Two-photon microscopy measurement of cerebral metabolic rate of oxygen using periarteriolar oxygen concentration gradients

Two-photon microscopy measurement of cerebral metabolic rate of oxygen using periarteriolar oxygen concentration gradients

Sava Sakadžić, Mohammad A. Yaseen, Rajeshwer Jaswal, Emmanuel Roussakis, Anders M. Dale, Richard B. Buxton, Sergei A. Vinogradov, David A. Boas, and Anna Devora

Abstract. The cerebral metabolic rate of oxygen (CMRO₂) is an essential parameter for evaluating brain function and pathophysiology. However, the currently available approaches for quantifying CMRO₂ rely on complex multimodal imaging and mathematical modeling. Here, we introduce a method that allows estimation of CMRO₂ based on a single measurement modality—two-photon imaging of the partial pressure of oxygen (PO₂) in cortical tissue. We employed two-photon phosphorescence lifetime microscopy (2PLM) and the oxygen-sensitive nanoprobe PtP-C343 to map the tissue PO₂ distribution around cortical penetrating arterioles. CMRO₂ is subsequently estimated by fitting the changes of tissue PO₂ around arterioles with the Krogh cylinder model of oxygen diffusion. We measured the baseline CMRO₂ in anesthetized rats and modulated tissue PO₂ levels by manipulating the depth of anesthesia. This method provides CMRO₂ measurements localized within ~200 μm and it may provide oxygen consumption measurements in individual cortical layers or within confined cortical regions, such as in ischemic penumbra and the foci of functional activation. © 2016 SPIE Society of Photo-Optical Instrumentation Engineers (SPIE)

Keywords: oxygen metabolism; oxygen partial pressure; two-photon microscopy; phosphorescence; cerebral cortex.

1 Introduction

Estimation of the cerebral metabolic rate of oxygen (CMRO₂) is a challenging task that in common practice requires knowledge of both blood oxygenation and flow. CMRO₂ is estimated from multiple measurements analyzed within the context of an appropriate mathematical model of the physiology and the measured quantities. Indeed, all methods of estimating CMRO₂ are essentially solving a mass balance equation, where CMRO₂ is equated to the difference of oxygen flowing into a region of interest and the oxygen flowing out. Such modeling adds a layer of complexity to estimating CMRO₂ and raises concerns about the accuracy of the estimates due to the assumptions and limitations of the experimental methods and models used.

Several methods exist to measure CMRO₂ in humans and in small animals. The leading method for measuring CMRO₂ in humans is positron emission tomography (PET) using ¹⁷O-labeled oxygen and water to estimate oxygen uptake and cerebral blood flow (CBF), respectively. Another method gaining popularity in human studies is the “calibrated” blood oxygenation level dependent (BOLD) functional magnetic resonance imaging (fMRI) approach. This method combines BOLD fMRI with arterial spin labeling methods and includes an additional calibration step (e.g., measuring local CBF and BOLD responses to mild hypcapnia). Near-infrared spectroscopy measurement of cerebral blood oxygenation is used in combination with blood flow measurements to assess CMRO₂ in both adults and neonates.

Finally, magnetic resonance spectroscopy (MRS) based on ³¹P and ¹³C can be used in humans to assess metabolic parameters tightly coupled with CMRO₂, such as the tricarboxylic acid cycle rate and cerebral metabolic rate of adenosine triphosphate (CMRATP), respectively. In animals, CMRO₂ is also often estimated using a combination of measurements of blood oxygenation and flow. PET and fMRI techniques were appropriately modified to allow high spatial resolution measurements of CMRATP (e.g., ~1.2 mm for microPET) and voxel size of several mm³ for MRI. In addition, MRS can be used to assess CMRO₂ directly based on ¹⁷O with a few millimeters spatial resolution. Optical imaging methods offer numerous choices to measure CMRO₂ in animals by combining blood oxygenation and flow measurements. Blood oxygenation can be assessed by spectroscopic optical imaging of hemoglobin saturation by using intrinsic signals visible optical coherence tomography (OCT), photoacoustic imaging (PAI), or phosphorescence lifetime imaging. CBF can be obtained by laser Doppler or speckle contrast imaging. OCT, PAI, or PAI. Due to the complex cortical microvascular morphology (i.e., no single vascular input and output in the cortex), in cases where CBF and oxygenation were measured in individual vessels, both parameters must be acquired over a large field of view (~1 mm or larger) in order to estimate CMRO₂. By assuming the cortical thickness and that no vessels assessed...
on the cortical surface supply subcortical regions, the estimated CMRO$_2$ represents an average over the entire cortical depth and field of view.

