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Abstract. We use wave-optics simulations to investigate branch-point density (i.e., the number
of branch points within the pupil-phase function) in terms of the grid sampling. The goal for
these wave-optics simulations is to model plane-wave propagation through homogeneous tur-
bulence, both with and without the effects of a finite inner scale modeled using a Hill spectrum.
In practice, the grid sampling provides a gauge for the amount of branch-point resolution within
the wave-optics simulations, whereas the Rytov number, Fried coherence diameter, and isoplan-
atic angle provide parameters to setup and explore the associated deep-turbulence conditions.
Via Monte Carlo averaging, the results show that without the effects of a finite inner scale, the
branch-point density grows without bound with adequate grid sampling. However, the results
also show that as the inner-scale size increases, this unbounded growth (1) significantly
decreases as the Rytov number, Fried coherence diameter, and isoplanatic angle increase in
strength and (2) saturates with adequate grid sampling. These findings imply that future develop-
ments need to include the effects of a finite inner scale to accurately model the multifaceted
nature of the branch-point problem in adaptive optics. © The Authors. Published by SPIE under
a Creative Commons Attribution 4.0 International License. Distribution or reproduction of this work
in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10
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1 Introduction

Laser-beam propagation through deep turbulence results in constructive and destructive inter-
ference known as scintillation. The Rytov number (aka log-amplitude variance) gives a gauge for
the amount of scintillation. In turn, when the Rytov number increases above 0.1, the scintillation
becomes severe and total-destructive interference gives rise to branch points in the pupil-phase
function. These so-called branch points manifest where the real and imaginary parts of the com-
plex-optical field equate to zero.

Branch points, in practice, add a rotational component to the phase function. This rotational
component gets mapped to the null space of traditional-least-squares phase reconstruction algo-
rithms. Due to the foundational work of Fried,1 researchers appropriately refer to this rotational
component as the “hidden phase.” With this last point in mind, the existence of branch points
leads to unavoidable 2π phase discontinuities known as branch cuts. These branch cuts become
linked to positively and negatively charged branch points within the pupil-phase function.
Because of interactuator coupling, continuous-face-sheet deformable mirrors are unable to fully
compensate for the branch cuts.2–7 Thus, the branch-point problem in adaptive optics tends to be
the “Achilles’ heel” to beam-control systems that perform deep-turbulence phase compensation.

Fried and Vaughn were the first to study the existence of turbulence-induced branch
points.8 Afterward, many works began investigating the effects of branch points (aka phase
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dislocations,9,10 screw dislocations,11,12 optical vortices,13,14 etc.), which typically require the use
of high-fidelity and wave-optics simulations.15–22 For example, Voitsekhovich et al.23 were the
first to perform a wave-optics investigation of branch-point density (i.e., the number of branch
points within the pupil-phase function). They did so as a function of propagation distance with
the effect of a finite inner scale but for a fixed grid sampling. As previously mentioned, Fried was
the first to describe the branch-point problem in terms of the hidden phase.1 Since then, research-
ers have proposed several branch-point-tolerant phase reconstruction algorithms.24–29 These
algorithms, at large, have had limited degrees of success due to the multifaceted nature of the
branch-point problem in adaptive optics. Most recently, members of the Starfire Optical Range at
the Air Force Research Laboratory investigated the aggregate behavior of branch points,30–37 and
the goal being to relate the branch-point pairs received in a pupil-phase function to the upstream
turbulence that created them. This work, in total, could inform the development of future branch-
point-tolerant phase reconstruction algorithms. To increase the fidelity of the results, future
developments need to include the effects of additive-sensor noise, low signal-to-noise ratios,
and subaperture-sampling requirements.38–45 With this history in mind, reformulating the prob-
lem in terms of slope discrepancy,46,47 especially when accounting for the effects of speckle due
to rough-surface scattering,48–51 could also inform these future developments.

This paper builds on this aforementioned history. In particular, it uses wave-optics simula-
tions to investigate the branch-point density as a function of the grid sampling. The goal for these
wave-optics simulations is to model plane-wave propagation through homogeneous turbulence,
both with and without the effects of a finite inner scale modeled using a Hill spectrum. In prac-
tice, the Rytov number, Fried coherence diameter, and isoplanatic angle help to setup and
explore the associated deep-turbulence conditions. These parameters provide a gauge for the
amount of scintillation, turbulence-limited resolution, and anisoplanatism, respectively, within
the wave-optics simulations. On the other hand, the grid sampling provides a gauge for the
amount of branch-point resolution within the wave-optics simulations.

