stereo image pair. The channel i ¼ fG; 0 degg is used for stereo
matching and the disparity map computation.

After matching, we recombine the 12 channels of the left and right cameras (with bg and
y filter, respectively) to construct an image with a total of 24 channels. With this optical
configuration (baseline, working distance, and focal length), the usable spatial resolution is
1330 × 1920 pixels (2.6 MP). We note that the pixel response ρj, where j ¼ fs; θg, indexes
the spectropolarimetric channel with s ∈ Rbg; Ry; Gbg; Gy; Bbg; By and p ∈ f0;45;90;135g deg.

3.2 Spectral Calibration

3.2.1 Spectral reconstruction method

The spectral properties of surfaces are approximated by a few basis vectors and described by a
low-dimensional linear model.45 Here, we describe the spectral calibration to estimate the reflec-
tance data r of a scene from the vector ρ containing the digital values ρj. We use the method
based on linear regression that links the spectral reflectance r to the camera responses I directly46

as follows:

EQ-TARGET;temp:intralink-;e002;116;150r ¼ MI ; (2)

where the matrix M is a reconstruction operator and I is a vector containing the measured inten-
sities by the spectral system. In our case, I is of size ½1 × 6� and contains the camera intensities Is,
where s ∈ Rbg; Ry;Gbg; Gy; Bbg; By. This is equivalent to calculating the first Stokes
component47 from ρj as follows:
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EQ-TARGET;temp:intralink-;e003;116;369Is ¼
ρs;0 þ ρs;45 þ ρs;90 þ ρs;135

2
: (3)

Here, M is estimated using a set of reference spectra, which are previously measured by a
spectrometer. We selected the Xrite Macbeth ColorChecker PassPort (MCCPP), which is
composed of two main charts with known spectra: (1) the ColorChecker classic chart used for
training [24 patches, see Fig. 4(a)] and (2) the creative enhancement chart used for testing
[26 patches, see Fig. 4(c)]. Visualization of the reflectance factors for all patches is shown
in Figs. 4(b) and 4(d). We assume that the training set is representative enough of the surface
reflectances, which will be estimated a posteriori by the system. Another assumption is that
the reflection from the charts is purely diffuse, so they do not reflect any specular component.
We call Rtrain and Rtest the set of known training and testing reflectance data, respectively, that
are obtained from the Spectral Library of Chromaxion website.48

The calibration of M is done using the pseudoinversion as follows:

EQ-TARGET;temp:intralink-;e004;116;205M̂ ¼ RtrainI
þ
train; (4)

where the + operator is the right Moore–Penrose pseudoinverse operator, Itrain is a ½6 × 24�matrix
formed by column vectors containing averaged camera signals (over a 10 × 10 pixel area) of the
24 patches, Rtrain is a ½36 × 24� matrix with the reference reflectance factors of the patches from

380 to 730 nm with a step of 10 nm, and M̂ is a ½36 × 6� matrix that is an estimate of M.

3.2.2 Spectral estimation evaluation

To evaluate the performance of the spectral estimation, we apply the trained linear model to a set
of camera responses from the creative enhancement chart [see Fig. 4(c)]. Thus, the spectral

(a) (b) (c) (d)

(e)

Fig. 4 (a) ColorChecker classic chart from the X-Rite ColorChecker passport used for spectral
calibration. (b) Spectral reflectance of the classic chart from the Chromaxion website.48

(c) Creative enhancement chart from the X-Rite ColorChecker passport used for testing.
(d) Spectral reflectance of the creative enhancement chart. (e) Comparison of the spectral esti-
mation of the reflectance from the creative enhancement chart. GFC are shown for each recovered
spectrum r̂test.
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estimation is done on a set of 26 patches, different from the set used for training. The compu-
tation is performed on Itest, which is a ½6 × 26�matrix containing the averaged camera responses,
as

EQ-TARGET;temp:intralink-;e005;116;699R̂test ¼ M̂Itest: (5)

To quantify the reconstruction error, we compute the goodness of fit coefficient (GFC) for
each estimated patches with reflectance vector r̂test. This gives a scalar value, computed as
follows:

EQ-TARGET;temp:intralink-;e006;116;629GFC ¼ 1 −
1

Nw
krtest − r̂testk; (6)

where Nw ¼ 36 is the total number of samples in the considered wavelength range and k:k is the
two-norm of a vector. A GFC of 0 indicates a bad fit, whereas 1 is a perfect fit.

Figure 4(e) shows the comparison between the estimated and measured (reference) reflec-
tance spectra of the 26 patches of the creative enhancement chart. We can see that the estimated
spectra are close to the reference data. The worst GFC values occur especially when high reflec-
tances are encountered (patches 1, 7, and 8 from the first line of patches). This can be due to the
relatively low sensitivities (and thus a low SNR) of our system in this range of wavelengths.

As a comparison, we computed the GFC on the test chart using either three channels
(s ¼ Rbg; Gbg; Bbg) or six channels. We found that our six-channel system increases the
GFC by an amount of 0.16 in average over the 26 patches.