Here, we present a high-spatial-resolution and more direct method for estimating CMRO$_2$ that relies on a single experimentally obtained parameter—the partial pressure of oxygen (PO$_2$) in tissue in the immediate vicinity (<200 μm) of penetrating cortical arterioles. Earlier attempts to measure CMRO$_2$ by directly fitting the solution of Poisson’s equation to PO$_2$ around vessels were limited by the inability to measure tissue PO$_2$ at depth with adequate sensitivity and resolution.32 This limitation was recently overcome by the development of 2PLM of PO$_2$, that allows measurements of both intravascular and interstitial (tissue) cortical PO$_2$ in vivo with high spatial and temporal resolution.33-42 Here, we estimated CMRO$_2$ by applying the Krogh cylinder model43 to periarterial tissue around penetrating arterioles and fitting the experimentally determined distributions of tissue PO$_2$ to the Krogh–Erlang solution. Our method provides CMRO$_2$ measurements localized within ~200 μm, which is defined by the tissue area where PO$_2$ distributions are measured, and it can be easily combined with other optical microscopy tools for preclinical studies of cerebral function and metabolism.

2 Methods

2.1 Animal Preparation

Sprague Dawley rats (250 to 320 g) were anesthetized with isoflurane (1.5% to 2% in a mixture of O$_2$ and air), temperature controlled, tracheotomized, and catheters were inserted in the femoral artery and vein for administering the anesthesia and dyes, and for measuring blood gases, pH, and blood pressure. We created a cranial window in the center of the parietal bone with the dura removed. Before sealing the window, we pressure-injected ~0.1 μL of Pip-C343 (1.4 x 10$^{-4}$ M) ~300 μm below the surface of the brain using a glass micropipette. The imaging was performed a few hundred microns from the injection site. Slow diffusion of the probe in the bulk-loaded brain tissue allows imaging of PO$_2$ for several hours following the injection. During the measurements, we ventilated rats with a mixture of air and oxygen adjusting the fraction of the inspired oxygen (FiO$_2$ = 21% to 24%) to maintain systemic arterial PO$_2$ at 95 to 110 mmHg. Isoflurane was discontinued and anesthesia maintained with a 50 mg/kg intravenous bolus of alpha-chloralose followed by continuous intravenous infusion at 40 mg/(kg h). The systemic arterial blood PCO$_2$ was 35 to 44 mmHg and pH was 7.35 to 7.42. All experimental procedures were approved by the Massachusetts General Hospital Sub-Committee on Research Animal Care.

2.2 Experimental Protocol

Two-photon in vivo brain imaging was performed by using our previously described custom-built microscope, controlled by the custom-designed software.34,44 The optical beam was scanned in the XY plane by galvonometer scanners and focused on the sample by an objective (Olympus 20X XLumPlanFL; NA = 0.95). A motorized stage controlled the focal position along the vertical axis (Z), and an electro-optic modulator served to gate the output of the high-repetition rate pulsed laser (Mai Tai, Spectra Physics).

