Optical imaging of turbid media using independent component analysis: theory and simulation

M. Xu
M. Alrubaiee
S. K. Gayen
R. R. Alfano
The City College and Graduate Center of the City University of New York
Department of Physics
Institute for Ultrafast Spectroscopy and Lasers
New York, New York 10031

Abstract. A new imaging approach for 3-D localization and characterization of objects in a turbid medium using independent component analysis (ICA) from information theory is developed and demonstrated using simulated data. This approach uses a multisource and multidetector signal acquisition scheme. ICA of the perturbations in the spatial intensity distribution measured on the medium boundary sorts out the embedded objects. The locations and optical characteristics of the embedded objects are obtained from a Green’s function analysis based on any appropriate model for light propagation in the background medium. This approach is shown to locate and characterize absorptive and scattering inhomogeneities within highly scattering medium to a high degree of accuracy. In particular, we show this approach can discriminate between absorptive and scattering inhomogeneities, and can locate and characterize complex inhomogeneities, which are both absorptive and scattering. The influence of noise and uncertainty in background absorption or scattering on the performance of this approach is investigated. © 2005 SPIE Society of Photo-Optical Instrumentation Engineers. [DOI: 10.1117/1.2101568]

Keywords: image processing; image reconstruction; medical imaging; inverse problems; absorption; scattering; diffusion; radiative transfer.

1 Introduction

Optical probing of the interior of multiply scattering colloidal suspensions and biological materials has attracted much attention over the last decade. In particular, biomedical optical tomography and spectroscopy, which has the potential to provide functional information about brain activities and diagnostic information about tumors in breast and prostate, are being actively pursued. Simultaneous developments in experimental apparatus and techniques for object interrogation and signal acquisition, analytical models for light propagation, and computer algorithms for image reconstruction hold promise for realization of these potentials of optical tomography.

Multiple scattering of light in thick turbid media precludes direct imaging of embedded targets. One typically uses an inverse image reconstruction (IIR) approach to reconstruct a map of the optical properties, such as absorption coefficient (\(\mu_a\)) and scattering coefficient (\(\mu_s\)), of the medium by matching the measured light intensity distribution on the boundary of the turbid medium to that calculated by a forward model for the propagation of light in that medium. The commonly used forward models include the radiative transfer equation (RTE), the diffusion approximation (DA) of the RTE (Refs. 6 and 8), and random walk of photons. The inversion problem is ill-posed and must be regularized to stabilize the inversion at a cost of reduced resolution. Both iterative reconstruction and noniterative linearized inversion approaches have been used to solve the inversion problem in optical tomography, which is weakly nonlinear, with limited success. Reconstruction of images with adequate spatial resolution and accurate localization and characterization of the inhomogeneities remain a formidable task. The time required for data acquisition and image reconstruction is another important consideration.

In this paper, we present a novel algorithm based on the independent component analysis (ICA) from information theory to locate absorptive and scattering inhomogeneities embedded in a thick turbid medium and demonstrate the efficacy using simulated data. ICA has been successfully applied in various other applications such as electroencephalogram and nuclear magnetic resonance spectroscopy. We refer to this information theory-inspired approach as optical imaging using independent component analysis, abbreviated as, OPTICA. The novelty of OPTICA over other ICA applications is that OPTICA associates directly the independent components to the Green’s functions responsible for light propagation in the turbid medium from the inhomogeneities to the source and detector, and therefore the retrieved independent components can be used to locate and characterize the inhomogeneities.

OPTICA uses a multisource illumination and multidetector signal acquisition scheme providing a variety of spatial and

Address all correspondence to M. Xu, the City College of the City University of New York, Department of Physics, 1419, 138th Street and Convent Avenue, New York, New York 10031. Tel.: (212) 650-6865; Fax: (212) 650-5530; E-mail: minxu@sci.ccny.cuny.edu
angular views essential for three-dimensional (3-D) object localization. Each object (or inhomogeneity) within the turbid medium alters the propagation of light through the medium. The influence of an object on the spatial distribution of the light intensity at the detector plane involves propagation of light from the source to the object, and from the object to the detector, and can be described in terms of two Green’s functions (propagators) describing light propagation from source to the object and that from the object to the detector, respectively.

The absorptive or scattering inhomogeneities illuminated by the incident wave are assumed to be virtual sources, and the perturbation of the spatial distribution of the light intensity on the medium boundary is taken to be some weighted mixture of signals arriving from these virtual sources. These virtual sources are statistically independent and can be recovered by ICA of the recorded data set. The number of leading independent components is same as the number of embedded objects. The location and characterization of inhomogeneities are obtained from the analysis of the retrieved virtual sources using an appropriate model of light propagation in the background medium.

The remainder of this paper is organized as follows. Section 2 presents a brief introduction to ICA and reviews the general theoretical framework for OPTICA. Section 3 presents the results from simulations for different configurations. Implications of these results are discussed in Sec. 4.