4 Data Transform and Database

4.1 Data Transform

Here, we transform the calibrated data using three selected representations: (1) Stokes formal-
ism, (2) reflectance computed from polarization filtered intensities, and (3) color image.

4.1.1 Stokes

The Stokes parameters are determined from an average of intensity measurements over area,
wavelength, and solid angle. If we consider a multispectral system with relatively narrow bands,
the spectral dependence of polarization information can be considered to be an additional useful
information so that each channel s senses a different Stokes vector.49 Thus, from ρj, we estimate
the Stokes vector S at each pixel position and for each spectral channel s as

EQ-TARGET;temp:intralink-;e007;116;276Ss ¼

2
6664
S0;s
S1;s
S2;s
S3;s

3
7775 ¼

2
6664

S0;s ¼ Is
ρs;0 − ρs;90
ρs;45 − ρs;135

0

3
7775; (7)

where Is ¼ S0;s is the intensity component computed from Eq. (3), S1;s is the difference between
intensities measured through 0 deg and 90 deg polarizers, and S2;s is the difference of intensities
through 45 deg and 135 deg polarizers. S3;s is not considered in this work because we can sense
only linear polarization.

The degree of linear polarization (DOLP) represents the amount of linear polarization in
the light beam. It takes a value between zero for nonpolarized light and one for totally linearly
polarized light, with intermediate values referring to partial polarization

EQ-TARGET;temp:intralink-;e008;116;114DOLPs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S21;s þ S22;s

q
Is

: (8)
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The azimuth angle of linear polarization (AOLP) is also computed from the Stokes compo-
nents. It represents the angular orientation of the main axis of the polarization ellipse with respect
to the chosen angular reference used for the system:

EQ-TARGET;temp:intralink-;e009;116;505AOLPs ¼
1

2
arctan

�
S2;s
S1;s

�
: (9)

In Fig. 5, we plot the luminance and DOLPGy
of the 24 MCCPP patches used for spectral

calibration. First, we can see that there is a low but significant polarization signature for the
patches. Second, we can see that we have an inverse relationship between luminance and
DOLP, especially by looking at the values of the last six neutral patches (19 to 24). It can
be explained by the fact that darker patches have a much smaller diffuse component (and thus
a higher specular component, which is more polarized) due to a greater absorption of light. This
effect is also shown in Fig. 6, in which darker balls exhibit a higher degree of polarization.

A visualization of the Stokes transform on the scene called “resin balls” is shown in Fig. 6.
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Fig. 5 (a) Luminance and (b) DOLPGy
plot of the 24 MCCPP training samples.
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Fig. 6 (a)–(c) Stokes components S0;s, S1;s, and S2;s for spectral band s ¼ Gbg . (d)–(e) DOLPs

and AOLPs for spectral channel s ¼ Gbg .
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4.1.2 Reflectance

The reflection of light upon a surface can be analyzed by an additive model, in which the total
intensity is a diffuse component (resulting from the subsurface reflection phenomenon) plus a
specular component (resulting from the surface reflection). Existing methods for separating
reflection components use a polarization filter rotated in front of the image sensor.8,50 It is often
assumed that the diffuse component tends to be weakly polarized compared with the specular
component. In our case, we believe that the polarization intensity filtering can benefit the reflec-
tance estimation when a significant specular reflection occurs.

To this end, we compute the polarization filtered intensities,51 called Us, by the following
equation:

EQ-TARGET;temp:intralink-;e010;116;609Us ¼ Is −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðS1;sÞ2 þ ðS2;sÞ2

q
: (10)

This has the effect of removing the polarization component from the total intensity Is. Thus,
we can compute the spectral reflectance for any pixel position from vector U instead of vector I
[as in Eq. (5)]:

EQ-TARGET;temp:intralink-;e011;116;532r̂ 0 ¼ M̂U: (11)

To verify the effect of removing the polarized intensity component, we compute the reflec-
tance using either I or U. We selected 5 × 5 pixel regions near occluding boundaries of the
objects, where specular reflection is assumed to have a greater influence on the DOLP of the
reflected light. Results are shown in Fig. 7 for four regions of interest. It appears that we get a
better fit when using U for the four cases.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 7 Measured and estimated reflectance of four samples using both spectral images computed
from S0 and U [Eqs. (2) and (11)], respectively. Regions of interest (RoIs) is patch of size 5 × 5
from where the spectral estimation curves are averaged. (a) RoI of controller scene, (b) spectral
estimation of controller RoI, (c) RoI of Plier scene, (d) spectral estimation of Plier RoI, (e) RoI of
Chart_b scene, (f) spectral estimation of Chart_b RoI, (g) RoI of Toy_2 scene, and (h) spectral
estimation of Toy_2 RoI.
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4.1.3 Color

From by pixel reflectance data r̂, we compute the corresponding International Commission on
Illumination (CIE) XYZ values as

EQ-TARGET;temp:intralink-;e012;116;692

2
64
X
Y
Z

3
75 ¼ Ctr̂; (12)

where C (36 × 3) are the CIE (1931) color matching functions (CMFs).52,53 Then, we convert the
CIE XYZ values to sRGB54 for visualization. The XYZ to sRGB transform is typically achieved
in two steps: a first linear transform of XYZ values to linear RGB values, followed by a gamma
correction of 2.2 to adapt for nonlinear behavior of monitors.