Via Monte Carlo averaging, the results show that without the effects of a finite inner scale, the
branch-point density grows without bound with adequate grid sampling. Even so, as the inner-
scale size increases, the results also show that this unbounded growth (1) significantly decreases
as the Rytov number, Fried coherence diameter, and isoplanatic angle increase in strength and
(2) saturates with adequate grid sampling. These findings are encouraging from the standpoint
that they could readily improve the performance of existing branch-point-tolerant phase recon-
struction algorithms, as well as inform the development of future algorithms.

It is important to note that this paper also builds on the work contained in a recent conference
proceeding.52 The main difference is that this paper includes the effects of a finite inner scale.
Both papers show that the branch-point density grows without bound when neglecting the effects
of a finite inner scale. This finding speaks to a preconceived notion within the atmospheric-
propagation research community that the branch-point density grows without bound with
increasing branch-point resolution. Nonetheless, the results of this paper ultimately show that
if one includes the effects of a finite inner scale, then this unbounded growth (1) significantly
decreases as the associated deep-turbulence conditions become more pronounced and (2) satu-
rates with adequate branch-point resolution within the wave-optics simulations. These findings
are novel and worth sharing with the atmospheric-propagation research community. In general,
(1) and (2) imply that future developments need to include the effects of a finite inner scale to
accurately model the multifaceted nature of the branch-point problem in adaptive optics.

In what follows, Sec. 2 provides the background details needed to use the branch-point den-
sity as a metric of interest. Section 3 provides the wave-optics simulation details needed to setup
and explore the associated deep-turbulence conditions, which assume plane-wave propagation
through homogeneous turbulence. Results and discussion naturally follow in Sec. 4 with a con-
clusion in Sec. 5.

2 Background

In the pupil plane of an optical system, the complex-optical field, U, takes the following phasor
form:
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EQ-TARGET;temp:intralink-;e001;116;735U ¼ A expð−jϕÞ; (1)

where A is the pupil-amplitude function and ϕ is the pupil-phase function, such that

EQ-TARGET;temp:intralink-;e002;116;701ϕ ¼ ArgðUÞ ¼ tan−1
�
ImðUÞ
ReðUÞ

�
: (2)

Here, ReðUÞ and ImðUÞ are the real and imaginary components of U. Substituting Eq. (1)
into Eq. (2) results in a modulo-2π function that researchers often refer to as the “principle value”
or “wrapped phase.” When A ¼ 0, the argument of U is indeterminate and therefore a multi-
valued function.12 This outcome corresponds to the case where ReðUÞ ¼ ImðUÞ ¼ 0 and is the
reason branch points arise within ϕ due to total-destructive interference.

Researchers can determine the location of a branch point using a contour integral around the
the gradient of the pupil-phase function,∇ϕ.1 Specifically, when the following relationship holds
true:

EQ-TARGET;temp:intralink-;e003;116;560

I
C
∇ϕ · dr ¼ �2πðNþ − N−Þ; (3)

∇ϕ is no longer homogeneous and ϕ is no longer a purely potential field. In Eq. (3), Nþ is the
number of positive branch points and N− is the number of negative branch points within ϕ.

The sign of the closed-loop contour integration in the clockwise direction determines the
overall polarity in Eq. (3). Due to this convention, one can determine the number of branch
points, NBP, in an N ×M grid, viz,

EQ-TARGET;temp:intralink-;e004;116;456NBP ¼
XN
n¼1

XM
m¼1

���� 1

2π

� ðϕn;m − ϕn;mþ1Þ − ðϕnþ1;mþ1 − ϕnþ1;mÞ
−ðϕn;mþ1 − ϕnþ1;mþ1Þ þ ðϕnþ1;m − ϕn;mÞ

�����; (4)

where N þ 1 ¼ 1 andM þ 1 ¼ 1. Equation (4) says that if one first breaks the N ×M grid into a
series of 2 × 2 subgrids and sums up the phase difference around each set of four grid points (in
the clockwise direction), then a positive 2π value results in a positive branch point and a negative
2π value results in a negative branch point. To determineNBP, one then sums up the total number
of positive and negative branch points.