2 Theoretical Formalism

2.1 ICA

Blind source separation is a class of problem of general interest that consists of recovering unobserved signals or virtual sources from several observed mixtures. Typically the observations are the output of a set of sensors, where each sensor receives a different combination of the source signals. Prior knowledge about the mixture in such problems is usually not available. The lack of prior knowledge is compensated by a statistically strong but often physically plausible assumption of independence between the source signals. Over the last decade, ICA has been proposed as a solution to the blind source separation problem and has emerged as a new paradigm in signal processing and data analysis.

The simplest ICA model, an instantaneous linear mixture model, assumes the existence of independent signals $s_j(t)$ ($i = 1, 2, \ldots, n$) and the observation of at least as many mixtures $x_i(t)$ ($i = 1, 2, \ldots, m$) by $m \geq n$ sensors, these mixtures being linear and instantaneous, i.e., $x_i(t) = \sum_{j=1}^{n} a_{ij} s_j(t)$ for each i at a sequence of time t. In a matrix notation,

$$x(t) = As(t), \quad A \in \mathbb{R}^{m \times n},$$

where A is the mixing matrix. The j'th column of A gives the mixing vector for the j'th virtual source. ICA can be formulated as the computation of an $n \times m$ separating matrix B whose output

$$y(t) = Bx(t) = Cs(t), \quad B \in \mathbb{R}^{n \times m}, \quad C = BA \in \mathbb{R}^{n \times n},$$

is an estimate of the vector $s(t)$ of the source signals.

The basic principle of ICA can be understood in the following way. The central limit theorem in probability theory tells us that the distribution of independent random variables tends toward a Gaussian distribution under certain conditions. Thus, a sum of multiple independent random variables usually has a distribution that is closer to Gaussian than any of the original random variables. In Eq. (2) $y(t) = \sum_{j=1}^{n} c_{ij} s_j(t)$, as a summation of independent random variables $s_j(t)$, is usually more Gaussian than $s_j(t)$, while $y(t)$ becomes least Gaussian when it in fact equals one of the $s_j(t)$. This heuristic argument shows that ICA can be intuitively regarded as a statistical approach to find the separating matrix B such that $y(t)$ is least Gaussian. This can be achieved by maximizing some measure of non-Gaussianity, such as maximizing kurtosis (the fourth-order cumulative), of $y(t)$.

ICA separates independent sources from linear instantaneous or convolutive mixtures of independent signals without relying on any specific knowledge of the sources except that they are independent. The sources are recovered by maximizing a measure of independence (or, a minimization of a measure of dependence), such as non-Gaussianity and mutual information between the reconstructed sources. The recovered virtual sources and mixing vectors from ICA are unique up to permutation and scaling.

2.2 Optical Imaging Using ICA

The classical approach to propagation of multiply scattered light in turbid media, which assumes that phases are uncorrelated on scales larger than the scattering mean free path, leads to the RTE in which any interference effects are neglected. The RTE does not admit closed-form analytical solutions in bounded regions and its numerical solution is computationally expensive. The commonly used forward models in optical imaging of highly scattering media is the DA to RTE.

The approach OPTICA can be applied to different models of light propagation in turbid media, such as the diffusion approximation, the cumulant approximation, the random walk model, and radiative transfer when they are linearized. The diffusion approximation is valid when the inhomogeneities are deep within a highly scattering medium. We discuss only the formalism of OPTICA in the diffusion approximation in this paper.

In this diffusion approximation, the perturbation of the detected light intensities on the boundaries of the medium, the scattered wave field, due to absorptive and scattering objects (inhomogeneities) can be written as:

$$\phi_{in}(r, \nu) = -\int G(r, \nu, r') \delta \mu_a(r) c G(r, \nu, r) dr$$

$$- \int \delta(D(r)) \nabla_r G(r, \nu, r) \cdot \nabla_r G(r, \nu, r) dr,$$

(3)

to the first order of the Born approximation when illuminated by a point source of unit power, where r_s, r, and r_d are the positions of the source, the inhomogeneity, and the detector, respectively; $\delta \mu_a = \mu_{a, in} - \mu_a$ and $\delta D = D_{in} - D$ are the differences in absorption coefficient and diffusion coefficient, respectively, between the inhomogeneity and the background;
c is the speed of light in the medium; and $G(r, r')$ is the
Green’s function describing light propagation from r' to r
inside the background turbid medium of absorption and dif-
fusion coefficients μ_a and D.

Equation (3) is written in the frequency domain and does
not explicitly show the modulation frequency ω of the in-
dent wave for clarity. The following formalism applies to con-
tinuous wave, frequency-domain, and time-resolved measure-
ments. The time-domain measurement is first Fourier
transformed over time to obtain data over many different fre-
quencies.

