Review of roles for photonic crystals in solar fuels photocatalysis

Jeremy J. Pietron
Paul A. DeSario
Review of roles for photonic crystals in solar fuels photocatalysis

Jeremy J. Pietron* and Paul A. DeSario
U. S. Naval Research Laboratory, Code 6170, Surface Chemistry Branch, 4555 Overlook Avenue, Southwest, Washington, DC 20375, United States

Abstract. We cover the intersection of nanophotonics, materials such as photonic crystals (PC), but also irregular templated light scattering interfaces, with their application to solar fuels photocatalysis. We describe the fundamental principles of adapting nanophotonics to photocatalysis, particularly slow photon effects and how appropriate choice of stop band and edge position of the PC can be exploited for light harvesting. We also review several representative examples of nanophotonic design applied to photovoltaic semiconductor materials. We include the most heavily investigated photocatalytic materials (such as TiO₂), as well as inherently visible light active semiconductors, and materials sensitized with semiconductor nanocrystals or plasmonic metal nanoparticles. Finally, we review alternative scattering interfaces useful for improving the performance of solar fuels photocatalysis. © 2016 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JPE.7.012007]

Keywords: solar fuels; nanophotonics; photonic crystals; photocatalysis; slow photon effect.

1 Introduction

1.1 Solar Fuel Photocatalysis at Semiconductors and the Challenge of Improving Light Harvesting

Direct solar water splitting is in principle one of the most sustainable pathways to produce clean fuels such as hydrogen (H₂) from cheap and abundant resources; however, the paucity of photocatalysts that efficiently drive water splitting under solar irradiation presently limits its viability as a route to renewable fuels. Functional photocatalysts must be cheap, stable in water, and able to perform the three fundamental functions in the photocatalytic process: (1) absorb solar radiation to produce reactive charge carriers (i.e., electron–hole pairs); (2) efficiently transfer charge carriers to reactive sites at the semiconductor surface while minimizing electron–hole recombination; and (3) drive chemical reactions of interest with high selectivity and yield of the desired product. Semiconductor photocatalysts with band edges satisfying the thermodynamic requirements for both water oxidation and water reduction, such as titania (TiO₂), are limited by poor sunlight harvesting as a consequence of their large optical bandgap. Narrower bandgap semiconductors that absorb in the visible region, such as BiVO₄ and Fe₂O₃, do not photogenerate the required thermodynamic potentials for water splitting.

Multiple strategies have been investigated to improve light utilization by wide bandgap semiconducting photocatalysts, with the most common including doping to shift band potentials, and sensitization with plasmonic metal nanoparticles, quantum dots, or dyes. Alternatively, the physical arrangement of the semiconductor can be controlled at the nanometer-to-micrometer scale to improve light harvesting. In the past decade, photonic crystals (PCs) of various morphologies have been investigated as a means of enhancing light utilization in semiconductor-based photocatalysts. We discuss below the recent trends in photocatalyst design that exploit
the unique optical properties of PCs to improve sunlight utilization and highlight examples of how these photocatalyst structures are being used to enhance photochemical splitting of water.

1.2 Slow Photons and Photonic Crystals

To clarify how PCs can enhance photocatalytic processes, including H₂ generation, some background information on PCs and how they interact with light is necessary. Whether in pure or sensitized photocatalyst materials, the phenomenon characteristic of PCs that has been most commonly exploited to enhance light absorption in semiconductor photocatalysts is the “slow photon effect”—a slowing of light propagation in photonic materials at wavelengths near the photonic bandgap. PCs are ordered, periodic structures with alternating regions of high and low refractive index that satisfy Bragg diffraction conditions. A “forbidden band” of radiation with wavelengths on the same order as the periodicity of the PC structure cannot propagate through the PC, leading to a strong reflectance. The center of this band of radiation is known as the stop band or photonic bandgap. At the high- (blue) and low-energy (red) regions of the stop band, photons are multiply scattered in the lower refractive index and higher refractive index portion of the PC, respectively (Fig. 1), thus effectively lowering the group velocity of light at the edges of the stop band. The propagation of slow photons increases their optical path length within the semiconductor or sensitizer and enhances the probability of generating charge carriers.

