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Abstract. We explore the hypothesis that shape factors can be used as
tools to probe disease progression in addition to being used for simple
classification. We define and apply a new shape factor to digital im-
ages of tumor cross sections of progressive rat hepatoma. Using a
number of standard pathological measures, each image is also asso-
ciated with a “disease time,” a continuous variable between 0 and 1
with 0 being disease initiation and 1 being a near-fatal condition. The
images are converted to data files that represent the 2-D shapes of the
tumors. Their shape factors are then determined and plotted versus
disease time. The results show that the shape factor can indicate and
localize the tumor structural phase transition that occurs between uni-
form growth and infiltration. © 2008 Society of Photo-Optical Instrumentation Engi-
neers. �DOI: 10.1117/1.2841020�
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Introduction
nfiltrative tumor growth represents an important phase in the
rogression of some benign neoplasms and of virtually all
alignancies. Changes in tumor shape may be important in

eveloping and modifying treatment plans and may predict
he extent and course of tumor progression. Most oncologists,
or example, consider that encapsulated �and roughly spheri-
al� neoplasms have a better prognosis than those without a
apsule and with irregular shape indicative of infiltrative
rowth. However, the pattern and extent of infiltration is sel-
om evaluated with morphologic and imaging tools, other
han the routine description of tumor margins. We hypothesize
hat determination of tumor shape, combined with other mea-
ures of tumor growth and differentiation, may help predict
umor progression.

.1 Promise of Shape Analysis
primary attraction of shape analysis is the prospect of learn-

ng more about how shape is related to function in nature.
ffective mathematical descriptions of shape, or shape fac-

ors, should be invariant to translation, rotation, and scale, at
east when applied to a particular dataset of interest. One of
he earliest and perhaps most applied shape factor is called
ompactness, defined as the ratio of the area of a shape to the
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square of the length of its perimeter.1 Shape data offer the
promise of providing insight into the classification and inter-
pretation of biological phenomena. This can provide quantita-
tive links between an organic structure’s function and its mor-
phological features. As a typical example, Rangayyan,
Mudigonda, and Desautels2 conducted an examination involv-
ing the concavity fraction of the boundaries of mammo-
graphic masses and spicule narrowness. Their investigation
culminated in shape measures that distinguished between be-
nign and malignant growths with 82% accuracy. This illus-
trates the archetypical goal of such analyses—to establish a
correlation between easily observed qualities and complex be-
haviors.

An obvious strength of shape factor routines is exemplified
by the relative ease of translating a given method into a com-
puterized algorithm. Over the past two decades, the exponen-
tial growth of computer power has led to ever-increasing
datasets requiring sophisticated analyses. Improved computer-
aided diagnosis �CAD� systems are desperately needed to ac-
curately deal with the increased data volume. In the field of
cancer pathology, part of this urgency is due to the vast num-
ber of images that must be analyzed.3 Of equal significance,
however, is that more reliable CAD techniques would provide
an objective basis for patient diagnosis. Shape studies can
transform image analysis into a practical biomedical tool. The
use of shape factors such as compactness, Fourier descriptors,
1083-3668/2008/13�1�/014030/8/$25.00 © 2008 SPIE
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nd chord-length statistics to differentiate between spiculated
nd circumscribed breast tumors resulted in a success rate
anging from 92.3 to 95%.4

.2 Shape Factors Used in Biomedical Image
Analysis

n biomedical fields, shape factors are routinely used in bio-
edical image analysis. Some of the most basic mathematical

alculations are deceptively informative. Many 2-D features
re observed from simple measures of perimeter L, area A,
nd maximum cross sectional dimension D. The so-called
form factor,” a typical example, is calculated as

form factor =
4�A

L2 . �1�

his is also known as the “compactness” of a shape. Essen-
ially, this serves as an indicator of the circle-like qualities of
distribution—a value of 1 indicating a perfect circle. A simi-

ar statistic known as “roundness” is given by

roundness =
4A

��D�2 . �2�

Simple devices such as these were used recently to analyze
eriprosthetic tissue obtained from revision surgery.5 With
hape factors no more complex than those shown, the authors
ere able to completely differentiate between polyethylene
articles created during the wear of total hip, knee, and shoul-
er replacements. The obvious strength of such calculations
ies in the relatively robust descriptions that can be gained
rom such simple computations.

.3 Complex Shape Factors
omplex shape factors are often considered in conjunction
ith simple techniques. The most common of these involves
ourier analysis. The general technique is to make use of
ourier transforms to closely depict the contours of a given
hape. A widely used variation on this theme utilizes Fourier
escriptors.6 The result is a set of frequency-dependant data.
he low-frequency descriptors contain data about the general
ature of the shape. High-frequency descriptors describe local
etails. For the purposes of this overview, it is sufficient to
ote that this procedure is often used to compare sets of im-
ges for similarities. In simple terms, given two sets of de-
criptors xi and yi from two shapes, one can measure the
ifference between them, zi. As this value decreases, the
hapes become more alike. Fourier descriptors have been used
n a wide variety of biological tasks ranging from character-
zing spine vertebrae to matching brain regions between indi-
idual animals.7,8