The Green’s function G for a slab geometry in DA is given by

$$G(r, r') = G(p, z, z') = \frac{1}{4\pi D} \sum_{k=-\infty}^{\infty} \left[\frac{\exp(-\kappa r^k)}{r^k_x} - \frac{\exp(-\kappa r^k)}{r^k_x} \right]$$

$$r^k_x = \left[\rho^2 + (z + z' + 2kd)^2 \right]^{1/2},$$

for an incident amplitude-modulated wave of modulation fre-
cquency ω, where $k = 0, \pm 1, \pm 2, \ldots, \rho = [(x - x')^2 + (y - y')^2 + (z - z')^2]^{1/2}$ is the distance between the two points $r = (x, y, z)$ and $r' = (x', y', z')$ projected onto the xy plane; $\kappa = (\mu_a - i\omega/c)/D$ is chosen to have a nonnegative real part; and the extrapolated boundaries of the slab are located at $z = 0$ and $z = d = L_x + 2z_x$, respectively, where L_x is the physical thickness of the slab and the extrapolation length z_x should be determined from the boundary condition of the slab.10,27 Greens’ functions in Eq. (3) for other geometries can be obtained either analytically or numerically.28,41

2.2.1 Absorptive inhomogeneities

We first consider absorptive inhomogeneities. Under the as-
sumption that absorptive inhomogeneities are localized, that
is, the j’th one is contained in volume V_j centered at
$r_j (1 \leq j \leq J)$, the scattered wave field in Eq. (3) can be rewrit-
ten as

$$-\phi_{sc}(r, r') = \sum_{j=1}^{J} G(r, r_j)q_j G(r_j, r'),$$

where $q_j = \delta \mu_a(r_j)c V_j$ is the absorption strength of the j’th
inhomogeneity. The scattered wave is in a form of an instan-
taneous linear mixture of Eq. (1). One absorptive inhomoge-
neity is represented by one virtual source $q_j G(r_j, r')$ with a
mixing vector $G(r_j, r')$.

As the virtual source $q_j G(r_j, r')$ at the j’th inhomogeneity is
independent of the virtual sources at other locations, ICA
can be used with the observations obtained for the light source
at $n > J$ different positions to separate out both virtual sources
$s_j(r)$ and the mixing vectors $a_j(r_d)$. The j’th virtual
source $s_j(r)$ and the j’th mixing vector $a_j(r_d)$ provide the
scanned projections of the Green’s function on the source and
detector planes, $G(r, r_j)$ and $G(r_j, r')$, respectively. We can write

$$s_j(r) = \alpha_j G(r, r_j),$$

and

$$a_j(r_d) = \beta_j G(r_d, r_j),$$

where α_j and β_j are scaling constants for the j’th inhomogene-
ity.

Both the location and strength of the j’th object can be computed by a simple fitting procedure using Eq. (6). We adopted a least-squares fitting procedure given by:

$$\min_{r_j, \alpha_j, \beta_j} \left\{ \sum_{r_j} \left[\alpha_j^2 s_j(r_j) - G(r_j, r_j) \right]^2 + \sum_{r_d} \left[\beta_j^2 a_j(r_d) - G(r_d, r_d) \right]^2 \right\}.$$

The fitting yields the location r_j and the two scaling constants α_j and β_j for the j’th inhomogeneity whose absorption strength is then given by $q_j = \alpha_j \beta_j$.

2.2.2 Scattering inhomogeneities

For scattering inhomogeneities, a similar analysis shows the scattered wave can be written as

$$-\phi_{sc}(r, r') = \sum_{j=1}^{J} g_j(r, r_d)q_j' g_j(r, r_j),$$

where $q_j' = \delta D(r_j)c V_j'$ is the diffusion strength of the j’th scattering inhomogeneity of volume V_j' ($j = 1, 2, \ldots, J'$); $\rho_j = [(x_j - x_s)^2 + (y_j - y_s)^2 + (z_j - z_s)^2]^{1/2}$; θ_j and ϕ_j are the azimuthal angles of $r_d - r_j$ and $r_j - r_r$, respectively, and the two auxiliary functions are given by

$$g_j(r', r) = \frac{1}{4\pi D} \sum_{k=-\infty}^{\infty} \left[\frac{(\kappa r^k + 1)}{(r^k_2)^3} \exp(-\kappa \rho_j) \right]^2,$$

and

$$g_j(r', r) = \frac{1}{4\pi D} \sum_{k=-\infty}^{\infty} \left[\frac{(\kappa r^k + 1)}{(r^k_2)^3} \exp(-\kappa \rho_j) \right]^2.$$

The scattered wave from one scattering inhomogeneity is thus a mixture of contributions from (3J’) virtual sources:

$$q_j' g_j(r, r_d), \quad q_j' \rho_j \cos \theta_j g_j(r, r_d), \quad q_j' \rho_j \sin \theta_j g_j(r, r_d),$$

with mixing vectors.
where \(1 \leq j \leq J' \), respectively. Both the location and strength of the \(j \)th scattering object are computed by fitting the retrieved virtual sources and mixing vectors to Eqs. (11) and (12) using a least-squares procedure, respectively.

