Book Reviews

Optical Radiation Measurements
Vol. 5: Visual Measurements

Reviewed by F. Dow Smith, New England College of Optometry, Boston, MA 02115.

This book, the fifth in a series devoted to the measurement of optical radiation, describes the eye, or more properly the visual system, as a mechanism for the detection, processing, and measurement of light. It includes an in-depth discussion of the psychophysical methodology needed for visual measurements as well as a detailed discussion of photometric and colorimetric methods that can be applied to specifying the visual response to light. The book is comprehensive and should prove to be a valuable resource to a wide range of readers. The editors categorize their series as a treatise. This volume does seem to qualify as such, certainly so in that it provides reasonably comprehensive yet detailed coverage of the state of the art in those topics it addresses.

The first part of the book is titled Characteristics of the Visual Mechanism, with chapters on the eye as an optical system, the eye as a detector, visual pigments and sensitivity, and mechanisms of vision. The second part is titled Psychophysical Methods, with sections on psychophysics, thresholds and matching, measuring differences, direct-ratio sealing, and multidimensional sealing. The third and final section is titled Advanced Methods of Photometry and Colorimetry, with chapters on photometric measurements and colorimetric measurements.

For a multiply authored text the book is remarkably well organized and without serious redundancy. This is no doubt a tribute to good planning by the editors. The chapters are individually written by authors well qualified to speak with authority on their subject matter: Glen A. Fry, Robert M. Boynton, C. James Bartleson, and Peter M. Kaiser.

This 662-page book is in general well illustrated with line drawings, graphs, and tables. There are virtually no photographs and, perhaps surprisingly for a book with some emphasis on color, no color illustrations.

Visual Measurements will not speak to any single audience but, in my opinion, is more likely to serve as a reference resource to a rather wide range of individuals. Researchers in vision will find in it a good basic introduction to many topics. Workers in other related fields will find in it a good road map to the literature in many fields of vision research. Clinicians interested in vision science will find it to be an excellent source book, or at least a refresher, on many aspects of the visual system. And perhaps most of all, students in programs that require a background in vision science should find this to be a highly readable and useful additional resource.

As one specific example, let me mention the burgeoning field of machine vision or computer vision, as it is variously called. New fields such as this tend to attract individuals who, although highly qualified, may have nontraditional prior work and educational experiences. This book would provide an excellent resource for such people to gain a needed perspective on the state of the art of classical and modern vision science as viewed by some of its best practitioners.

I found the book disappointing in some ways. In Bartleson’s introduction he notes that the discussion is limited to information that has engineering utility for people who wish to make measurements indicating visual response to stimulation by light. That is fair enough. He then notes that the authors ask, “What should we expect the observer to see?” To some readers that statement may offer a promise that is not fulfilled. The text does explain what is seen within the limits of the psychophysical laboratory environment but does not discuss the limits that govern in applying many of these results to real-life situations.

Except for a passing reference to Mach bands and Southall’s radiation, there is, for example, no discussion of illusions or of visual perception in the broad sense. If an objective of the book was to give the engineering community a tool for predicting visual performance in carrying out practical tasks, then it largely fails, if only in not pointing out the limits that apply. It also would have been helpful to include more information on such topics as performance when abnormalities occur in the visual system and normal changes occur with age.

Each chapter is separately and completely documented with references. The index falls short in several areas I tested, but I did find that the relatively complete table of contents for each chapter usually helped me overcome those problems.

In summary, this book is a valuable contribution to the literature of vision. The editors assumed a herculean task in adding visual measurement to a series whose previous four volumes dealt with the more easily definable areas of radiometry, color measurement, measurement of photoluminescence, and physical detectors. They have carried out that task in a thoughtful and highly professional way that will serve their colleagues well.

Industrial Lasers and Their Applications

Reviewed by Phil Hemmer, Rome Air Development Center/ESO, Hanscom Air Force Base, MA 01731.