We excited Pip-C343 phosphorescence by 10-μs-long trains of femtosecond pulses at 840 nm, followed by a 290-μs-long phosphorescence collection period. The emission was detected by two of the four photomultiplier tubes (PMTs) in our detector array. The phosphorescence output was detected by a photon-counting PMT module (H10770PA-50, Hamamatsu). In a typical experiment, we performed phosphorescence detection in two steps. First, we raster scanned the excitation beam over the field of view, rendering two-dimensional survey maps of the integrated emission intensity. After mapping the distribution of intensity, we averaged 500 to 2000 phosphorescence decays in selected point locations in the tissue for accurate PO$_2$ determination. This acquisition time corresponded to a temporal resolution of 0.16 to 0.76 s per single-point PO$_2$ measurement. PO$_2$ data were typically collected in a grid pattern spanning ~300 x 300 μm2 and consisting of ~500 points, which, together with the survey mapping and selection of the grid points, took 2 to 5 min to collect. Finally, we converted phosphorescence lifetimes into PO$_2$ values by using Stern–Volmer calibration plots.35

Structural images of the cortical vasculature were obtained by imaging the blood plasma labeled with fluorescein isothiocyanate (FITC)-dextran. We collected images of the vasculature at the PO$_2$ imaging planes immediately before or after PO$_2$ imaging. These images were coregistered with the PO$_2$ data and used to define blood vessel boundaries. We also collected a three-dimensional vascular angiogram at the end of each experiment.

2.3 Data Processing

We assumed that oxygen diffusion from a penetrating arteriole can be approximated by the Krogh cylinder model of oxygen diffusion from a vessel.43 In the Krogh cylinder model [Fig. 1(a)], a vessel with cylindrical shape and radius R_{art} supplies a tissue cylinder with radius R. We also assumed that oxygen consumption (CMRO$_2$), tissue oxygen diffusivity (D), and solubility ($α$) constants are spatially homogeneous and temporally invariant. If D is isotropic and all important microvascular oxygen transport phenomena are steady state, the oxygen diffusion in a tissue satisfies Poisson’s equation:

$$\Delta PO_2(\bar{r}) = \frac{CMRO_2}{Da},$$

(1)

where $Δ$ is the Laplace operator and $PO_2(\bar{r})$ is the oxygen partial pressure at location \bar{r}, respectively. By assuming that (1) axial oxygen diffusion is insignificant, (2) $\partial PO_2(\bar{r})/\partial r = 0$ at the tissue cylinder boundary R, and (3) PO_2 in tissue at the arteriolar wall [$PO_2(R_{art})$] is labeled PO$_2^{art}$, the solution of Eq. (1) can be expressed as a well-known Krogh–Erlang formula describing oxygen diffusion from a cylinder:

$$PO_2(r) = PO_2^{art} + \frac{CMRO_2}{4Da} \left(r^2 - R_{art}^2 \right),$$

$$-\frac{CMRO_2}{2Da} R_{art}^2 \ln \left(\frac{r}{R_{art}} \right),$$

(2)

with a difference that in Eq. (2) we consider a tissue cylinder around the penetrating cortical arteriole instead of the originally considered tissue cylinder around a capillary.

In our experiments, R_{art} was estimated from the vascular anatomical images obtained by two-photon microscopy of FITC-labeled blood plasma. We assumed the tissue oxygen
permeability $D_α$ to be equal to the oxygen permeability of water ($α = 1.39 \, \mu M\, mmHg^{-1} ; D = 4 \times 10^{-5} \, cm^2 s^{-1}$).\(^45\) Periarteriolar tissue PO$_2$ measurements were coregistered with the vascular anatomical images. The radial distance from the center of the penetrating arteriole r was estimated for each measured tissue PO$_2$ point. Equation (2) was fit for CMRO$_2$, R_{cap}, and PO$_2$ _min_. Nonlinear least squares fitting was performed by the Levenberg–Marquardt algorithm. Since the Krogh cylinder model does not include tissue regions beyond radius R_i, in each iterative step of the fitting procedure, the sum of the squares of residuals was calculated only for the measured PO$_2$ points up to a radial distance of R_i. All the data processing procedures were custom-written in MATLAB (MathWorks Inc.).