These aforementioned sums, as written in Eq. (4), include what Fried refers to as spurious
branch points.1 In practice, spurious branch points are a pair of positive and negative branch
points centered on immediately adjacent grid points. This outcome is undesirable because the
associated branch cut remains unresolved and could be the result of an artifact within the wave-
optics simulations. To address these concerns, one can use a simple search to remove the spu-
rious branch points from the sums in Eq. (4). Empirical evidence says that spurious branch points
make up a significant portion of the total number of positive and negative branch points—∼40%
on average. Thus, in this paper, we present all results with spurious branch points removed.

With results in mind, the branch-point density, DBP is the metric of interest in this paper.
As such

EQ-TARGET;temp:intralink-;e005;116;227DBP ¼ NBP

πðD∕2Þ2 ; (5)

where D is the circular-pupil diameter. Simply put, DBP is the number of branch points within
the pupil-phase function.

3 Setup and Exploration

The wave-optic simulations performed in this paper made use of the WavePlex Toolbox for
MATLAB.53 This toolbox uses the split-step beam propagation method (BPM) to simulate the
propagation of monochromatic and polychromatic light through the atmosphere.15–22 In practice,
the split-step BPM divides the atmosphere into independent volumes, such that a phase screen
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represents the atmospheric aberrations present in a volume. Angular-spectrum propagation to
each phase screen (from the source plane to the pupil plane) then represents the propagation
of light through the atmosphere. With the split-step BPM in mind, this section provides the setup
and exploration needed to appreciate the results presented in the next section.

3.1 Setup

Table 1 contains a summary of all the parameters of interest in the wave-optics simulations. The
goal for these wave-optics simulations was to model plane-wave propagation through homo-
geneous turbulence. For this purpose, the wave-optics simulations made use of N × N grids,
where N is the grid resolution. The physical side length, S, was the same in both the source
and pupil planes, allowing for unity scaling within the setup. With that said, the source plane
was setup with a plane wave of unit irradiance and the pupil plane was setup with a circular-pupil
diameter,D. For the minimum grid resolution used within the wave-optics simulations, the setup
also satisfied critical sampling,16 such that Nmin ¼ S2∕ðλZÞ ¼ 512, where Nmin is the minimum
grid resolution, λ is the wavelength, and Z is the propagation distance. The overall setup resulted
in a substantial guard band ratio (GBR), where GBR ¼ S∕D. Such a GBR helped in combating
the effects of aliasing,15,16 which we determined to be visually negligible within the wave-optics
simulations for all N. The overall setup also resulted in a grid sampling, δðNÞ, where

EQ-TARGET;temp:intralink-;e006;116;507δðNÞ ¼ S
N
: (6)

As such, δðNÞ provided a gauge for the amount of branch-point resolution within the wave-
optics simulations.

While Table 1 contains all the parameters of interest in the wave-optics simulations, Table 2
makes use of several path-integral expressions to define the deep-turbulence conditions. These
path-integral expressions were the subject of a recent conference proceeding that discusses the
limitations of deep turbulence.54 For compactness, Table 2 contains a representative subset of
these deep-turbulence conditions, which consisted of Rytov numbers ranging from 0.1 to 10.0 in
increments of 0.1.

Recall that the Rytov number provides a gauge for the amount of scintillation. Given plane-
wave propagation,15 the path-integral expression takes the following form:

EQ-TARGET;temp:intralink-;e007;116;348RPW ¼ 0.563k7∕6
Z

Z

0

C2
nðzÞðZ − zÞ5∕6dz; (7)

where C2
nðzÞ is the path-dependent refractive index structure coefficient and k ¼ 2π∕λ is the

angular wavenumber. With homogeneous turbulence, the path-integral expression reduces to
a closed-form expression, where

EQ-TARGET;temp:intralink-;e008;116;273RPW ¼ 2.62
C2
nZ11∕6

λ7∕6
: (8)

Table 1 Parameters of interest in the wave-optics simulations.