Although more exotic structures exist, inverse opals (IOs) are the most common PC structure utilized in photocatalysis. These structures are typically prepared by templating monodisperse polystyrene spheres in an opal arrangement and infiltrating the voids of the face-centered cubic (fcc) array with oxide precursors before removing the template by calcination (Fig. 2). The photonic bandgap (λₚ) for the IO films obeys a modified version of Bragg’s law

\[\lambda_p = 1.6D \sqrt{n_p^2 f + n_s^2 (1 - f) \sin \theta}, \]

where \(D \) is the diameter of the spherical voids in the fcc structure, \(f \) is the volume fraction of the spherical pore volume, \(n_p \) is the refractive index of the pore-filling fluid, \(n_s \) is the refractive index of the solid framework, and \(\theta \) is the angle between incident light and (111) plane of the fcc structure. The exact frequency of the photonic bandgap is highly sensitive to the refractive indices of the solid and voids and will redshift as the refractive index of the pore-filling fluid increases (Fig. 3). The critical spatial dimension, \(D \), is controlled directly during IO synthesis; the stop band is synthetically tuned as a function of the spherical template diameter (Fig. 4).
2 Coupling Photonic Crystals to Photocatalysis—Tuning the Red Edge of the Stop Band to the Photocatalyst Absorption Maximum

2.1 Tuning the Photonic Crystal Stop Band Around the Semiconductor Band Edge

Precise tuning of the stop band is necessary to exploit the slow photon effect for enhanced photocatalysis. Findings by Chen et al.20–22 established the ground rules for slow photon-enhanced photocatalysis. They applied anatase TiO\textsubscript{2} IO films with stop bands centered at wavelengths between 280 and 500 nm to the photocatalytic degradation of methylene blue under monochromatic UV radiation at 370 ± 10 nm.20 The most photocatalytically active anatase PCs featured stop bands at 345 nm—not 370 nm—because it is at the red edge of the stop band that light is most substantially slowed in the high index material. Monochromatic light of wavelengths matched to the stop band does not propagate in the PC. Anatase IO films with stop bands at 345 nm had a low-energy edge coincident with the 370-nm illumination (near the anatase band edge), enabling them to enhance degradation rates by a factor of 1.9. PC films with stop bands at 370 nm rejected the incident radiation and were less catalytically active than nonphotonic nanocrystalline TiO\textsubscript{2} controls. As predicted by Eq. (1), the positions of the PC film stop bands were sensitive to the incident angle of radiation; tilt angles of 10 deg, 20 deg, and 45 deg substantially shifted the stop bands of all films, changing the films that were most photocatalytically active.

When white-light was used to irradiate the films, the order of the reactivity for the series of stop bands changed: PCs with stop bands at 300 nm exhibited the most photocatalytic activity enhancement (with an enhancement factor of 2.3 relative nanocrystalline TiO\textsubscript{2}). Under polychromatic radiation, the effects of reflection compete with the slow light effect at PCs. The wavelengths at which reflection occurs comprise a larger portion of the stop band than those wavelengths at the edges of the stop band, at which the slow photon effects dominate. Thus, positioning the stop band directly at the absorption edge can result in diminished photocatalytic activity under broad spectrum illumination.20 However, absorption by the dielectric material strongly diminishes photonic effects.23 Thus, positioning the stop band at energies higher (shorter wavelengths) than the TiO\textsubscript{2} band edge enhances band-edge excitation and at the same time minimizes reflective losses occurring at wavelengths between the stop band and its high-energy edge.

