Spatial landscape of oxygen in and around microvasculature during epileptic events

Cong Zhang
Mohammad Moeini
Frédéric Lesage

Cong Zhang, Mohammad Moeini, Frédéric Lesage, “Spatial landscape of oxygen in and around microvasculature during epileptic events,” Neurophoton. 4(1), 010501 (2017), doi: 10.1117/1.NPh.4.1.010501.
Epilepsy is a common neurological disease characterized by recurrent unprovoked seizures, which result from abnormal and excessive neuronal activity in the brain. In both animal models and patients, the epileptic events can evoke drastic increases in CBF to meet the high metabolic demand caused by this intense neuronal activity.\(^1,^3\) Measurements of oxygen partial pressure (PO\(_2\)) in tissue during seizures have displayed an initial dip with various methods\(^2,^3\) but the spatial landscape of this phenomenon has not been thoroughly documented. Recent data showed that most capillaries released little oxygen at baseline acting as an oxygen reserve that was recruited during increased neuronal activity.\(^5\) Whether this redistribution of the delivery of PO\(_2\) around and in capillaries during ictal events remains valid is unknown, and it is unclear how larger vessels modulate the spatial landscape of the PO\(_2\) distribution. In this study, we used two-photon microscopy (TPM) and the O\(_2\)-sensitive phosphorescent dye PtP-C343\(^6\) to measure PO\(_2\) in arterioles, venules, and tissue during epileptic events to characterize oxygen delivery during these periods of high demand.

2 Materials and Methods

2.1 Animal Preparation

A total of \(N = 11\) males C57/BL6 mice (postnatal 8 weeks old, 20- to 25-g weight) were used for this study, of which three died before data acquisitions due to procedures. Four mice were used for vascular PO\(_2\) measurements and four mice were used for tissue PO\(_2\) recordings. The Animal Research Ethics Committee of the Montreal Heart Institute approved all surgical procedures, which were performed according to the recommendations of the Canadian Council on Animal Care. All procedures were done according to the animal research: reporting of in vivo experiments guidelines (ARRIVE).

Animals were anesthetized with urethane (1 to 1.6 g/kg, intraperitoneal injection), tracheotomized, and maintained at constant body temperature (37°C) with a controlled physiological monitoring system (Labeotech, Lachine, Canada). A moderate flow of ambient air lightly supplemented with oxygen was supplied next to the tracheotomy (10% oxygen, 90% air, 1 L/min). The mice were then head-fixed with a stereotaxic device. After the injection of a local anesthetic (Xylocaine, subcutaneous, 0.2%) under the scalp, a 2 x 2 mm cranial window was opened over the right hemisphere to expose the somatosensory cortex and surrounding brain (anteroposterior: −1.5 mm and dorsoventral: +1.5 mm). A small hole was drilled next to the cranial window for the injection of 4-AP. For tissue PO\(_2\) measurements, \(\sim 1 \mu\)L of the oxygen-sensitive dye (PtP-C343, 200 µM, synthesized based on published procedures)\(^6\) was injected into the tissue and the cranial window was sealed with 1% agarose in artificial cerebrospinal fluid (125 mM NaCl, 10 mM HEPES, 10 mM glucose, 5 mM KCl, 1.5 mM CaCl\(_2\), and 1 mM MgSO\(_4\)) using a 150-µm-thick microscope coverslip. For vascular measurements, the same dye was injected through the tail vein at 10 to 15 µm initial concentration. A catheter in the femoral artery was used to monitor blood gases (PCO\(_2\), 36 to 39 mm Hg and PO\(_2\), 110 to 160 mm Hg). The average blood pressure (80 to 110 mm Hg) was measured using volume-pressure recordings performed immediately prior to imaging. For each experiment, we labeled the blood plasma with fluorescein isothiocyanate conjugated with dextran (Sigma; 128 mM, 2329-423X/2017/$25.00 © 2017 SPIE
200 μL) and used TPM to obtain a high-resolution structural image of the microvasculature. A larger image of the surface microvasculature (∼2 × 2 mm) was also obtained, which was later used for easier tracing of the pial arterioles and venules.