3 Results

The cortical vasculature consists of a planar mesh of pial arteries and veins at the cortical surface that dive into the cortex supplying a complex microvascular network and draining the blood back to the surface. Figure 1(b) shows a typical cortical vascular anatomical image of the rat cortex. Vascular images, such as in Fig. 1(b), reveal that periarteriolar tissue around penetrating arterioles is largely devoid of capillaries, whereas the tissue away from penetrating arterioles exhibits high capillary density. One possible explanation for this morphological feature could be that the periarteriolar region is characterized by reduced cell density, and thus, it does not need as much oxygen as other tissue regions. However, published data on the density of neurons and astrocytes in cerebral cortex demonstrate the absence of anatomical differences between periarteriolar spaces and other cortical regions.\(^46\) Therefore, a more likely explanation is that highly oxygenated blood from cortical penetrating arterioles efficiently supplies large periarteriolar tissue territories, and formation of capillaries near the arterioles is simply not required. Figure 1(c) shows an example map of cortical tissue oxygen concentration, where large PO$_2$ gradients originating from the diving arteriole are dominating the tissue PO$_2$ landscape. The central part of Fig. 1(c) shows a typical radially symmetrical profile of periarteriolar tissue PO$_2$ in a plane parallel with the cortical surface (e.g., perpendicular to the propagation axis of the penetrating arteriole).

To obtain data for the CMRO$_2$ fitting, we typically imaged tissue PO$_2$ over a grid spanning ~300 \times 300 μm^2 and selected a subset of the PO$_2$ data within an arc around the arteriole with the most uniform and steepest PO$_2$ descent. Figure 2 shows four individual examples, where CMRO$_2$ was estimated based on periarteriolar tissue PO$_2$ profiles from the upper 100 to 160 μm of cortex in four different subjects. The estimated mean CMRO$_2$ was 1.71 ± 0.16 $\mu mol\, cm^{-3}\, min^{-1}$, where individual measurements varied between 1.4 $\mu mol\, cm^{-3}\, min^{-1}$ and 2.1 $\mu mol\, cm^{-3}\, min^{-1}$ (Table 1), in agreement with the previously measured 2.5 ± 1.0 $\mu mol\, cm^{-3}\, min^{-1}$ in rats under a similar anesthesia regime.\(^47\) The estimated Krogh cylinder tissue radius R_i varied between 70.4 and 106.5 μm, in agreement with the measured distances $R_{cap,min}$ of the closest capillaries to the penetrating arteriole (Table 1).

Figure 3 illustrates the likely influence of physiological and morphological parameters, such as blood pressure, heart rate, and microvascular configuration upon cerebral PO$_2$ and estimation of CMRO$_2$. Two CMRO$_2$ measurements were performed along the same penetrating arteriole in rat II (Fig. 2) at two imaging depths (150 and 130 μm below the cortical surface). The data at the two depths were collected 30 min apart. The result indicates a significant increase in the baseline tissue PO$_2$ in the second measurement in comparison with the first measurement. This is likely due to an increase in blood flow, since no noticeable change in PO$_2$ was previously observed in penetrating arterioles of similar caliber over the difference in depth of only 20 μm.\(^41,42\) The variation of the baseline tissue PO$_2$ and change in microvascular configuration at different depths may influence the CMRO$_2$ fitting procedure. However, we anticipated that CMRO$_2$ should not exhibit significant changes within a cortical layer. In agreement with this expectation, the estimated CMRO$_2$ at these two depths was found to be the same (1.4 $\mu mol\, cm^{-3}\, min^{-1}$; Table 2).

To experimentally manipulate CMRO$_2$, we modulated the level of anesthesia in rat IV (Fig. 2) by applying isoflurane (2%) on top of the ongoing alpha-chloralose anesthesia. Adding isoflurane resulted in a decrease in both blood pressure and heart rate (from 100 to 76 mmHg and from 8 to 6.5 Hz, respectively) and an increase in tissue PO$_2$. The increase in PO$_2$ is expected if neuronal activity and the associated CMRO$_2$ decrease under deeper anesthesia. Isoflurane is also a vasodilator that increases blood perfusion, which further reduces oxygen extraction fraction and increases tissue PO$_2$.\(^43\) Figure 4 shows the comparison of CMRO$_2$ estimated...
Table 1 Estimated Krogh cylinder parameters.