2.2 Tuning the Photonic Crystal Stop Band Around Sensitizer Excitation Maxima

The rules for matching the red edge of the stop band to excitation energy apply to sensitized PCs as well, whether they are sensitized with dyes, quantum dots, plasmonic metal nanoparticles, or atomic dopants; slow photon edges—rather than the stop band itself—should be matched to absorption of the sensitizer, with care taken to avoid reflective losses from the stop band. For example, slow photon effects when carefully matched to the 550-nm absorption...
of Ti³⁺-doped TiO₂ PCs enhanced the broadband visible light photocatalytic activity for methylen blue degradation by about a factor of 2 compared to the equivalently Ti³⁺-doped nonphotonc counterpart; doped TiO₂ PCs with more poorly matched stop bands exhibited much more modest enhancement.²⁴

Curti et al.²⁵ prescribe some standard experimental guidelines that will help clarify the extent to which the slow photon effect is responsible for changes in photocatalytic activity. They recommend that the photocatalytic performance of IOs be directly compared to disordered
structures of the same material with comparable surface area and porosity to isolate the effects of surface area. Broadband excitation should be avoided to allow one to discriminate between photogenerated carriers originating from slow photons and those originating from normal bandgap excitation. Under these controlled experimental conditions, one can quantify the level of photocatalytic enhancement attributed to the slow photon effect and utilize the ground rules established in the seminal work by Chen et al.\(^{20-22}\) and others\(^{19,26}\) to engineer the stop band position for maximum photocatalytic activity.

3 Hydrogen Generation Photocatalysis at Photonic Crystals

Using the design principles described above, many researchers have exploited the slow photon effect to enhance \(\text{H}_2\) generation by photochemical or phot electrochemical water splitting in photocatalysts including TiO\(_2\),\(^{27-30}\)WO\(_3\),\(^{19}\)Fe\(_2\)O\(_3\),\(^{31}\)Bi\(_2\)WO\(_6\),\(^{32}\)and BiVO\(_4\)\(^{18,33}\) (results and references are summarized in Table 1). At Pt-modified TiO\(_2\) PCs,\(^{27}\) the photocatalytic efficiency of \(\text{H}_2\) generation as a function of the stop band position obeyed the same trends as those observed for dye degradation reactions by Chen et al.\(^{20}\) The largest enhancement factor under broadband excitation of 2.5 occurred when the stop band was tuned to 342 nm—where the red edge overlapped the TiO\(_2\) band edge.\(^{27}\)

While narrower bandgap alternatives to TiO\(_2\) for photocatalytic water splitting\(^{2-4}\) may absorb more visible light, none features 100% photon-to-carrier conversion efficiency, and thus all can still benefit from improved light utilization. Alternatives to TiO\(_2\) also suffer from drawbacks involving other parts of the photocatalytic process, such as valence/conduction band energies that are inefficient for water-splitting chemistry, and from fast electron–hole recombination kinetics. In particular, Bi\(_2\)WO\(_6\) and BiVO\(_4\) suffer from high bulk recombination rates and thus benefit from the shortened carrier path lengths to the semiconductor surface featured in the IO architecture.\(^{18,32-34}\) Nan et al.\(^{34}\) show particularly strong enhancement factors of both surface-normalized photocurrents and photocatalytic oxygen and \(\text{H}_2\) generation at the IO form of BiVO\(_4\) (Fig. 5). While the red edge of the stop band in their BiVO\(_4\) IO structures (~450 nm) overlaps well with the band edge of BiVO\(_4\), their observed enhancement is probably due to more than the slow light effect alone. The simultaneous improvement of light management and electron–hole separation with IO forms of Bi\(_2\)WO\(_6\) and BiVO\(_4\) enhances phot electrochemical water splitting relative to non-PC forms of the semiconductors to a significantly greater extent than that achieved when expressing TiO\(_2\) in PC form (about 3\(\times\) to 8\(\times\) for Bi\(_2\)WO\(_6\) and BiVO\(_4\) compared to about 2\(\times\) to 2.5\(\times\) for TiO\(_2\), Table 1). Note that while the improvement is more substantial in the PC forms of Bi\(_2\)WO\(_6\) and BiVO\(_4\), the overall photo efficiencies are still typically lower than that achievable with TiO\(_2\).