2.2 Epileptogenesis and Electrophysiology

Epilepsy was induced by injecting the potassium channel blocker 4-AP (Sigma; 15 mM, 0.5 μL⁵) through a glass microelectrode using a syringe pump controller (UMP3, WPI) into a small hole with a depth of ~300 μm next to the cranial window at a rate of 100 μL/min. Extracellular local field potentials (LFPs) were recorded with a tungsten electrode (impedance, ∼1 to 2 MΩ) lowered to a depth ~300 μm into the neocortex. The signal from the electrode was filtered by a bandpass filter (1 to 5000 Hz), amplified with a microelectrode AC amplifier (model 1800, A-M system, Sequim, Washington), and digital filtered between 0.2 and 130 Hz.¹³

2.3 Two-Photon Microscope Setup, Acquisition, and Processing

Measurements were collected on a custom-built time-domain two-photon phosphorescence lifetime microscope setup with 80 MHz, 150 fs pulses from a MaiTai-BB laser oscillator (840 nm, Newport Corporation, Irvine, California) with output going through an acousto-optic modulator (ConOptics) to adjust the gain for depth-dependent two-photon excitation intensity and gate the laser during lifetime imaging. Reflected light was collected by a water-immersion objective (20x, 1.0 NA; Olympus) and then separated into two beams (phosphorescent photons and fluorescent photons) by dichroic mirrors. Phosphorescent light was passed through a filter centered at around 520 nm and detected by the second photomultiplier tube (R3896, Hamamatsu Photonics, Japan) and fluorescent light was filtered around center wavelength of 520 nm and detected by the second photomultiplier tube (H7422, Hamamatsu Photonics, Japan). Scanning and data recordings were controlled by custom-designed software written in MATLAB® (MathWorks, Natick, Massachusetts). Excitation pulses of 25 μs followed by 275 μs lifetime recording were averaged 1000 times. Phosphorescence lifetime was fitted with a single-exponential function using a least-squares method. The lifetime was converted to lifetime recording were averaged 1000 times. Phosphorescence lifetime was fitted with a single-exponential function using a least-squares method. The lifetime was converted to

The lifetime was converted to lifetime recording were averaged 1000 times. Phosphorescence lifetime was fitted with a single-exponential function using a least-squares method. The lifetime was converted to

2.4 Simulation of Oxygen Diffusion in Tissue

The Krogh model¹⁷ was used to simulate the initial dip in tissue oxygen tension at different distances from the arterioles and compare with experimental data

\[T_x = T_0 - \frac{P}{K} \]

(1)

where \(T_0 \) is the vessel oxygen tension (atm) and \(T_x \) is the tissue oxygen tension at radial distance \(x \) (cm) from the vessel center.

The rate of oxygen consumption \(p \) is equivalent to the product of the cerebral metabolic rate of oxygen (CMRO₂) and the density \(\rho \) of brain tissue. The Krogh diffusion constant \(K \) is the product of the oxygen diffusion coefficient \(D \) (1.5 × 10⁻⁵ m²/s) and the oxygen solubility \(a \) [1.3×10⁻³ cm³/(cm³·mmHg)]. The Krogh model postulates that a central vessel with radius \(r \) and infinite length supplies a concentric tissue cylinder with radius \(R \) with radially diffusing oxygen. Using a quasi-steady state approximation, the difference in \(T_x \) obtained from above equation at baseline and during epilepsy gave an estimate of the initial dip versus distance from the vessel. For the mouse brain, the CMRO₂ was assumed to be 2.6 μmol/g/min at baseline¹⁸ and to increase ~12% during epileptic seizures.¹⁰ Measured changes in \(T_0 \) during seizures were used in the model.

To roughly model the undershoot-minima time versus distance from the vessel, the diffusion equation was solved for the same geometry with the initial conditions of baseline CMRO₂ and \(T_0 \) assuming only CMRO₂ changes during epilepsy. The time to reach the steady state was used as an estimate for the undershoot-minima time.

3 Results

3.1 Oxygen Partial Pressure Changes in Tissue at the Epileptic Focus during Seizure-Like Activity

Seizure-like activity was characterized by first rhythmic spiking of increasing amplitude and decreasing frequency, evolving into rhythmic spikes and slow wave activity prior to gradual offset [see e.g., Figs. 1(a) middle and 1(b) middle].