<table>
<thead>
<tr>
<th>Rat #</th>
<th>CMRO (_2) (μmol cm(^{-3}) min(^{-1})) fitted</th>
<th>(R_t) (μm) fitted</th>
<th>PO(_2);art (mmHg) fitted</th>
<th>(R_{art}) (μm) fixed</th>
<th>(R_{cap,min}) (μm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>1.80 ± 0.34(^a)</td>
<td>98.8 ± 6.8</td>
<td>79.9 ± 1.7</td>
<td>10.6</td>
<td>111</td>
</tr>
<tr>
<td>II</td>
<td>1.38 ± 0.16</td>
<td>99.1 ± 4.5</td>
<td>48.7 ± 0.6</td>
<td>7.5</td>
<td>86</td>
</tr>
<tr>
<td>III</td>
<td>2.10 ± 0.40</td>
<td>70.4 ± 4.7</td>
<td>35.4 ± 1.1</td>
<td>7.5</td>
<td>69</td>
</tr>
<tr>
<td>IV</td>
<td>1.56 ± 0.36</td>
<td>106.5 ± 8.9</td>
<td>63.1 ± 2.8</td>
<td>9.1</td>
<td>70</td>
</tr>
</tbody>
</table>

\(^a\)Standard error.

Fig. 2 Baseline CMRO\(_2\) measurements. (a–d) Tissue PO\(_2\) maps (color coded) around penetrating arterioles overlaid on the corresponding FITC images of microvasculature in different animals (rats I to IV). Insets show MIPs of FITC-labeled microvasculature. Arterioles in insets are colored red. The white rectangle in each inset outlines the position of the corresponding panel with the PO\(_2\) data. Yellow lines outline regions of interest with PO\(_2\) data included in the fitting procedure. Imaging depths below brain surface are 100 μm (rat I), 150 μm (rat II), 124 μm (rat III), and 160 μm (rat IV). Scale bars, 100 μm. (e–h) Tissue PO\(_2\) from the corresponding upper panels as a function of the radial distance from the penetrating arteriole with PO\(_2\) fit indicated by solid line.

Fig. 3 CMRO\(_2\) estimation at different baseline tissue PO\(_2\) and two cortical depths along the same penetrating arteriole. (a, b) Tissue PO\(_2\) maps (color coded) overlaid on FITC images of microvasculature at depths of (a) 150 μm and (b) 130 μm below the brain surface. Inset in the lower left corner shows 160-μm-thick MIPs of FITC-labeled microvasculature. Arterioles are colored red. White rectangles in insets outline the position of the panels (a) and (b). Regions of interest with PO\(_2\) data included in the fitting procedure are the same as in rat II (Fig. 2). Scale bars, 100 μm. (c) Tissue PO\(_2\) dependence on the radial distance from the arteriole with PO\(_2\) fits indicated by solid lines.
Table 2 Estimated Krogh cylinder parameters at different depths and baseline tissue PO2.

<table>
<thead>
<tr>
<th>Depth (μm)</th>
<th>CMRO2 (μmol cm⁻³ min⁻¹) fitted</th>
<th>R1 (μm) fitted</th>
<th>PO2,art (mmHg) fitted</th>
<th>Rart (μm) fixed</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>1.38 ± 0.16²</td>
<td>99.1 ± 4.5</td>
<td>48.7 ± 0.6</td>
<td>7.5</td>
</tr>
<tr>
<td>130</td>
<td>1.38 ± 0.26</td>
<td>102.7 ± 7.8</td>
<td>54.9 ± 1.2</td>
<td>7.5</td>
</tr>
</tbody>
</table>

²Standard error.