Zhang et al.\(^{33}\) compared the photoelectrochemical water-splitting activity of IO and planar Mo:BiVO\(_4\) photoanodes. When the stop band was tuned to 513 nm, near the ~520-nm electronic bandgap of the oxide, photoelectrochemical activity was enhanced by about 8\(\times\). Photoelectrochemical activity was still enhanced—but to a much lesser extent—when the stop band was tuned to a frequency at which slow photons did not overlap the electronic bandgap excitation of BiVO\(_4\). The enhanced activity in the absence of the slow photon effect is attributed to improved charge separation imparted by the PC architectures. Zhou et al.\(^{18}\) used transient photocurrent decay to measure the extent to which IO architectures enhanced charge migration during photoelectrochemical water splitting in BiVO\(_4\) PCs. Carrier lifetimes were extended in BiVO\(_4\) photoanodes with a macroporous IO structure compared to those observed in disordered films. The longest lifetimes were measured in IO structures containing both macro and mesoporosity; photoelectrochemical water-splitting activity was enhanced by roughly 3\(\times\) to 7\(\times\) in such films.

Mitchell et al.\(^{35}\) applied a somewhat different approach to PC-enhanced photocatalysis, in which CdS nanocrystals (NCs) supported in a photocatalytically inactive zirconium oxide (ZrO\(_2\)) PC performed photocatalysis directly, instead of acting as a sensitizer. They observed a maximum ~5\(\times\) enhancement for \(\text{H}_2\) generation under visible light illumination relative to nonphotonc CdS/ZrO\(_2\) at the “blue edge” of the PC stop band, suggesting that the supported CdS nanoparticles exploit slow photons in the lower-index voids in the PC—in contrast to the
Table 1 Diverse examples of photonic enhancement of photocatalytic and photoelectrochemical water splitting/H₂ generation reactions. Note that conditions that may impact the enhancement factor, such as excitation conditions, use of hole scavengers in reaction slurry/electrolyte, and photoanode bias in photoelectrochemical measurements, are omitted for the sake of brevity.