Parameters (MKS units) Symbol Value(s)

Grid resolution N 512 to 16, 384

Side length (m) S 1.6

Wavelength (m) λ 1 × 10−6

Propagation distance (m) Z 5 × 103

Aperture diameter (m) D 0.2

Guard band ratio GBR 8

Grid sampling (m) δðNÞ 3.1 × 10−3 - 9.8 × 10−5
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Also recall that when the Rytov number increases above 0.1, the scintillation becomes severe
and total-destructive interference gives rise to branch points in the pupil-phase function. Thus,
when 0.1 < RPW ≤ 0.5, 0.5 < RPW ≤ 1, andRPW > 1, one is left with weak-to-moderate, mod-
erate-to-strong, and strong scintillation conditions, respectively.54

For completeness in defining the deep-turbulence conditions, Table 2 also includes values for
the Fried coherence diameter and the isoplanatic angle. Given plane-wave propagation through
homogeneous turbulence,15 the path-integral expressions reduce to closed-form expressions,
such that

EQ-TARGET;temp:intralink-;e009;116;238r0;PW ¼
�
0.423k2

Z
Z

0

C2
nðzÞdz

�
−3∕5

⇒ 0.185
λ6∕5

ðC2
nÞ3∕5Z3∕5 ; (9)

for the Fried coherence diameter, and

EQ-TARGET;temp:intralink-;e010;116;179θ0 ¼
�
2.91k2

Z
Z

0

C2
nðzÞðZ − zÞ5∕3dz

�
−3∕5

⇒ 0.105
λ6∕5

ðC2
nÞ3∕5Z8∕5 ; (10)

for the isoplanatic angle. For all intents and purposes, the Fried coherence diameter helps in
parameterizing resolution, whereas the isoplanatic angle helps in parameterizing anisoplanatism.55

Thus, when D∕r0;PW > 1 and θ0∕ðλ∕DÞ < 10, one is left with turbulence-limited resolution and
anisoplanatic aberrations, respectively.54

In what follows, we present an exploration of the deep-turbulence conditions provided in
Table 2, both with and without the effects of a finite inner scale. In particular, we use the

Table 2 Representative subset of the deep-turbulence conditions.

RPW C2
n (m−2∕3) D∕r 0;PW θ0∕ðλ∕DÞ

0.1 6.31 × 10−16 2.15 2.10

0.2 1.26 × 10−15 3.26 1.38

0.3 1.89 × 10−15 4.16 1.09

0.4 2.53 × 10−15 4.94 0.91

0.5 3.16 × 10−15 5.65 0.80

0.6 3.79 × 10−15 6.30 0.72

0.7 4.42 × 10−15 6.91 0.65

0.8 5.05 × 10−15 7.48 0.60

0.9 5.68 × 10−15 8.03 0.56

1.0 6.31 × 10−15 8.56 0.53

2.0 1.26 × 10−14 12.97 0.35

3.0 1.89 × 10−14 16.54 0.27

4.0 2.53 × 10−14 19.66 0.23

5.0 3.16 × 10−14 22.47 0.20

6.0 3.79 × 10−14 25.07 0.18

7.0 4.42 × 10−14 27.50 0.16

8.0 5.05 × 10−14 29.80 0.15

9.0 5.68 × 10−14 31.98 0.14

10.0 6.31 × 10−14 34.06 0.13
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well-known Kolmogorov spectrum when the wave-optics simulations do not include the effects
of a finite inner scale. This spectrum is an idealization with an inner-scale size, l0, of zero and an
outer-scale size, L0, of infinity. Such a spectrum does not give an accurate representation of the
actual energy distribution in a turbulent volume.15 This shortcoming can be remedied by using
a modified spectrum such as the Hill spectrum.56 Specifically, this paper makes use of the Hill
spectrum because it includes a small rise at high wavenumbers near 1∕l0, and it is readily avail-
able within the WavePlex Toolbox for MATLAB.