.4 Concept of Disease Time
umors, like normal tissues, are dependent on the develop-
ent of a suitable environment for growth. Critical factors in

he growth of normal and neoplastic tissues include anchorage
o connective tissue, acquisition of blood supply, organization
f cells within tissue, and metabolic exchange. Normal tissues
rganize in accordance with genomic determinates of cell
ype, number, and architecture, and generate blood supply and
etabolic exchange to sustain the tissue. Throughout the life
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of tissues, organs, and organisms, changing needs and matu-
ration foster genomic expression that continues to provide the
appropriate cellularity and organization of tissue. Tumors, be-
cause of inherent genomic instability due to mutation, fail to
organize as normal tissues and may not develop the appropri-
ate cellularity and vasculature of normal tissues, and hence, as
with complex shapes, appear reflecting disorganized growth.
While many tumors are able to sustain viable cell populations
with adequate vasculature and nutrient exchange, rapidly
growing tumors may proliferate excessive numbers of cells
that cannot be oxygenated or receive nutrients, and these cells
die �become necrotic�. This will affect tumor size and shape.
Some tumor types, especially malignancies, do not grow as
expansile nodules, but rather with irregular projections of tu-
mor cells infiltrating surrounding connective tissue and or-
gans. Thus, these tumors have highly unusual shapes, as
shown by shape factor analysis. In our view, and that of many
pathologists and oncologists, the development of unusual
shapes indicative of infiltrative growth signals a transition in
tumor development from local growth to progressive and ag-
gressive growth, usually to the detriment of the patient. In one
experimental modeling system �transplantable hepatoma�, the
tumor type and growth pattern dictates �generally� expansile
tumor growth at a local site, leading to the formation of ever-
increasingly sized nodules of tumor cells, with areas of necro-
sis in the center that are not adequately served by vasculature.

The course of neoplastic disease is highly variable in each
individual patient. Even when neoplasms with similar histo-
logic grade and clinical stage are present, the rate of growth,
propensity to infiltrate and metastasize, and response to
therapy vary widely. We define this individual variation in
progression of neoplasms with the term “disease time.” In
essence, this hypothesizes that each patient is unique, as is
each neoplasm. Therefore, the approach to treating each pa-
tient should be unique and based on disease time.9 Unfortu-
nately, current treatment plans are developed based on expe-
riences with “average neoplasms” and may not be
appropriately modified to account for individual variations in
disease time.

Some components of disease time are widely used. Tumor
grading, for example, is used to predict future biological be-
havior of neoplasms, based on analysis of microscopic mor-
phologic features. Staging, likewise, evaluates the extent of
disease using physical examination, imaging, and clinical im-
pressions of illness. What is currently lacking is a more com-
prehensive bioinformatics tool to integrate many pieces of
clinical and laboratory data, imaging studies, and physical
findings that will more closely define individual disease time.
We are attempting to define this tool. Here, we present one
additional component �tumor shape� for predicting the behav-
ior of neoplasms in individuals.

1.5 Shape Factor Versus Disease Time
We explore the hypothesis that an appropriate shape factor
plotted versus state of disease will indicate and localize the
tumor structural phase transition that occurs between uniform
growth and infiltration. We first define a new shape factor that
is independent of scale. We apply this shape factor to digital
images of progressive rat hepatoma. This is done by first cre-

ating a series of digital photographs of rat hepatoma at various

January/February 2008 � Vol. 13�1�2
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tages of the disease and ordering them. Using a number of
tandard pathological measures, each image is associated with
disease time, a continuous variable between 0 and 1, with 0
eing disease initiation and 1 being a near-fatal condition. The
mages are then preprocessed and converted to data files that
epresent the 2-D shapes of the tumors. A computer algorithm
s then used to determine the shape factor for each image from
he datasets. The shape factor is then plotted versus disease
ime, and the resulting curve is analyzed for evidence of a
tructural phase transition in terms of tumor shape. The results
re discussed and future work is then described.

Modified Version of Compactness
hape factors have been used for many years in image pro-
essing. We determined that the shape factor of most utility
ould be able to distinguish clearly between simple/regular

hapes and shapes having considerable complexity, i.e., the
ituation that occurs just before and after a tumor becomes
nfiltrative. Since this transition can happen for tumors at dif-
erent sizes, we also required that the shape factor be inde-
endent of scale. This leads us to consider shape factors that
elate the length of the perimeter of a 2-D object to its area. A
lled-in circle is the object that has the smallest ratio of pe-
imeter L length to area A. The isoperimetric theorem from
athematics10 has shown that this is true. If we define our

hape factor as L /A, then for a circle we have

shape factor �circle� =
L

A
=

2�r

�r2 =
2

r
, �3�

here in this case, r is the radius of the circle. Clearly, the
efinition for shape factor used in Eq. �3� does not fit our
riterion of being scale independent, since the shape factor
ill decrease as the same shape �a circle� increases in size.

To have scale invariance, we consider a modified definition
n which we utilize the ratio of the perimeter length to the
quare root of the area, i.e.,

R =
L
�A

. �4�

sing this definition, we find that the ratio for a circle is

Rc = 2�� . �5�

his ratio is scale independent, i.e., it is the same for all size
ircles.