<table>
<thead>
<tr>
<th>Material/morphology</th>
<th>Reaction</th>
<th>Enhancement factor</th>
<th>Comment</th>
<th>Reference number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt/TiO₂ IO</td>
<td>H₂ generation in methanol/water</td>
<td>2.5</td>
<td>Slow photon enhancement of H₂ generation photocatalysis</td>
<td>27</td>
</tr>
<tr>
<td>TiO₂ and Au/TiO₂ IO</td>
<td>Photoelectrochemical water splitting</td>
<td>2.07 without Au and 2.86 with Au</td>
<td>Slow photon enhancement and plasmonic enhancement</td>
<td>28</td>
</tr>
<tr>
<td>Pt/TiO₂ IO</td>
<td>H₂ generation in formate/water</td>
<td><1 per surface area under UV excitation</td>
<td>Enhancement by IOs only observed at select excitation wavelengths; surface-area-normalized enhancement only marginally better than a disordered control</td>
<td>29</td>
</tr>
<tr>
<td>Ti³⁺-doped TiO₂ NT array with top PC layer</td>
<td>Photoelectrochemical water splitting</td>
<td>10 under visible light</td>
<td>Combination of slow photon enhancement and visible light sensitization with dopant Ti³⁺</td>
<td>30</td>
</tr>
<tr>
<td>α-Fe₂O₃ nanoparticles deposited on graphene IO</td>
<td>Photoelectrochemical water splitting</td>
<td>1.4</td>
<td>Reduced electron-hole recombination and fast electron transfer</td>
<td>31</td>
</tr>
<tr>
<td>WO₃ IO</td>
<td>Photoelectrochemical water splitting</td>
<td>~3 near excitation wavelength of activity maximum; >7 at low-activity wavelengths</td>
<td>Extensive angle-dependent study of slow photon enhancement; enhancement due to IO structure more pronounced at wavelengths where WO₃ is initially less active</td>
<td>19</td>
</tr>
<tr>
<td>Bi₂WO₄ IO</td>
<td>Photoelectrochemical water splitting</td>
<td>3</td>
<td>Slow photon effects and reduced bulk recombination</td>
<td>32</td>
</tr>
<tr>
<td>Mo:BiVO₄ and Au-modified Mo:BiVO₄ IO</td>
<td>Photoelectrochemical water splitting</td>
<td>8 over entire potential range; additional 55% increase with Au nanoparticles</td>
<td>Combination of slow photon enhancement, increased surface area and improved charge transfer, and SPR enhancement</td>
<td>33</td>
</tr>
<tr>
<td>Mo:BiVO₄ IO</td>
<td>Photoelectrochemical water splitting</td>
<td>3 to 7, depending on electrochemical potential</td>
<td>Combination of cation-substituted composite oxide chemistry and PC-enhanced photocatalysis; control size of mesopores in addition to size of macropores</td>
<td>18</td>
</tr>
<tr>
<td>C quantum dots/BiVO₄ IO</td>
<td>Photoelectrochemical water splitting</td>
<td>6</td>
<td>Combination of slow photon effects and visible light sensitization from C QDs</td>
<td>34</td>
</tr>
<tr>
<td>CdS/ZrO₂ IO</td>
<td>H₂ generation in methanol/water</td>
<td>4.7</td>
<td>CdS activity enhanced at blue edge of stop band of passive support</td>
<td>35</td>
</tr>
<tr>
<td>Au on TiO₂ NTs array with TiO₂ PC top layer</td>
<td>Photoelectrochemical water splitting</td>
<td>2.5 compared to sample with no PC top layer</td>
<td>Maximum enhancement when Au SPR matched to PC photonic bandgap</td>
<td>36</td>
</tr>
<tr>
<td>Au/TiO₂ IO</td>
<td>Photoelectrochemical water splitting</td>
<td>2</td>
<td>Coupling of plasmonic TiO₂ sensitization with slow-photon effects</td>
<td>37</td>
</tr>
<tr>
<td>Pt/TiO₂ templated from butterfly wing</td>
<td>Photoelectrochemical water splitting</td>
<td>2.3</td>
<td>Enhancement of photocatalysis by aperiodic structure (unclear if enhancement is surface area or photonic effects)</td>
<td>38</td>
</tr>
<tr>
<td>N-doped TiO₂ templated from leaf replica</td>
<td>Photocatalytic water splitting/H₂ generation</td>
<td>3.3 to 8</td>
<td>Demonstration of viability of structural approach (unclear if enhancement due to surface area or photonic effects)</td>
<td>39</td>
</tr>
</tbody>
</table>
case in which the PC support itself is photocatalytic. Their results—combined with the myriad results that demonstrate the opposite case in which the PC itself acts as the photocatalyst material and enhancement of photocatalysis occurs via localization of light coincident with the red edge of the stop band in the PC—convincingly demonstrate that the localization of the different band edges in PC-derived photocatalysts can be effectively tailored to application via materials design.