This book presents a concise, clearly written overview of conventional industrial laser applications that assumes little or no prior experience with lasers on the part of the reader. As a result of this assumption, however, nearly the entire first half of the book is devoted to a review of the fundamentals of lasers and optics, leaving only the second half to concentrate on actual industrial applications. A more descriptive title therefore might be Introduction to Lasers and
Their Industrial Applications. Nonetheless, it does contain a wealth of information that all but the most experienced laser user will find of interest.

The emphasis throughout is on presenting a physical understanding of the various properties and uses of lasers. Relevant equations are presented, though seldom derived from first principles, and the more important equations are illustrated using numerical examples. The problem sets presented at the end of each chapter are highly applications-oriented, and although not all of the topics in the book are covered in sufficient detail, each chapter is supplied with a separate bibliography and reference list for the convenience of the interested reader.

Industrial Lasers opens with reviews of fundamental optics, semiconductor theory, and radiometry in Chaps. 1 through 3. This is followed, in Chap. 4, by an informative overview of the various types and uses of commercially available light detectors. Next, Chaps. 5 through 7 cover laser and resonator theory in some detail, including a brief treatment of Gaussian beam properties. Chapter 8 is a comprehensive overview of the various types and most common uses of commercially available lasers. Special attention is paid to HeNe and CO₂ lasers. Chapters 9 and 10 comprise the first overview of the industrial uses of lasers, concentrating on the uses of low power lasers. These lasers find applications primarily in measurement and sensing, for example, in velocity and displacement measuring devices or in alignment and surface inspection applications. The fundamentals of holography are also briefly reviewed here. Finally, Chaps. 11 and 12 are devoted to the industrial uses of high power lasers. These are primarily related to materials processing; for example, laser welding, drilling, cutting, marking, surface hardening, alloying, and cladding are all briefly discussed. In these chapters, considerable emphasis is placed on understanding the basic mechanics of laser heating, melting, and vaporization, which are at the root of most high power laser applications.

Luxon and Parker recommend that this text be used for a one-semester junior- or senior-level course or as a self-taught course for practicing engineers and scientists. As a course textbook, however, it may not cover enough material for an entire semester if the students have already studied laser and resonator theory. On the other hand, as a self-taught course for practicing engineers and scientists, this book should be ideal, especially if the reader has had little or no prior experience with lasers. For example, a laser course taken several years ago, or less than a year of practical experience with lasers, should give the reader just enough background to easily follow the brief reviews of optics and laser theory.

In conclusion, this book is a well written, concise introduction to lasers and their industrial applications that should be most useful for the novice or inexperienced laser user.

Robotics: A User-Friendly Introduction

Reviewed by John F. Gilmore, Georgia Tech Research Institute, Artificial Intelligence Branch, Atlanta, GA 30332.

Over the last several years, technology has evolved from science fiction to reality. Concepts along the lines of autonomous tanks and spacecraft with phasers have developed into funded research programs such as DARPA's Autonomous Land Vehicle Program and the Strategic Defense Initiative "Star Wars" project. In light of these developments, robotics has begun to gather widespread interest outside of university and industrial research environments. Thus, an introductory text on robotics becomes both timely and required in order to support growing user interest.

Robotics: A User-Friendly Introduction is such a book. Written as a text for undergraduate robotics courses, the book provides an overview of robotics without immersing the reader in the intensive analytic aspects discussed in more specialized works. The text is free from mathematical equations and concentrates on examples of current robot technology drawn from a variety of application areas including the University of Australia's sheep-shearing robot, the Space Shuttle Challenger's remote manipulator, the Jet Propulsion Lab's robot rover, and Cincinnati Milacron's line of industrial robots.

Because robots have been glamorized in movies, the internationally accepted definition of the term industrial robot is radically different from the concept held by many individuals who have entered the field: "A reprogrammable, multifunctioned manipulator designed to move material, parts, tools or specialized devices through various programmed motions for the performance of a variety of tasks" (Robotics Industries Association, 1979).