Fig. 4 CMRO2 estimation at two anesthesia depths. (a, b) Tissue PO2 maps (color coded) at two different anesthesia levels, overlaid on FITC image of microvasculature 160 μm below brain surface. (a) Alpha-chloralose anesthesia; (b) combined alpha-chloralose and isoflurane anesthesia. Inset in lower right corner shows 312-μm-thick MIP of FITC-labeled microvasculature. Arterioles are colored red. White rectangle in inset outlines the positions of the panels (a) and (b). Regions of interest with PO2 data included in the fitting procedure are the same as in rat IV (Fig. 2). Scale bars, 100 μm. (c) Tissue PO2 dependence on the radial distance from the arteriole with PO2 fits indicated by solid lines.

Table 3 Estimated Krogh cylinder parameters at different anesthesia depths.

<table>
<thead>
<tr>
<th>Anesthesia</th>
<th>CMRO2 (μmol cm⁻³ min⁻¹) fitted</th>
<th>R1 (μm) fitted</th>
<th>PO2,art (mmHg) fitted</th>
<th>Rart (μm) fixed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alpha-chloralose</td>
<td>1.56 ± 0.36²</td>
<td>106.5 ± 8.9 Fitted</td>
<td>63.1 ± 2.8</td>
<td>9.1</td>
</tr>
<tr>
<td>Alpha-chloralose + isoflurane</td>
<td>1.38 ± 0.35</td>
<td>106.6 ± 9.1 Fitted</td>
<td>66.0 ± 2.9</td>
<td>10.0</td>
</tr>
<tr>
<td>Alpha-chloralose</td>
<td>1.56 ± 0.07</td>
<td>106.5 Fixed</td>
<td>63.0 ± 2.0</td>
<td>9.1</td>
</tr>
<tr>
<td>Alpha-chloralose + isoflurane</td>
<td>1.35 ± 0.07</td>
<td>106.5 Fixed</td>
<td>64.9 ± 2.0</td>
<td>10.0</td>
</tr>
</tbody>
</table>

²Standard error.

at the same imaging location (160 μm deep) between the two anesthesia regimes. As expected, deeper anesthesia caused an increase in the baseline tissue PO2 [Fig. 4(c)]. The PO2 dependence on the radial distance from the arteriole was markedly less steep with the addition of isoflurane [Fig. 4(c)]. The measured CMRO2 decreased from 1.56 ± 0.36 μmol cm⁻³ min⁻¹ (alpha-chloralose only) to 1.38 ± 0.35 μmol cm⁻³ min⁻¹ (combined alpha-chloralose and isoflurane) (Table 3). The difference was not significant mostly due to the uncertainty in fitting the tissue radius R1. However, when R1 was treated as a fixed parameter in the CMRO2 estimation, which is likely to be appropriate here, considering that we are comparing CMRO2 measurements at the same location, the CMRO2 error decreased to 0.07 μmol cm⁻³ min⁻¹ (Table 3).