(a) (b) (c) (d) (e) (f) (g)

(h) (i) (j) (k) (l) (m) (n)

(o) (p) (q) (r) (s) (t) (u)

(v) (w) (x) (y) (z) (aa) (ab)

Fig. 8 sRGB visualization of the database after data transform to sRGB. The 28 scenes are cap-
tured by the hardware system depicted in Sec. 2. (a) Mini balls, (b) plastic bottle, (c) metallic bottle,
(d) candies, (e) plastic chart blue, (f) plastic chart white, (g) plastic chart red, (h) scissors,
(i) ColorChecker, (j) cutter, (k) electronics, (l) inkwell, (m) painting_1, (n) painting_2, (o) pens,
(p) plastic, (q) pliers, (r) polarizers, (s) resin balls, (t) screw driver, (u) tape, (v) controller, (w) toys_1,
(x) toys_2, (y) vernier scale, (z) wood 1, (aa) wood_2, and (ab) wood 2.
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4.2 Database

We provide a database of 28 scenes with different materials, including plastic, wood, and metal.
The scene called “chart” is custom plastic patches manufactured with a 3D printer, with a varying
layer height parameter. Figure 8 shows the database in sRGB representation, after the color trans-
form from Sec. 4. The brand logos are removed from the database images.The images are
cropped to select the relevant content of the objects.

The code and database folder is organized as follows:

1. Data folder:

a. Pairs of preprocessed images for each scene, after demosaicking, flat-field correction,
and geometrical correction. They are multipage.tif files (one page per polarization
angle).

2. Misc folder:

a. Spectral calibrated matrix and
b. CIE XYZ values.

Three MATLAB scripts are provided to transform the data to Stokes, reflectance, and color
images, respectively. The dataset and code are available in a GitHub repository via this link55 or
can be sent on request to the corresponding author.

5 Discussion

Our stereo setup offers the possibility to perform reflectometry by fusing observations of the polari-
zation state of light reflected off the surface from two different views.51 In a binocular stereo con-
figuration, the specular intensity can be different from the two sensors, depending on the shape of
the object to be considered and the lightning configuration. As an example, our stereo setup can be
configured to optimize the roughness measurement by modifying the vergence, the working
distance, or the focal length of the camera lenses. In the database, this is unconstrained because
surfaces in the scene are multiple and unknown. But in the case of measurement on samples with
a priori knowledge (roughness range, convexity shape, and index of refraction), the setup can be
slightly adapted.56 This is not investigated in this work and will be considered in future work.

Some drawback can come from the disparity computation, especially when imaging thick
objects. From the stereo point of view, typical problems of matching occur when (1) there are
occlusions (no corresponding data in one of the two images), (2) there are specular highlights, or
(3) a pixel pertains to a more or less flat region. To be successful, the matching algorithm needs
textures (but not periodic); if there is nothing to really match inside an image pair, the algorithm
cannot make correspondences efficiently. Another potential factor comes from the use of an
image pair taken with different spectral sensitivities.57 This produces a noisy disparity map and
thus noisy Stokes/spectral/color representations of data. We believe that an evolved disparity
map computation method that is spectrally invariant is still to be developed.

From our knowledge, computing the reflectance spectra from polarimetric Stokes data (S1
and S2) has never been investigated in the literature. We verified that polarization information
can help the reflectance estimation, whereas previous work assumed that all of the surfaces mea-
sured by a spectral camera are mainly diffuse. Some other works used a rotated linear polarizer in
front of the spectral camera to filter globally the specular reflection. In our work, this is done by
pixel because we have the measurement of the state of polarization for each pixel. Nevertheless,
this method is limited by the amount of polarization intensity that is able to be filtered, which
varies with the object and lightning configuration, i.e., the angle of incidence/reflection of the
light. We believe that a dedicated separation of diffuse/specular components using spectral and
polarization, such as in a prior work,8 can further improve the reflectance estimation for specular
surfaces. This is not included in this work but can be investigated as an additional processing
block to be included in the framework from Fig. 3.

This work opens perspectives in several application fields, from the stereo acquisition of
spectropolarimetric images to new image processing of the data. The output of our framework,
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which is transformed data (Stokes, reflectance, and color) can be extended to specific surfaces
and be an input to computer vision tasks such as feature extraction using principal component
analysis, semantic segmentation, or defect detection.

6 Conclusion

We developed a snapshot spectropolarimetric acquisition system. It has the advantages of a high
spatial resolution and a relatively good spectral reconstruction precision. We designed a full
processing pipeline that consists of preprocessing, geometric calibration, spectral calibration,
and data transform. We also provide a method to better estimate the reflectance of specular sur-
faces using a filtering process based on the Stokes components. A database of 28 high-resolution
spectropolarimetric images is made available online, along with the code to transform the data.

The configuration of the proposed system makes it possible to reconstruct the 3D spectral
information using two complementary strategies: (1) the polarization information (the so-called
“shape from polarization” method) or (2) the stereo depth computation. Image processing using
both polarization and stereo information is to be investigated in future work.
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