With this definition in mind, Robotics proceeds to analyze the field in light of a number of application issues including:

- a history of robotics,
- the components and operation of industrial robots,
- intelligent robot programming,
- sensors for intelligent robots,
- industrial robot applications,
- economic considerations and justification,
- the social impact of industrial robots, and
- future robot considerations.

Though the size of the book does not allow the authors to present issues in great detail, each topic is well covered and cross-referenced in an extensive bibliography.

Viewed as a purely technical work, Robotics would fall short of an acceptable text. However, this is not the book's aim. When complemented with a more detailed work, such as a text on artificial intelligence, computer vision, or kinematics, Robotics provides an overview that firmly ties these topics to a system concept. The text is recommended in this view for both graduate and undergraduate classes and as a stand-alone reference for managers involved in robotics applications.

REFERENCES

Principles of Phase Conjugation

Reviewed by Duncan G. Steel, University of Michigan, Depts. of Physics and EE/CS, Randall Labs, Ann Arbor, MI 48109.

The application of linear or nonlinear optical methods to the reversal of wavefronts has led to a new area of optical physics called optical phase conjugation (OPC). The subject area has grown considerably in the last several years, and there have been hundreds of scientific publications in the journal literature. Interest in this area has been motivated by applications of OPC to the areas of aberration correction, beam propagation, optical computing, and the general use of phase conjugation as an optical probe of matter. Hence, the new book *Principles of Phase Conjugation* by Zel'dovich, Pilipetsky, and Shkunov is a welcome addition to the published literature on phase conjugation. The authors are recognized experts in the field. This book is pedagogical and unified in its approach, and there is no doubt that it will become a standard introductory reference book.

The authors show that there are two primary approaches to OPC: backward stimulated light scattering and four-wave mixing (FWM). The book is then divided into four general sections: (1) a description of phase...
Colorado Video manufactures a wide variety of video memories for industrial and scientific applications.

- Model 274C/D Video Frame Store captures a monochrome or NTSC color video picture in 1/30th of a second for instant viewing. A DMA option allows transfer of data in and out of memory for image analysis, modification, or storage.

- Model 491 is a compact, general purpose, Video Frame Store unit, available with up to four separate memories with simultaneous video outputs. The 491 is an ideal unit for full gray scale R-G-B image storage and manipulation.

- Model 492 Video Subtractor uses two memories to produce high quality image subtraction in both static and dynamic modes. Great for seeing what’s missing or out of registration.

- Model 493 Video Peak Store is a unique device that lets you take “time exposures”. A true solution looking for problems. Ask us about it!

Colorado Video memories are available in both single field and full frame configurations, and with memory sizes to 512 x 512 pixels and 8 bits of gray scale. 625-line and 50 Hertz operation are available.
conjugation, (2) OPC by stimulated scattering, (3) OPC by FWM, and (4) other approaches to phase conjugation and applications of phase conjugation.

The first part provides an excellent introduction to the concept of OPC, using simple pictures to compare a phase-conjugated wavefront with an ordinary wavefront. In this section, they also point out that the concept of a phase-reversed wavefront is not new, but is observed in conventional holography. What has made OPC the subject of so much interest in recent years is the demonstration that it is possible to achieve OPC in real time, without the need of film and intermediate processing steps. This new ability has led to numerous demonstrations of real-time aberration correction and has shown the possibility of eliminating the effects of atmospheric turbulence at bandwidths in excess of 100 MHz. In this first section, the authors also provide a brief summary of the two primary approaches to OPC without entering into the analytical detail that follows in later chapters. The approaches are compared, with a description given of the basic advantages and problems associated with each of the techniques. Finally, this section describes some of the better known applications of OPC such as for self-compensation of distortions, self-targeting of radiation, control of spatial-temporal structure of radiation, optical computing, and scientific applications such as spectroscopy and interferometry.