A typical change in tissue \(PO_2 \) is shown in Fig 1(a). The \(PO_2 \) time-profile was biphasic with an early dip after ictal onset, followed by a longer duration increase in \(PO_2 \). These results were in agreement with previous works where similar responses were observed using confocal microscopy or oxygen electrodes.⁸,¹⁵

![Fig. 1](https://www.spiedigitallibrary.org/journals/Neurophotonics) Representative changes in \(PO_2 \) in (a) tissue and (b) arteriole, in response to epileptic events in a local area. Grayscale angiogram of cortical pial tissue with points of interest [with arterioles shown by the red arrows, a venule shown by the blue arrow, and a typical \(PO_2 \) time course shown for the blue points, top of (a) and (b) pairs]. The time course of LFPs indicates seizure initiation. (a) Epileptic activity induced a transient dip in tissue \(PO_2 \) followed by an increase in \(PO_2 \) at the focus. (b) In the arteriole, the \(PO_2 \) profile was also biphasic with an early dip followed by an increase.
We then investigated the spatial distribution of this dip along small arterioles. Four mice were used to measure the PO2 changes during the dip at multiple locations near an arteriole (~16 arterioles per mouse) located in the epileptic focus, i.e., <1.5 mm from the 4-AP injection site. Our findings of oxygen exchange between large arterioles and venules or shunts. Both trends of initial dip can be attributed to increased tissue metabolic consumption using a Krogh–Erlang model. While capillary delivery may increase its contribution in these events they do not fully compensate for consumption needs with small and large arterioles remaining largely responsible for oxygen distribution in the cortex according to modeling. This is consistent with previous findings of oxygen exchange between large arterioles and tissue.

4 Discussion

Epilepsy-evoked changes in cerebral tissue oxygenation have been observed previously by Clark microelectrodes and confocal phosphorescence lifetime microscopy. Polarographic electrode oxygen measurements have limited spatial accuracy and are limited in the number of point measurements achievable. In our previous work, confocal phosphorescence lifetime microscopy was also limited due to its inability to reach deeper tissue making investigations of the impact of microvascular morphology on delivery difficult. To our knowledge, the current study is the first to perform absolute measurements of PO2 in multiple individual microvascular compartments and tissue locations with high spatial and temporal resolution during epileptic seizures.

4.1 Relationship between the Initial Dip and Distance from Arterioles

Exploiting spatial measures around small arterioles, we investigated how tissue oxygen pressure changed near arterioles located in the epileptic focus region during epileptiform activity. Our data indicate a decreased PO2 percent change surrounding small arterioles during early phases of epileptic activity (initial dip), which can be attributed to increased tissue metabolic consumption using a Krogh–Erlang model. While capillary delivery may increase its contribution, these events do not fully compensate for consumption needs with small and large arterioles remaining largely responsible for oxygen distribution in the cortex according to modeling. This is consistent with previous findings of oxygen exchange between large arterioles and tissue. Our results further suggest that tissue areas located far from larger arterioles, in the capillary bed, which are more susceptible to hypoxia rather than tissue next to arterioles. Temporally, our data show that points far away from the arteriolar wall take more time to recover basal PO2 than locations near small arterioles with a size-dependent arteriolar influence. The observed delay times are larger than typical blood transit time (~2 s) in the neurovascular unit. Overall, these results suggest that the increased CBF and cerebral blood volume in the focus during epileptic events will supply more oxygen to the tissue near arterioles but may not always meet the demands of oxygen metabolism in capillary areas. An overshoot in CBF might be required to supply these areas adequately to avoid hypoxia.

4.2 Relationship between the Initial Dip and Diameter of Arterioles and Venules

The largest fractional decreases in vascular PO2 were measured in small venules and small arterioles. As upstream vessels deliver more oxygen during intense neural activity, downstream and smaller vessels see decrease both due to upstream consumption and local tissue need. The lower dip observed in large venules also suggest the presence of short vascular paths between arterioles and venules or shunts.
5 Conclusion
This study provided absolute PO2 measurements in tissue, arterioles, and venules with TPM during 4-AP evoked epileptic events and observed vascular architecture dependent changes of PO2 delivery.

Disclosures
Dr. Lesage reports a minority ownership in Labeo Technologies Inc.

Acknowledgments
We thank Marc-Antoine Gillis and Natacha Duquette for their assistance in animal preparation. We also thank Sergei Vinogradov for calibrating the PtP-C343 dye for us. We also acknowledge support from the Canadian Institutes of Health Research under Grant No. 299166 to F. Lesage and from the National Institutes of Health under Grant No. R24-NS092986.

References