3.2 Exploration

Figures 1 and 2 show the numerical log-amplitude variance, σ2χ , as a function of the analytical
Rytov number, RPW . In particular, Fig. 1 corresponds to the first half of the deep-turbulence
conditions setup in Table 2, whereas Fig. 2 corresponds to all of the deep-turbulence conditions
setup in Table 2. Both figures include this scintillation-strength exploration for the minimum grid
sampling, δðN ¼ 512Þ ¼ δmin, and the maximum grid sampling, δðN ¼ 16;384Þ ¼ δmax, within
the wave-optics simulations (cf. Table 1). Both figures also include this scintillation-strength
exploration for values of 3.1, 6.2, 12.4, and 24.8 mm for the inner-scale size, l0. These values
represent finite inner scales equal to one, two, four, and eight times δmin, respectively.

Due to the limitations of the Rytov approximation,57 the strength of the scintillation is often
split into two regimes with respect to RPW . Specifically, the weak-scintillation regime occurs
when RPW ≤ 0.25, and the strong-scintillation regime occurs when RPW > 0.25. One can
clearly see both regimes in Figs. 1 and 2 with RPW ≈ 0.25 serving as an inflection point with
respect to σ2χ . Beyond this inflection point, σ2χ heads into a saturated regime.58 This saturation
process reaches another inflection point whenRPW ≈ 1. Beyond this second inflection point, σ2χ
heads into a supersaturated regime.58

It is important to note that Fig. 1 highlights the saturated regime whenRPW > 0.25, whereas
Fig. 2 highlights the supersaturated regime when RPW > 1. These regimes are nominally the
same for both N ¼ 512 and N ¼ 16;384 and for all values of l0∕δmin. Thus, Figs. 3 and 4 show
the normalized irradiance (top row), wrapped phase (middle row), and branch-point density
(bottom row) for a single realization of Kolmogorov turbulence with N ¼ 512 (left column)

Fig. 1 Log-amplitude variance (σ2χ ) as a function of Rytov number (RPW ) for the first half of
Table 2. In (a) lo∕δmin ¼ 0, (b) lo∕δmin ¼ 1, (c) lo∕δmin ¼ 2, (d) lo∕δmin ¼ 4, and (e) lo∕δmin ¼ 8.
Note that the plotted lines represent the Monte Carlo averages associated with 100 turbulence
realizations, and the error bars represent the standard deviations. Also note that the solid black
lines denote where σ2χ ¼ RPW .
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and N ¼ 16;384 (right column). Figure 3 corresponds to the first inflection point, where
RPW ¼ 0.25, and Fig. 4 corresponds to the second inflection point, where RPW ¼ 1.

Figures 3 and 4 show how the branch-point density, DBP, increases as a function of increas-
ing Rytov number, RPW , and as a function of increasing grid sampling, δðNÞ. Comparing both
figures together illustrates how DBP increases from the first inflection point,RPW ¼ 0.25, to the
second inflection point, RPW ¼ 1, whereas comparing the left and right columns in each figure
separately illustrates how DBP increases from the minimum grid sampling, δðN ¼ 512Þ ¼ δmin,
to the maximum grid sampling, δðN ¼ 16;384Þ ¼ δmax. These outcomes confirm thatRPW pro-
vides a gauge for the amount of scintillation within the wave-optics simulations. On the other
hand, δðNÞ provides a gauge for the amount of branch-point resolution within the wave-optics
simulations.

4 Results and Discussion

The results presented in this section show that without the effects of a finite inner scale, the
branch-point density grows without bound with adequate grid sampling. In addition, the results
show that as the inner-scale size increases this unbounded growth (1) significantly decreases as
the Rytov number, Fried coherence diameter, and isoplanatic angle increase and (2) saturates
with adequate grid sampling. To make these findings manifest, we discuss the relevant trends in
the figures that follow.

In support of (1), Figs. 5–7 show the branch-point density, DBP, as a function of the Rytov
number,RPW , the circular-pupil diameter relative to the Fried coherence diameter,D∕r0;PW , and
the isoplanatic angle relative to the diffraction-limited half angle, θ0∕ðλ∕DÞ, respectively. The
legends in each subplot denote the grid resolutions, N, setup in Table 1. Each subplot also uses
the same inner-scale size relative to the minimum grid sampling, l0∕δmin, explored in Figs. 1 and
2. In Figs. 5–7, the plotted lines represent the Monte Carlo averages associated with 100 tur-
bulence realizations, and the error bars represent the standard deviations. Similar to Figs. 1 and 2,
the width of the error bars are small (at most 4% of the mean) and thus we believe that 100 Monte
Carlo realizations are adequate in quantifying the behavior of DBP in terms of RPW , D∕r0;PW ,
and θ0∕ðλ∕DÞ.