There are, in general, three virtual sources of specific patterns (one centrosymmetric and two dumbbell-shaped) associated with one scattering inhomogeneity, whereas only one centrosymmetric virtual source is associated with one absorptive inhomogeneity. This difference may serve as the basis to discriminate absorptive and scattering inhomogeneities.

The only assumption made in OPTICA is that virtual sources are mutually independent. The number of inhomogeneities within the medium is determined by the number of the independent components presented in the multisource multidetector data set. No specific light propagation model is assumed in this step. The analysis of retrieved independent components from ICA then localizes and characterizes the absorptive and scattering inhomogeneities inside the turbid medium using an appropriate model of the light propagator. Extra independent components may appear, depending on the level of noise in the data. These components can be discarded and only the leading independent components must be analyzed to detect and characterize inhomogeneities of interest.

3 Results

Simulations were performed for a 50-mm-thick slab, as shown schematically in Fig. 1. The absorption and diffusion coefficients of the uniform slab are \(\mu_a = 1/300 \) mm\(^{-1} \) and \(D = 1/3 \) mm, respectively, close to that of human breast tissue.\(^{42} \) The incident cw beam scans a set of \(21 \times 21 \) grid points covering an area of \(90 \times 90 \) mm\(^2 \). The spacing between two consecutive grid points is 4.5 mm. This light intensity on the other side of the slab is recorded by a CCD camera on 42 \(\times \) 42 grid points covering the same area.

In the simulations presented in the following subsections, we fix the ratio of strength of absorption to that of diffusion to be 0.01, which produce perturbations of comparable magnitude on the light intensities measured on the detector plane from the absorption and scattering inhomogeneities. As the scattered wave is linear with respect to the absorption and diffusion strengths, we also set the strength of either absorption or diffusion to be unity in simulations for convenience.

3.1 Absorptive Inhomogeneities

Two absorptive inhomogeneities, each of a unity absorption strength, are placed at positions \((50, 60, 20) \) and \((30, 30, 30) \) mm, respectively. Gaussian noise of 5% was added to the simulated light intensity change on the detector plane. OPTICA operates on a noisy scattering wave \(-\Phi_{\text{frac}}(\mathbf{r}_d, \mathbf{r}_s) \left[1 + n(\mathbf{r}_d, \mathbf{r}_s)\right] \), where \(n(\mathbf{r}_d, \mathbf{r}_s) \) is a Gaussian random variable of a standard deviation 0.05.

ICA of the perturbations in the spatial intensity distributions provided corresponding independent intensity distributions on the source and detector planes. ICA-generated independent intensity distributions on the source and detector planes are shown in Fig. 2 for the two absorptive inhomogeneities. Locations of the absorptive objects are obtained from fitting these independent component intensity distributions to those of the diffusion approximation in a slab Eq. (4) by the...
least-squares procedure of Eq. (7). The first object is found at (50.0, 60.0, 20.0) mm and the second one at (30.0, 30.0, 30.1) mm. The coordinates of both objects agree to within 0.1 mm of their known locations. The strengths of the two objects are \(q_1 = 1.00 \) and \(q_2 = 0.99 \), respectively, with an error not greater than 1% of the true values.

3.2 Discrimination between Absorptive and Scattering Inhomogeneities

In the second example, one absorptive object of absorption strength of 0.01 is placed at (50, 60, 20) mm and one scattering object of diffusion strength of negative unity corresponding to an increase in scattering for the inhomogeneity is placed at (30, 30, 30) mm, respectively. We added 5% Gaussian noise to the simulated light intensity change on the detector plane.

Figure 3 shows the ICA-generated independent intensity distributions on the source plane, i.e., virtual sources (the first row) and on the detector plane, i.e., mixing vectors (the second row), and the least-squares fitting (the third row). The first column is for the first absorptive inhomogeneity at (50, 60, 20) mm and the second through fourth columns are for the second scattering inhomogeneity at (30, 30, 30) mm and represent the centrosymmetric and two dumbbell-shaped pairs of virtual sources and mixing vectors, respectively. The dumbbell comprises one bright part and its antisymmetric dark counterpart. In the third row, the profile of intensity distributions on the source plane (diamonds) and on the detector plane (circles) are displayed, and solid lines show the respective Green's function fit used for obtaining locations and strengths of objects. The \(X \) coordinate is the horizontal coordinate. The \(\rho \) coordinate is the coordinate on the symmetrical line passing through the dumbbell axis. The small dark circular region appearing near the right-upper corner of the normalized independent spatial intensity distribution on the first row and in the fourth column is an artifact.
of both objects is within 0.3 mm of their known locations. The error of the resolved strengths of both objects is approximately 1% of the true values.