The next section of the text is given to a detailed analytical description of the physics of OPC by stimulated scattering. These four chapters represent an important contribution to the new scientific literature of OPC by stimulated scattering because of the introductory approach taken by the authors. This is in contrast to much of the literature. Starting with the basic equations, they provide a reasonable outline of the fundamental origin of the phase-reversed wavefront in stimulated scattering. This is very helpful because the physical origin of OPC by stimulated scattering is much more difficult to understand than that by FWM. Also, in contrast to FWM, nearly all of the published analytical work describing this problem has been in the Soviet literature. Indeed, the authors of this book were significant contributors to developing the fundamental understanding. Unfortunately, researchers encountering this area for the first time will still have quite a job understanding the details. Though complete, the description is still basically an outline of the details. Initial equations are stated without a complete justification, and the interested researcher will probably return to the original literature for further discussions. While numerous mathematical steps are omitted in the calculations, enough detail is given so as to be able to fill in the details in most cases. Because the very origin of OPC by stimulated scattering lies in the noise properties of the field, the calculations are very detailed, and insight comes with considerable effort. Fortunately, the authors provide comparison with experimental results, which assists in understanding the conclusions of the analytical work. In this section, they introduce a new term in optical physics, the specklon, for stimulated scattering by a speckle inhomogeneous pump. The specklon is basically the phase-conjugated backscattered component, which they show is remarkably stable despite the inhomogeneity in the backscatter gain. An entire chapter is devoted to the theory of the specklon including the effects of saturation, pump depletion, polarization, and nonmonochromatic pumps. It should be noted, however, that the discussions in this part of the book concentrate on the origin of the stimulated wave and the properties of that wave, given an interaction that gives rise to a stimulated process. There is little discussion of the microscopic origin of stimulated waves.

In the third section of the book, the authors describe OPC by FWM. Unlike OPC by stimulated scattering, the physical origin of the phase-reversed wave by FWM is much more transparent. The authors briefly describe some of the important issues in FWM such as polarization behavior, effects of absorption, filter characteristics, coupled waves, and the failure of the Born approximation. Another important issue they discuss is that the same optical nonlinearity that gives rise to OPC by FWM also gives rise to self-focusing. This can lead to optical instability in the pump waves, which can reduce or eliminate the fidelity of the phase-reversed wavefront.

There are many nonlinear optical interactions that give rise to FWM, and Chap. 7 is devoted to a summary of the primary nonlinearities such as molecular orientation, saturation, photorefraction in ferroelectrics and semiconductors, and nonparabolicity of the conduction band in semiconductors. The description here is more phenomenological, but does provide a nice physical picture to parallel more detailed descriptions to be found in the references. It is interesting to observe that there was greater attention to mathematical detail in the section on OPC by stimulated scattering than in the section on OPC by FWM.

The last section of the book describes other methods of producing phase-reversed wavefronts such as by three-wave mixing, nonlinear mixing at a reflecting surface, and a linear approach based on corner cube type arrays. There is even a discussion of acoustic wave phase conjugation. There is also a description of the basic behavior of a laser cavity when one of the mirrors is replaced with a phase conjugate mirror.

Most of the basic issues in OPC are described in this book, but the primary text is 228 pages, and hence, in many places the descriptions are more brief than the reader would desire. There are many points in the text at which the serious researcher will need to spend considerable time on his own, filling in the details. This is particularly true in the chapters describing OPC by stimulated scattering. Over 400 references are given to assist the reader; however, some of the important references to subject matter in the text are to untranslated Russian citations, and numerous references to Western literature are missing. It is also unfortunate that in a monograph of this magnitude, the subject index is very brief and incomplete, covering only one and a half pages. For instance, despite the fact that Sec. 4.3 is titled “The Specklon” and Sec. 5.1 is called “Theory of the Specklon,” there is no reference to the specklon in the index.