4 Discussion

Our study demonstrates that we can estimate CMRO2 using the Krogh cylinder model based on a single measurement modality—periarteriolar tissue PO2 measurement by two-photon microscopy in a single plane perpendicular to the vessel axis. With this method, no measurements of blood flow are required for the CMRO2 estimation. Using this method, we obtained a mean baseline CMRO2 of 1.71 ± 0.16 μmol cm⁻³ min⁻¹, within the error bounds of previously reported CMRO2 under similar anesthesia in rats measured by MRI (2.5 ± 1.0 μmol/cm³·min⁻¹).¹⁷ Several properties of the cortical vascular and cellular architecture make this simple model based on the Krogh cylinder applicable. First, the large tissue PO2 gradients around cortical penetrating arterioles (Figs. 1 and 2) are readily detectable with two-photon microscopy of PO2. Second, all oxygen consumed by the tissue adjacent to the penetrating arteriole is supplied by the arteriole. This is evident from (1) the large tissue PO2 gradients surrounding penetrating arterioles⁴³,⁴⁶,⁴⁷,⁴⁸,⁴⁹ (Fig. 2) and (2) the absence of other oxygen sources (i.e., capillaries) in a 50 to 100-μm radius around penetrating arterioles in rats [Fig. 1(b)] and also in mice.⁵³ The oxygen delivery from penetrating arterioles is also consistent with observations of intravascular radial PO2 profiles in penetrating arterioles demonstrating a
PO₂ decrease from the vessel center to the arteriolar wall.¹¹ Third, while at the cellular scale CMRO₂ is likely heterogeneous, CMRO₂ based on an approximate ~200 × 200 μm² area around a penetrating arteriole likely represents an accurate average CMRO₂ estimate for a particular cortical depth. This is implied from the uniform distribution of neural and glial cells within a cortical column (~300 μm in diameter in the rat primary somatosensory cortex),⁴⁶ although this result does not necessarily guarantee that the density of synapses, which are the major contributors to the cortical oxygen consumption, is uniform as well. This also suggests that the spatial localization of our CMRO₂ measurement is ~200 μm. We also note that the depth resolution of PO₂ imaging in our experiments is ~5 μm.⁴⁴ Fourth, the diameters of penetrating arterioles (15 to 20 μm) and their blood flow are sufficiently large so that the axial change in intravascular PO₂ is small and thus, the influence of axial PO₂ gradients is negligible.⁴⁵,⁴⁴ This is a requirement for the Krogh cylinder model, where a single cylindrical oxygen source supplies a homogeneous tissue cylinder.⁴³

Here, we address several important aspects of our measurements, including differences from other reported measurements and potential sources of errors: (1) most of our measurements were obtained in the upper cortical layer (layer I, i.e., the top 150 μm in the rat), which has a lower density of both neuronal cell bodies and synapses than more deepest cortical layers.⁵⁵,⁵⁶ Deeper cortical layers may exhibit higher CMRO₂.⁴⁷ (2) The fit of Eq. (2) estimates CMRO₂/(Δt). Therefore, the accuracy of our CMRO₂ estimate depends on the accuracy of the assumed values for the tissue permeability to oxygen (e.g., Dα). Unfortunately, the literature does not provide clear guidance on the accurate values to use for D and α in the rat brain cortex. Measurements of D have been typically preformed in muscle. In the hamster retractor muscle, Bentley et al.⁵⁷ measured D = 2.41 × 10⁻⁵ cm² s⁻¹. The oxygen diffusion constant in water (D = 4 × 10⁻⁵ cm² s⁻¹) that we applied in our calculations likely leads to an overestimation of CMRO₂, although oxygen diffusion in the brain cortex is probably faster than in the muscle due to a higher water content in the brain cortex.⁵⁸,⁵⁹ On the other hand, the oxygen solubility in water (α = 1.3 μM mmHg⁻¹) that we applied in our calculations is lower than the reported solubility in the frog sartorius muscle (α = 1.6 μM mmHg⁻¹).⁶⁰ and the solubility of oxygen in brain cortex may be even higher due to a higher lipid content. (3) The mean relative error of the CMRO₂ estimates was 18%, with the relative error of individual measurements varying between 12% and 23% (Table 1). The largest contributor to the error of the CMRO₂ fit is the uncertainty in the R₁ estimation. If we assume that oxygen flux through the arteriolar wall is J₁₂, CMRO₂ can be expressed by considering a simple mass balance of oxygen delivered to and consumed in the tissue cylinder as CMRO₂ = 2R₁J₁₂/(R₁² - R₂²). If J₁₂ is constant, the relative error of CMRO₂ is related to the relative error of R₁ as ΔCMRO₂/CMRO₂ ≈ −2ΔR₁/R₁. Increasing the number of collected tissue PO₂ points may be one possible approach to reduce this uncertainty. When performing the CMRO₂ measurement on rat II (Fig. 2), we increased the number of acquired PO₂ points by 2×, which resulted in a significantly reduced relative error of both R₁ (4.5%) and CMRO₂ (11.6%). This approach, however, leads to doubling the data acquisition time. Our current acquisition of PO₂ points on a grid pattern leads to a nonuniform distribution of PO₂ points as a function of the radial distance from the arteriole. It is possible that other PO₂ acquisition patterns, such as a radial grid, may improve the CMRO₂ fitting error without the need to increase the number of PO₂ measurement points. Future work will also investigate the effect of periarteriolar microvascular configurations in realistic vascular anatomical networks (VANs) on the periarteriolar tissue PO₂ distribution and CMRO₂ estimation. The combined experimental and numerical modeling approach⁶¹ may be utilized to further investigate the effect of nearby capillary and arteriolar vascular segments on the axial symmetry and radial extent of the periarteriolar tissue PO₂ profiles, including potential changes of the tissue territories supplied by these vessels at different CMRO₂ and CBF levels.⁴⁶ The influence of the deviations of the PO₂ measurement plane from a plane perpendicular to the arteriole on estimating CMRO₂ may also require further attention. Finally, the CMRO₂ fitting error is significantly lower if we fix R₁ in the fitting procedure (Fig. 4). We believe that this approach may be appropriate when comparing CMRO₂ changes at the same location.