3.3 Colocated Absorptive and Scattering Inhomogeneities

For one complex inhomogeneity that is both absorptive and scattering, the two pairs of dumbbell-shaped virtual sources and mixing vectors produced by its scattering abnormality can be used to obtain its scattering strength. By subtracting the scattering contribution off the measured scattered wave, our procedure can be applied again to the cleaned data and we proceed to obtain its absorption strength. The third example considers a complex inhomogeneity at (30, 30, 20) mm with strengths of absorption $q_1=0.01$ and diffusion $q_2=1$. The first and second columns correspond to the pairs of dumbbell-shaped virtual sources and mixing vectors produced by its scattering component. The third column corresponds to its absorptive component obtained by first removing the scattering contribution. In the third row, the profile of intensity distributions on the source plane (diamonds) and on the detector plane (circles) are displayed, and solid lines show the respective Green’s function fit used to obtain locations and strengths of objects. The X coordinate is the horizontal coordinate and the ρ coordinate is the coordinate on the symmetrical line passing through the dumbbell axis.

Figure 4 shows the ICA-generated independent intensity distributions on the source and detector planes and the least-squares fitting. The first and second columns correspond to the pairs of dumbbell-shaped virtual sources and mixing vectors produced by its scattering component. The position and strength of this diffusive component is obtained to be (32.7, 33.0, 20.5) mm and $q_2=0.95$, and (31.7, 30.1, 20.4) mm and $q_2=0.96$ by fitting the two individual dumbbell-shaped pairs, respectively. The position and strength of the diffusive component is found to be (30.9, 30.9, 20.4) mm and $q_2=0.95$ if both dumbbell-shaped virtual sources and mixing vectors are used in fitting. The third column of Fig. 4 corresponds to its absorptive component obtained by first removing the scattering contribution from the measured scattered wave. The depth and strength of the absorption component is found to be (30.8, 30.7, 32.7) mm and $q_1=0.0091$.

Figure 4 Normalized independent spatial intensity distribution on the source plane (the first row) and on the detector plane (the second row), and the least-squares fitting (the third row) for one inhomogeneity located at (30, 30, 20) mm with strengths of absorption $q_1=0.01$ and diffusion $q_2=1$. The first and second columns correspond to the pairs of dumbbell-shaped virtual sources and mixing vectors produced by its scattering component. The third column corresponds to its absorptive component obtained by first removing the scattering contribution. In the third row, the profile of intensity distributions on the source plane (diamonds) and on the detector plane (circles) are displayed, and solid lines show the respective Green’s function fit used to obtain locations and strengths of objects. The X coordinate is the horizontal coordinate and the ρ coordinate is the coordinate on the symmetrical line passing through the dumbbell axis.
Fig. 5 Same as Fig. 3 with (a) 10% and (b) 20% Gaussian noise. The dumbbell-shaped virtual source on the source plane in the fourth column of (b) is deformed and the least-squares fitting is not shown.
Table 1 Comparison of known and OPTICA determined positions and strengths of absorption (Abs) and scattering (Sca) inhomogeneities under different levels of Gaussian noise.

<table>
<thead>
<tr>
<th>Noise</th>
<th>Target</th>
<th>Known Position (x, y, z) (mm)</th>
<th>Known Strength</th>
<th>Resolved Position (x, y, z) (mm)</th>
<th>Resolved Strength</th>
<th>Error in Position (mm)</th>
<th>Error in Strength (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5%</td>
<td>Abs</td>
<td>(50, 60, 20)</td>
<td>0.01</td>
<td>(50.2, 60.3, 20.2)</td>
<td>0.0101</td>
<td>~0.3</td>
<td>~1</td>
</tr>
<tr>
<td></td>
<td>Sca</td>
<td>(30, 30, 30)</td>
<td>-1</td>
<td>(30.0, 30.0, 30.0)</td>
<td>-0.99</td>
<td>~0.1</td>
<td>~1</td>
</tr>
<tr>
<td>10%</td>
<td>Abs</td>
<td>(50, 60, 20)</td>
<td>0.01</td>
<td>(50.2, 60.3, 20.1)</td>
<td>0.0101</td>
<td>~0.3</td>
<td>~1</td>
</tr>
<tr>
<td></td>
<td>Sca</td>
<td>(30, 30, 30)</td>
<td>-1</td>
<td>(30.0, 30.1, 30.0)</td>
<td>-0.98</td>
<td>~0.1</td>
<td>~2</td>
</tr>
<tr>
<td>20%</td>
<td>Abs</td>
<td>(50, 60, 20)</td>
<td>0.01</td>
<td>(50.1, 60.3, 20.5)</td>
<td>0.0102</td>
<td>~0.5</td>
<td>~2</td>
</tr>
<tr>
<td></td>
<td>Sca</td>
<td>(30, 30, 30)</td>
<td>-1</td>
<td>(28.9, 27.0, 32.9)</td>
<td>-0.59</td>
<td>~3</td>
<td>~50</td>
</tr>
</tbody>
</table>

The error in positioning the scattering component is less than 1 mm and the error of the resolved strength of the scattering strength is ~5%. The errors in positioning and the resolved strength of the absorptive component equal ~3 mm and ~10%, respectively, which are larger than those of the scattering component because the error is amplified when the estimated scattering component is used in subtraction off its contribution to the scattered wave in our procedure.