4 Combining Photonic Crystal Architectures with Plasmonics

Plasmonic metal nanoparticles, in particular Au and Ag, have recently received substantial attention as sensitizers for solar water-splitting catalysts due to their chemical stability and surface plasmon–resonant frequencies that overlap the solar spectrum.40–43 Whereas PCs improve carrier generation at or near the electronic band edge, plasmonic sensitizers can extend the useful range of photocatalysts much farther into the red (i.e., to lower energy, longer-wavelength radiation). Properly applied, the combination of PCs and plasmonic sensitizers enhances photochemical/photoelectrochemical activity to a greater extent than either strategy alone.33,36,37,44,45 For example, Zhang et al.33 measured a roughly 26% enhancement in photoelectrochemical water splitting when they modified planar \(\text{BiVO}_4 \) films with \(\sim \)20-nm plasmonic Au nanoparticles, but measured nearly 55% enhancement when they modified PC \(\text{BiVO}_4 \) with the same plasmonic Au nanoparticles. When plasmonic Au was present, the photocurrent response was extended beyond the electronic bandgap of \(\text{BiVO}_4 \) at 530 to 560 nm.
Analogous to other cases of combining photonics with sensitizers, the optimum enhancements from PCs + plasmonic sensitizers are achieved when the slow photon regions are positioned to overlap the surface plasmon resonance (SPR) frequency maximum while simultaneously avoiding reflective losses in electronic bandgap excitation. A large increase in optical extinction occurs when the slow photon region of a PC is well-matched to the SPR. Zhang et al. coupled TiO$_2$ PC structures to TiO$_2$ nanotube (NT) arrays, creating TiO$_2$ NT/PC (NTPC) assemblies and subsequently deposited SPR-active Au NCs of different sizes onto the TiO$_2$ NTPCs. The intensity of the SPR response of Au NCs with SPR maxima well-coupled to the PC photonic bandgap was more strongly enhanced than those with more poorly matched SPR maxima (Fig. 6). The SPR-driven photoelectrochemical response (Fig. 7) and H$_2$ generation were similarly more strongly enhanced at the well-matched Au/TiO$_2$ NTPCs. Zhang et al. achieved a maximum 2× enhancement in photoelectrochemical water splitting when the red edge of the stop band of PC TiO$_2$ was positioned at 518 nm, close to the SPR frequency maximum of the ∼10-nm Au particles, but at a position where the photonic stop band (at 450 nm) would not interfere with bandgap excitation of the TiO$_2$.

Fig. 6 Diffuse reflectance UV–visible absorption spectrum of Au NCs on TiO$_2$ NTs and the TiO$_2$ NTPC assembly (with a stop band centered ∼552 nm) with the spectrum of TiO$_2$ subtracted for clarity of the Au SPR features. Reproduced with permission from Ref. 36. Copyright 2013 American Chemical Society.

Fig. 7 Photoelectrochemical properties of the TiO$_2$ NTPC and Au/TiO$_2$ NTPC. (a) Amperometric $I – t$ curves at an applied potential of 1.23 V versus RHE under illumination of visible light with wavelength ≥420 nm with 60 s light on/off cycles; (b) incident photon-to-current conversion efficiency plots in the range of 400 to 700 nm at 1.23 V versus RHE. Reproduced with permission from Ref. 36. Copyright 2013 American Chemical Society.
reflection of the PC overlapped the Au SPR, the plasmonic enhancement was significantly suppressed.

5 Butterflies and Leaves: Alternate, Bioinspired, Photonic Crystal Geometries for Photocatalysis

Nature provides examples of structures that have unique interactions with light—whether they are naturally occurring PCs or disordered structures that multiply scatter light—that have inspired structural photocatalyst mimics. Butterfly wings38,46,47 and artificial leaves39 have both recently been used as structural templates for photocatalysts. Butterfly wing-templated TiO\textsubscript{2} materials that feature regular, bicontinuous, gyroid structures with clear photonic bandgaps have been fabricated.46

Although not a PC, the \textit{Papilio helenus Linnaeus} butterfly wing contains structural elements that improve light utilization, including honeycomb-like hole arrays that multiply scatter light, “ridges” that guide light into the hole array, and a bottom reflective layer that recaptures light escaping from the honeycomb arrays. Platinum-modified TiO\textsubscript{2} replicas of \textit{P. helenus Linnaeus} butterfly wings can function as H\textsubscript{2}-generating photocatalysts.38 The wing-patterned photocatalyst strongly enhances ultrabandgap light absorption and shows a $\sim 7\times$ improvement in H\textsubscript{2} generation relative to nanoparticulate TiO\textsubscript{2}, although it was unclear how much of this enhancement could be attributed solely to surface area. Demonstrating the hierarchical possibilities of biostructure-derived photocatalytic architectures, Yan and coworkers17 deposited plasmonic gold nanorods onto bismuth vanadate (BVO) structures templated from wings of the butterfly \textit{Papilio nireus} (Fig. 8) and achieved substantial photocatalytic activity at red and near-infrared light illumination. Zhou et al.39 replicated the hierarchical structure of \textit{Anemone vitifolia} Buch leaves, which contain various components that serve to focus, scatter or guide light and enhance light–matter interactions. Using a two-step infiltration process, they produced an N-doped TiO\textsubscript{2} inorganic replica of the leaf structure that showed a roughly 3\times to 8\times enhancement in H\textsubscript{2} generation compared to nanoparticulate TiO\textsubscript{2}; the activity was enhanced by another order of magnitude when modified with Pt nanoparticles.