Advances in the development of contrast agents for multiphoton imaging of PO₂ and multiphoton imaging instrumentation may bring significant improvements and opportunities for CMRO₂ measurements based on tissue PO₂ maps. Significantly brighter and red-shifted PO₂-sensitive dyes⁶² should allow faster, more accurate, and deeper tissue PO₂ imaging in the brain cortex relative to our current ~300-μm imaging depth limited primarily by the contamination of the deep signals with the out-of-focus phosphorescence. Faster and more accurate acquisition of tissue PO₂ may significantly reduce both acquisition time and CMRO₂ measurement error. It may potentially enable the possibility to estimate CMRO₂ directly based on Eq. (1) both around penetrating arterioles and in a tissue away from them, providing smooth mapping of PO₂ between capillaries. Currently, the complexity of the spatial distribution of the tissue PO₂ around apparently randomly oriented cortical capillaries and the relatively small variation of the tissue PO₂ around them are making it challenging to estimate CMRO₂ based on Eq. (1) around capillaries. Alternatively, advanced modeling of oxygen advection and diffusion in realistic VANs may be utilized to estimate CMRO₂ based on tissue PO₂ imaging anywhere in the cortical tissue.⁶³ In this approach, modeling may be further constrained by adding the blood flow and intravascular oxygenation measurements.⁶³,⁶⁴

5 Conclusion

The steady-state oxygen distribution in cortical tissue satisfies Poisson’s equation, exhibiting a simple dependence on CMRO₂ [Eq. (1)]. We present a method of estimating CMRO₂ based on Eq. (1) that utilizes two-photon microscopy imaging of cortical tissue PO₂ and exploits the specific morphology of cortical penetrating arterioles and neighboring microvessels that allows us to model the periarteriolar tissue PO₂ distribution with the Krogh cylinder model. This method depends on a single imaging parameter (e.g., periarteriolar tissue PO₂), making it significantly less complex and potentially more accurate than existing CMRO₂ measuring methods that rely on multimodal imaging of blood oxygenation and blood flow. In addition, the measurement is spatially localized to a small tissue area (~200 μm), and it can be easily combined with other optical microscopy tools for preclinical studies in animals, providing approaches to address critical questions related to cortical pathological conditions and in understanding the fMRI signal.

Sakadžič et al.: Two-photon microscopy measurement of cerebral metabolic rate of oxygen.

Neurophotonics 045005-6 Oct–Dec 2016 • Vol. 3(4)

Downloaded From: https://www.spiedigitallibrary.org/journals/Neurophotonics on 06 Mar 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use
Acknowledgments
We gratefully acknowledge support from the National Institutes of Health (NIH) grants NS091230, NS55104, NS092986, NS057198, EB021018, EB00790, AG042026, and EB018464.

References

Biographies for the authors are not available.