Fig. 6 Same as Fig. 3 with (a) 40, (b) 34, and (c) 10 dB background absorption uncertainty.
3.4 Effect of Noise

To demonstrate the effect of noise on the performance of OPTICA, different levels of Gaussian noise were added to the simulated light intensity change on the detector plane.

Figure 5 shows the case presented in Fig. 3 of Sec. 3.2 with, instead, 10 and 20% Gaussian noise added to the scattered wave. The resolved absorptive inhomogeneity is at (50.2, 60.3, 20.1) mm with strength 0.0101 at 10% noise, and at (50.1, 60.3, 20.5) mm with strength 0.0102 at 20% noise. The resolved position and strength of the scattering object are found to be (30.0, 30.1, 30.0) mm and \(q_2 = -0.49 \), (32.1, 32.4, 30.4) mm and \(q_2 = -0.95 \), and (31.4, 30.1, 27.5) mm and \(q_2 = -1.00 \), respectively, through fitting to the pair of centrosymmetric and two pairs of dumbbell-shaped virtual sources and mixing vectors [see the second to fourth columns of Fig. 5(a)], respectively, at 10% noise. The resolved values become (28.9, 27.0, 32.9) mm and \(q_2 = -0.59 \) from fitting the pair of centrosymmetric virtual source and mixing vector [see the second column of Fig. 5(b)], and (30.3, 32.3, 26.6) mm and \(q_2 = -0.13 \) from fitting the first pair of dumbbell-shaped virtual source and mixing vector [see the third column of Fig. 5(b)], respectively, at 20% noise. The dumbbell-shaped virtual source on the plane of the second pair of dumbbell-shaped virtual source and mixing vector, is deformed and the fitting is not shown [see the fourth column of Fig. 5(b)]. The deformation of dumbbell appears first in the source plane with the increase of noise as the grid spacing on the source plane is larger than that in the detector plane in the simulation.

The error in localization and characterization of scattering inhomogeneities increases rapidly with the increase of noise, from \(\sim 0.1 \) mm in positioning and \(\sim 2\% \) in strength at 10% noise to \(\sim 3 \) mm in positioning and \(\sim 50\% \) in strength at 20% noise. On the other hand, the effect of noise on localization and characterization of absorptive inhomogeneities is much smaller, the errors at both noise levels are less than 0.5 mm in positioning and \(\sim 2\% \) in strength. The results in Sec. 3.2 and this section are summarized in Table 1.

3.5 Effect of Uncertainty in Background

In the examples discussed here, we have assumed the light intensities change measured on the detector plane is obtained with an exact knowledge about the background. To examine the effect of uncertainty in background optical property on the performance of OPTICA, we model the error in the estimation of the background absorption or diffusion coefficients as a uniform Gaussian random field \(f(r) \). The Gaussian noise addressed in Sec. 3.4 is set to be zero here. OPTICA operates on a “dirty” scattering wave \(-\phi_{sca}(r_d,r_s)+\delta\phi_{sca}(r_d,r_s)\), where \(\delta\phi_{sca}(r_d,r_s) \) is the change in the scattered wave from that of a uniform background of absorption \(\mu_0 \) (or diffusion \(D \)) to that of a background of absorption \(\mu_0+f(r) \) [or diffusion \(D+f(r) \)]. The magnitude of the background uncertainty is represented by the signal-to-noise ratio (SNR) defined by

\[
\text{SNR}(\text{dB}) = 10 \log_{10} \frac{\sum_{r_d} \sum_{r_s} |\phi_{sca}(r_d,r_s)|^2}{\sum_{r_d} \sum_{r_s} |\delta\phi_{sca}(r_d,r_s)|^2}.
\]

Figures 6(a)–6(c) show the case presented in Fig. 3 of Sec. 3.2 with 40, 34, and 10 dB SNR due to background absorption uncertainty, respectively. The resolved absorptive inhomogeneity is at (50.2, 60.3, 20.1) mm with strength 0.0101 at 40 dB SNR, and at (50.2, 60.3, 20.1) mm with strength 0.0100 at 34 dB SNR, and at (50.6, 60.3, 20.3) mm with strength 0.0090 at 10 dB SNR.