Fig. 2 Log-amplitude variance (σ2χ ) as a function of Rytov number (RPW ) for all of Table 2. In
(a) lo∕δmin ¼ 0, (b) lo∕δmin ¼ 1, (c) lo∕δmin ¼ 2, (d) lo∕δmin ¼ 4, and (e) lo∕δmin ¼ 8. Note that
the plotted lines represent the Monte Carlo averages associated with 100 turbulence realizations,
and the error bars represent the standard deviations. Also note that the solid black lines denote
where σ2χ ¼ RPW .
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In Fig. 5(a), where l0∕δmin ¼ 0, we see that as RPW increases, DBP increases linearly with-
out bound when N > 2048. Figures 5(b)–5(e), on the other hand, show that when l0 increases,
this unbounded linear growth significantly decreases. In particular, when l0∕δmin > 2 and
N > 2048, the results for DBP tend to overlap, whereas when l0∕δmin ≤ 2 and N ≤ 2048, the
results for DBP tend to saturate.

In Fig. 6(a), where l0∕δmin ¼ 0, we see that as D∕r0;PW increases, DBP increases exponen-
tially without bound when N > 2048. Figures 6(b)–6(e), on the other hand, show that when

Fig. 3 Single realization of Kolmogorov turbulence, whereRPW ¼ 0.25. The asterisks denote the
location of the positive branch points, and the circles denote the location of the negative branch
points. Note that N ¼ 512 in left column and N ¼ 16;384 in the right column. Also note that the top
row illustrates the normalized irradiance, the middle row illustrates the wrapped phase, and bottom
row illustrates the branch-point density.
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l0 increases, this unbounded exponential growth significantly decreases. In particular, when
l0∕δmin > 2 and N > 2048, the results for DBP tend to overlap, whereas when l0∕δmin ≤ 2 and
N ≤ 2048, the results for DBP tend to saturate.

In Fig. 7(a), where l0∕δmin ¼ 0, we see that as θ0∕ðλ∕DÞ decreases, DBP increases expo-
nentially without bound when N > 2048. Figures 7(b)–7(e), on the other hand, show that when
l0 increases, this unbounded exponential growth significantly decreases. In particular, when

Fig. 4 Single realization of Kolmogorov turbulence, where RPW ¼ 1.0. The asterisks denote the
location of the positive branch points, and the circles denote the location of the negative branch
points. Note that N ¼ 512 in left column and N ¼ 16;384 in the right column. Also note that the top
row illustrates the normalized irradiance, the middle row illustrates the wrapped phase, and bottom
row illustrates the branch-point density.
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l0∕δmin > 2 and N > 2048, the results for DBP tend to overlap, whereas when l0∕δmin ≤ 2 and
N ≤ 2048, the results for DBP tend to saturate.

The aforementioned saturation in Figs. 5–7 when N ≤ 2048 is due to inadequate sampling of
the turbulent volume and is not physical. One rule of thumb says that the Fried coherence diam-
eter relative to the grid sampling needs to be greater than ten (i.e., r0;PW∕δðNÞ > 10). Simply put,
when N ≤ 2048, we do not always satisfy this rule of thumb within the wave-optics simulations,
as shown in Figs. 5–7.

Fig. 5 Branch point density (DBP ) as a function of Rytov number (RPW ) for the grid resolutions (N)
setup in Table 1. In (a) lo∕δmin ¼ 0, (b) lo∕δmin ¼ 1, (c) lo∕δmin ¼ 2, (d) lo∕δmin ¼ 4, and
(e) lo∕δmin ¼ 8.