Finally, it should be noted that in contrast to the book Optical Phase Conjugation (R. Fisher, ed., Academic Press, New York, 1983), Principles of Phase Conjugation considers in detail only stimulated scattering and FWM. Optical Phase Conjugation presents a far more detailed treatment of many other subjects in OPC such as resonator analysis with an OPC mirror and OPC in resonant FWM. These two texts are basically complementary in their approach to OPC.

In summary, this book should definitely be studied and referred to by all those involved in the study or application of optical phase conjugation. It will be especially interesting to people working on one specific approach to OPC who want to understand or compare their work to other approaches.
Schott Glass Technologies is geared to work with the largest production quantities or the smallest prototype development right here in the USA. Our 300,000 square feet of manufacturing facilities, backed by our scientific knowledge and technical skills, are ready to work for you at every stage of your program. Our in-house research and development is among the most modern of its kind.

Our commitment . . . Research & Development, Manufacturing, Sales, Service — Total Capability . . . your advantage.

OPHTHALMIC DIVISION
- CROWN GLASS — CLEAR AND TINTS
- 1.60 LIGHTWEIGHT CROWN GLASS
- HIGH-LITE® — HIGH INDEX LOW DENSITY GLASS
- SUN MAGIC® PHOTOCHROMICS — FOR SUNWEAR
- PHOTOCHROMICS — FOR PRESCRIPTION
- INDUSTRIAL SAFETY GLASS
- UV FILTERING CROWN
- SPECIALTY GLASS

TECHNICAL SERVICES
- CONTRACT RESEARCH AND DEVELOPMENT
- CUSTOM MELTING
- ANALYTICAL/PHYSICAL/OPTICAL MEASUREMENTS

— and the list goes on . . .

SCHOTT GLASS TECHNOLOGIES INC.
400 York Ave., Duryea, Pennsylvania 18642
(717) 457-7485 TWX 510-671-4535 Telefax (717) 457-6960

Downloaded From: https://www.spiedigitallibrary.org/journals/Optical-Engineering on 2/23/2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use
BOOK REVIEWS
Continued from Page SR-010
replication, molding, metallization, and coating. Chapter 3 contains the principles and descriptions of the optical disc playback system. Chapter 4 contains the principles and a description of the basic capacitive playback system for both pregrooved and flat disc systems. Chapter 5 consists of theoretical descriptions of basic optics, optical modulations, and Fourier transform theory. Chapter 6 delves into the fundamentals of the total videodisc system and includes a discussion of such issues as noise, dropouts, photodetection, optical readout, etc. Chapter 7 includes a summary of the various aspects of optical digital disc storage—both archival anderasable.

All in all, this first book is an excellent summarization of optical disc technology, its theory, and its application. It certainly could be used as an auxiliary textbook for a course in optoelectronics.

BOOKS RECEIVED

MEETINGS
FEBRUARY 1986
Feb. 2-7 Application of Optical Instrumentation in Medicine XIV: Medical Imaging, Processing, and Display, and Picture Archiving and Communications Systems (PACS IV) for Medical Applications, Newport Beach, CA. Included exhibits. Chairman: Roger H. Schneider, Center for Devices and Radiological Health, FDA, and Samuel J. Dwyer III, Univ. of Kansas, College of Health Sciences and Hospital. SPIE, P.O. Box 10, Bellingham, WA 98227-0010. 206/676-3290.

Feb. 4-6 Second International Conference on Data Engineering, Los Angeles, CA. Sponsored by IEEE Computer Society, P.O. Box 639, Silver Spring MD 20901. 301/598-8142.

Feb. 25-27 NEPCON WEST 86, Anaheim, CA. Cahners Exposition Group, P.O. Box 5060, Des Plaines IL 60017-5060. 312/299-9311.

MARCH 1986
March 1 IEEE National Radar Conference,

Meetings

CONTINUED ON PAGE SR-015