The resolved position and strength of the scattering object are found to be (30.0, 30.1, 30.0) mm and \(q_2 = -0.99 \), (32.1, 32.9, 30.0) mm and \(q_2 = -0.95 \), and (31.4, 30.0, 27.5) mm and \(q_2 = -1.01 \), respectively, through fitting to the pair of centrosymmetric and two pairs of dumbbell-shaped virtual sources and mixing vectors [see the second to fourth columns of Figs. 5(a)], respectively, at 40 dB SNR. The resolved values become (31.6, 31.7, 25.3) mm and \(q_2 = -0.52 \) and \(q_2 = -0.99 \), and (31.4, 30.0, 27.5) mm and \(q_2 = -1.01 \), respectively, through fitting to the pair of centrosymmetric and two pairs of dumbbell-shaped virtual sources and mixing vectors [see the second to fourth columns of Figs. 5(b) and 5(c)]. The dumbbell-shaped virtual sources and mixing vectors, especially the dumbbell-shaped virtual sources on the source plane are deformed and the fitting is not shown [see the third and fourth columns of Figs. 5(b) and 5(c)]. The results for the influence of background absorption uncertainty on the performance are summarized in Table 2.

<table>
<thead>
<tr>
<th>SNR (dB)</th>
<th>Target</th>
<th>Known Position ((x, y, z)) (mm)</th>
<th>Known Strength</th>
<th>Resolved Position ((x, y, z)) (mm)</th>
<th>Resolved Strength</th>
<th>Error in Position (mm)</th>
<th>Error in Strength (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>Abs</td>
<td>(50, 60, 20)</td>
<td>0.01</td>
<td>(50.2, 60.3, 20.1)</td>
<td>0.0101</td>
<td>~0.3</td>
<td>~1</td>
</tr>
<tr>
<td></td>
<td>Sca</td>
<td>(30, 30, 30)</td>
<td>-1</td>
<td>(30.1, 30.1, 30.0)</td>
<td>-0.99</td>
<td>~0.1</td>
<td>~1</td>
</tr>
<tr>
<td>34</td>
<td>Abs</td>
<td>(50, 60, 20)</td>
<td>0.01</td>
<td>(50.2, 60.3, 20.1)</td>
<td>0.0100</td>
<td>~0.3</td>
<td>~1</td>
</tr>
<tr>
<td></td>
<td>Sca</td>
<td>(30, 30, 30)</td>
<td>-1</td>
<td>(31.6, 31.7, 25.3)</td>
<td>-0.52</td>
<td>~5</td>
<td>~50</td>
</tr>
<tr>
<td>10</td>
<td>Abs</td>
<td>(50, 60, 20)</td>
<td>0.01</td>
<td>(50.6, 60.3, 20.3)</td>
<td>0.0090</td>
<td>~0.3</td>
<td>~10</td>
</tr>
<tr>
<td></td>
<td>Sca</td>
<td>(30, 30, 30)</td>
<td>-1</td>
<td>(31.7, 29.6, 31.7)</td>
<td>-0.78</td>
<td>~5</td>
<td>~50</td>
</tr>
</tbody>
</table>
Fig. 7 Same as Fig. 3 with (a) 34 and (b) 10 dB background scattering uncertainty.
uncertainty. The resolved absorptive inhomogeneity is at
(50.1, 60.3, 20.1) mm with strength 0.0100 at 34 dB
SNR and at (49.9, 60.5, 20.1) mm with strength 0.0099 at 10 dB
SNR.

The resolved position and strength of the scattering object
are found to be (30.0, 30.1, 30.0) mm and \(q_2 = -0.99 \),
(32.2, 33.0, 30.0) mm and \(q_2 = -0.96 \), and
(32.3, 29.3, 27.1) mm and \(q_2 = -1.08 \), respectively, through
fitting to the pair of centrosymmetric and two pairs of
dumbbell-shaped virtual sources and mixing vectors [see the
second to fourth columns of Fig. 5(a)], respectively, at 34 dB
SNR. The resolved position and strength of the scattering ob-
ject are found to be (31.7, 31.1, 32.5) mm and \(q_2 = -0.75 \),
(30.9, 31.4, 27.5) mm and \(q_2 = -1.08 \), respectively, through
fitting to the pair of centrosymmetric and the first pair of
dumbbell-shaped virtual sources and mixing vectors [see the
second to fourth columns of Fig. 5(b)] at 10 dB SNR. The
results for the influence of background scattering uncertainty
on the performance are summarized in Table 3.

The uncertainty in the background absorption or diffusion
coefficients affects the performance of OPTICA in a similar
fashion as the noise does discussed in Sec. 3.4. The error in
localization and characterization of scattering inhomogene-
ities increases rapidly while the error in localization and char-
acterization of absorptive inhomogeneities only increases
mildly with the increase of the uncertainty in the background
optical property. The uncertainty in background scattering has
a less adverse effect on the performance of OPTICA than that in background absorption.