Fig. 6 Branch point density (DBP ) as a function of circular-pupil diameter relative to Fried coher-
ence length (D∕r 0) for the grid resolutions (N) setup in Table 1. In (a) lo∕δmin ¼ 0, (b) lo∕δmin ¼ 1,
(c) lo∕δmin ¼ 2, (d) lo∕δmin ¼ 4, and (e) lo∕δmin ¼ 8.
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In support of (2), Fig. 8 shows the branch-point density, DBP, as a function of the grid res-
olution, N. The legends in each subplot denote the Rytov numbers,RPW , setup in Table 2. Each
subplot also uses the same inner-scale size relative to the minimum grid sampling, l0∕δmin,
explored in Figs. 5–7. In Fig. 8, the plotted lines represent the Monte Carlo averages associated
with 100 turbulence realizations, and the error bars represent the standard deviations. Similar to
Figs. 5–7, the width of the error bars are small (at most 4% of the mean) and thus we believe that
100 Monte Carlo realizations are adequate in quantifying the behavior of DBP in terms of N.

In Fig. 8(a), where l0∕δmin ¼ 0, we see that as N increases,DBP increases without bound for
allRPW . Figures 8(b)–8(e), on the other hand, show that when l0∕δmin increases, this unbounded
growth saturates. In particular, when l0∕δmin > 0 and N > 2048, the results for DBP tend to roll
over, whereas when l0∕δmin ≤ 2 and N ≤ 2048, the results for DBP tend to grow monotonically.
This monotonic growth increases as RPW increases, which again is most likely caused by insig-
nificant sampling of the turbulent volume.

Figure 8 ultimately shows that as l0∕δmin increases, DBP increasingly saturates when
N > 2048. This result disagrees with a preconceived notion within the atmospheric-propagation
community that the branch-point density grows without bound with increasing branch-point
resolution. As shown in Fig. 8(a), this preconceived notion is the result of using the well-known
Kolmogorov spectrum within the wave-optics simulations. Recall that this spectrum is an ideali-
zation with an inner-scale size, l0, of zero and an outer-scale size, L0, of infinity. Such a spec-
trum leads to energy distribution beyond the inertial sub range, which is not physical. Also recall
that this shortcoming can be remedied using a modified spectrum such as the Hill spectrum.56

In so doing, the wave-optics simulations more accurately model the energy distribution in a
turbulent volume and lead to the results presented in Figs. 8(b)–8(e). With this last point in
mind, Ref. 55 recently showed that wave-optics simulations need to include the effects of a
finite outer scale to accurately model the effects of anisoplanatism.

5 Conclusions

This paper used wave-optics simulations to investigate the branch-point density in terms the grid
sampling. The goal for these wave-optics simulations was to model plane-wave propagation
through homogeneous turbulence, both with and without the effects of a finite inner scale

Fig. 7 Branch point density (DBP ) as a function of isoplanatic angle relative to the diffraction-
limited half angle (θ0∕ðλ∕DÞ) for the grid resolutions (N) setup in Table 1. In (a) lo∕δmin ¼ 0,
(b) lo∕δmin ¼ 1, (c) lo∕δmin ¼ 2, (d) lo∕δmin ¼ 4, and (e) lo∕δmin ¼ 8.
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modeled using a Hill spectrum. In practice, the Rytov number, Fried coherence diameter, and
isoplanatic angle provided parameters to setup and explore the associated deep-turbulence con-
ditions within the wave-optics simulations. The grid sampling, on the other hand, provided a
gauge for the amount of branch-point resolution within the wave-optics simulations. Via Monte
Carlo averaging, the results showed that without the effects of a finite inner scale, the branch-
point density grew without bound. Nevertheless, the results also showed that as the inner-scale
size increased, this unbounded growth (1) significantly decreased as the associated deep-turbu-
lence conditions became more pronounced and (2) saturated with adequate branch-point reso-
lution within the wave-optics simulations.

The results of this paper imply that future developments need to include the effects of a finite
inner scale to accurately model the multifaceted nature of the branch-point problem in adaptive
optics. Recall that this problem tends to be the “Achilles’ heel” to beam-control systems that
perform deep-turbulence phase compensation. Thus, the results of this paper are encouraging
from the standpoint that they could readily improve the performance of existing branch-point-
tolerant phase reconstruction algorithms. The results of this paper could also inform the develop-
ment of future branch-point-tolerant phase reconstruction algorithms, which take into account
the effects of additive-sensor noise, low signal-to-noise ratios, and subaperture-sampling require-
ments. These future developments are a critical next step to improving the performance of beam-
control systems that perform deep-turbulence phase compensation.
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