![Fig. 8](https://www.spiedigitallibrary.org/journals/Journal-of-Photonics-for-Energy/012007-9-Jan-Mar-2017#vol.7(1))

\textbf{Fig. 8} SEM images of (a) top view of original \textit{P. nireus} wing scale, (b) top view of templated BVO replica of the \textit{P. nireus} wing scale, (c) cross section of the original scale, (d) cross section of the BVO wing, (e) TEM image of the gold nanorods (AuNR), (f) HRTEM image of a single AuNR, (g) AuNRs-loaded BVO wing with insets showing the simplified model (upper) and an enlarged image (lower), (h) HRTEM image of the AuNRs-loaded BVO wing, and (i) schematic diagram of the controlled assembly of AuNRs onto the BVO unit. Reproduced from Ref. 47 (open access). Copyright 2016 Nature Publishing Group.
6 Conclusions and Comments

Exploitation of the slow photon effect of photonic bandgap-containing materials requires rigorous matching of the red edge of the stop band with the desired excitation wavelength while avoiding absorption losses due to nonpropagation of light at the stop band. When PCs are correctly applied, photocatalytic activity enhancement factors of about 2 to 3 can be readily achieved, and in some cases enhancement of 5× or more may be possible. It is also possible to achieve light-utilization enhancement via the more disorganized process of internal light scattering, which is less demanding in structural precision, but also more difficult to design in a rational way.

A couple of important caveats should be mentioned. First, application of the slow photon effect to photocatalysis is illumination angle dependent, and as such can only be effectively applied in film geometries in which the illumination angle can be well-controlled. Practical photocatalysts are often used as fluid-dispersed (suspended) powders to maximize both mass transport and light utilization. The reactor geometry limitation inherent to PCs (i.e., a thin-film form-factor) means that careful consideration must be given to mass transport and light harvesting when designing the interfaces. Additionally, solar fuels photocatalysis involves many challenging photophysical and photochemical steps. Light harvesting is critical, but even with substantial improvements in light harvesting, many photocatalyst materials are still 2 to 3 orders of magnitude (or more)—rather than a factor of 2 to 3—from practical viability. One important class of solar fuels photocatalytic reactions omitted from this section involve reduction of carbon dioxide (CO₂) to hydrocarbons as its final step, rather than protons to H₂. Photochemical and electrochemical reductions of CO₂ comprise an enormous research challenge in its own right. Improvements on all photocatalytic fronts, however, continue apace; a number of composite solar fuels photocatalyst materials are approaching activity competitive with alternative routes to solar fuels and photonics could conceivably contribute enough additional efficiency to make them viable.

Acknowledgments

The authors would like to thank the Office of Naval Research for its support of this work. We also would like to thank Debra Rolison of the U.S. Naval Research Laboratory for helpful comments on this paper.

References

Jeremy J. Pietron received his PhD in analytical chemistry from the University of North Carolina, Chapel Hill, in 1998. After completing a National Research Council Postdoctoral Fellowship at the U.S. Naval Research Laboratory (NRL), Washington, DC, from 1999 to 2002, he joined the laboratory as a full-time staff scientist in 2003. His primary research interests are nanostructured materials, electrocatalysis, plasmonic nanomaterials, heterogeneous catalysis, and solar fuels photocatalysis.

Paul A. DeSario received his PhD in environmental engineering from Northwestern University in 2011. He joined the Surface Chemistry Branch of the U.S. NRL, Washington, DC, as a National Research Council Postdoctoral Fellow from 2011 to 2014 before joining the laboratory as a full-time staff scientist in 2015. His primary research interests are in the nanoscale design of catalytic materials for applications in energy conversion and remediation.