4 Discussion

The simulational study of OPTICA presented in this paper
demonstrates its potential in optical imaging of objects in tur-
bid media. It was shown to be able to locate and characterize
absorptive and scattering inhomogeneities within highly scat-
tering medium. In particular, OPTICA can discriminate be-
tween absorptive and scattering inhomogeneities and locate
and characterize complex inhomogeneities, which is both ab-
sorptive and scattering. The accuracy of localization and char-
acterization of inhomogeneities is high. In the cases investi-
gated for concentrated inhomogeneities within a tissue-
emulating slab of thickness of 50 mm, the errors in resolved
object locations are not greater than 1 mm and the errors in
the resolved optical strengths are \(\sim 2\% \) under favorable noise
levels and reliable background estimations.

Noise at higher levels and/or larger uncertainty in the optical
property of the background medium makes it difficult to
discriminate between absorptive and scattering inhomogene-
ities. In such a situation, other corroborative evidence, such as
multiwavelength measurements, are required to determine the
nature of inhomogeneities. Noise at higher levels and/or larger
uncertainties in the optical property of the background me-
dium also introduces larger errors in localization and charac-
terization of scattering inhomogeneities. The accuracy of lo-
calization and characterization of absorptive inhomogeneities
is only mildly affected by the amount of noise and/or uncer-
tainty in the range investigated.

OPTICA unmixes inhomogeneities based on the mutual
statistical independence between them and does not rely on a
Gaussian distribution of light intensity on the surface of the
embedding medium. OPTICA has several salient features.
First, OPTICA provides the independent components due to
the inhomogeneities with minimal processing of the data and
does not have to resort to any specific light propagation model
for obtaining this information. Specific light propagation
models are needed only in the later stage to determine loca-
tion and optical strength. Second, different geometries, or
even an arbitrary shaped boundary, can be used with OP-
TICA. Although we used the slab geometry in the work re-
ported in this paper, the approach does not depend on any
specific geometry. Third, the approach is fast and is amenable
to near real-time detection and localization of objects in a tur-
bid medium, which is a key consideration for in vivo medi-
cal imaging.

As is well known, the diffusion approximation to RTE,
which is widely used in inverse image reconstruction, does not
apply when the separation between any two of the source,
the inhomogeneity and the detector is small, or when there are
clear regions in the medium. A special treatment is also re-
quired when the medium has aligned microstructures, such as
myofibrils, axons, or collagen fibers in tissues. The fact that
a prior assumption of a specific model of light propagation in
the medium is not assumed in the identification of independ-
ent components by ICA and is required only in a Green’s
function analysis of the retrieved independent component is
desirable, especially in situations that demand a more com-
plex model than the conventional DA. Performing the fitting
procedure for each identified independent component is much
simpler and more transparent than matching the measured
light intensity to a forward model iteratively. The quality of
reconstruction of OPTICA is expected to be higher than the

Table 3 Comparison of known and OPTICA determined positions and strengths of absorption (Abs) and scattering (Sca) inhomogeneities under different levels of background scattering uncertainty.

<table>
<thead>
<tr>
<th>SNR (dB)</th>
<th>Target</th>
<th>Known Position (x, y, z) (mm)</th>
<th>Known Strength</th>
<th>Resolved Position (x, y, z) (mm)</th>
<th>Resolved Strength</th>
<th>Error in Position (mm)</th>
<th>Error in Strength (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>34</td>
<td>Abs</td>
<td>(50, 60, 20)</td>
<td>0.01</td>
<td>(50.1, 60.3, 20.1)</td>
<td>0.0100</td>
<td>-0.3</td>
<td>-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Abs</td>
<td>(30, 30, 30)</td>
<td>-1</td>
<td>(30.0, 30.1, 30.0)</td>
<td>-0.99</td>
<td>-0.1</td>
<td>-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sca</td>
<td>(50, 60, 20)</td>
<td>0.01</td>
<td>(49.9, 60.5, 20.1)</td>
<td>0.0099</td>
<td>-0.5</td>
<td>-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sca</td>
<td>(30, 30, 30)</td>
<td>-1</td>
<td>(31.7, 31.1, 32.5)</td>
<td>-0.75</td>
<td>-2.5</td>
<td>-25</td>
</tr>
</tbody>
</table>
conventional approach when only an imperfect forward model is available.

OPTICA is most suited to detect small objects. Given its ability to identify low-contrast small objects, the approach is expected to be especially useful for detection of tumors at their early stages of development.

Acknowledgments
This work is supported in part by U.S. Army Medical Research and Materials Command, Office of Naval Research (ONR), New York State Office of Science, Technology, and Academic Research (NYSTAR), and City University of New York (CUNY) organized research programs. M. X. thanks the support by the Department of Army (Grant No. DAMD17-02-1-0516). M. Alrubaiie thanks the National Science Foundation (NSF) for an Advance Placement Fellowship. We acknowledge Dr. W. Cai for helpful discussions.

References