In analogy to the decibel logarithmic scales used in the
ciences and engineering to compare power ratios over orders
f magnitude difference, we settled on a definition of scale
actor, S2, that is referenced to the smallest possible value of

for a 2-D object in a plane, the circle. This shape factor,
asically a modified logarithmic version of the roundness de-
ned in Eq. �1�, is given by

S2 = 10 log10
R

Rc
= 10 log10

L

2��A
. �6�

If we apply this shape factor to a circle of any size, we

btain S2�circle��0. Other regular shapes have values
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S2�ellipse with major axis=2� minor axis��0.49,
S2�square��0.53, S2�rectangle, L�2L��0.78, and
S2�equilateral triangle��1.57.

Values using this shape factor indicate the difference be-
tween any given 2-D shape and the simplest regular shape, the
circle. This shape factor, it should be noted, is closely related
to compactness, with the difference being inversion, taking
the square root, a scale factor of 2 times the square root of �,
and 10 times the log function.

3 Methods and Procedures
Morris 7777 transplantable hepatomas �ATCC CRL-1601�
were implanted in the inguinal subcutis of young adult female
Fisher 344 rats. All animals used as part of this study were
treated in a humane manner, under a protocol approved by the
Institutional Animal Care and Use Committee. Animals were
monitored on a daily basis for signs of discomfort and were
humanely sacrificed by an approved method at various time
points or at the termination of the study. For transplantation,
tumor cells were grown to confluence in culture, suspended in
minimal essential medium, and diluted to a volume of 106
cells per ml. This suspension was then injected under asepti-
cally prepared skin. Tumor growth was measured visually and
by palpation. At varying periods of time after tumor transplan-
tation, groups of rats were humanely sacrificed and tumors
were observed in situ and harvested into 10% neutral buffered
formalin. Following fixation, tumors were trimmed, dehy-
drated, and processed into paraffin polymer, sectioned, and
then stained with hematoxylin-eosin stain. Digital images
were taken of sections using semigross photomicrography.
The tumors were sectioned so as to obtain the maximum cross
sectional area possible. The tumors were not compressed or
flattened, and the sections were photographed using a consis-
tent placement in the plane normal to the axis between the
camera lens and the tumor. Additionally, each section was
examined in a blind analysis by a veterinary pathologist, and
tumor characteristics scored. These included degree of tumor
cell differentiation, tumor cell pleomorphism, organization
into tissue structure �pseudo-hepatic architecture�, variation in
cell morphology across the entire tumor, mitotic rate, necrosis
and inflammation, and fibrosis. Data were tabulated and then
indexed by chronological time versus tumor stage and grade
�Table 1�. A numerical score was then calculated for each
tumor: numerical score=Ns��tumor size + pleomorphism +
shape score + necrosis score�. Disease time was then defined
as the numerical score normalized by the highest numerical
score of any tumor in the set �3.96�, i.e., disease time
=Ns /3.96.

The numerical score �Ns� is computed to represent four
important variants affecting tumor size and reflecting rate of
growth. Tumor size is calculated by direct measurement. Pleo-
morphism is subjectively scored to indicate the degree of
variation between individual tumor cells, and reflects both the
rate of growth and propensity of tumor cells to organize struc-
tures. The shape score represents the irregularity of tumor
shape. This shape score is not the same as the shape factor S2.
More aggressive and infiltrative tumors are more irregular,
sending projections into surrounding tissue; this, too, indi-
cates pattern of growth �like pleomorphism�. Finally, necrosis

is based on observation of dead tissue within the tumor, gen-
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able 1 Results of analysis of tumor gross and microscopic morphology, Morris 7777 transplantable hepatoma in F 344 rats. Numerical score=tum
core. Disease time=numerical score divided by 3.96 �highest numerical score�. Age class: E-early, M-midlife, and L-late.

at 1 4 6 8 11 18 21 22 23 24 25 26 27 28 29

eek of
acrifice

1 1 2 2 3 4 5 5 5 5 5 6 6 6 6

umor size
core

0.2 0.2 0.4 0.4 0.6 0.6 0.6 0.6 0.4 0.6 0.6 0.8 0.4 0.8 0.8

leomorphism 0.2 0.2 0.2 0.2 0.2 0.4 0.4 0.4 0.4 0.4 0.6 0.8 0.6 0.8 0.8

hape score 0.25 0.25 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.75 0.5 0.75 0.75 0.75 0.75

ecrosis
core

0.33 0.33 0.33 0.33 0.66 0.66 0.66 0.66 0.99 01.66 0.25 0.99 0.66 0.99 0.66

umerical
core

0.98 0.98 1.43 1.43 1.96 2.16 2.16 2.16 2.29 2.41 1.95 3.34 2.41 3.34 3.01

isease time
core

0.25 0.25 0.36 0.36 0.5 0.55 0.55 0.55 0.58 0.61 0.5 0.84 0.61 0.84 0.76

ge class E E E E M M M M M M M L M L L

rea �cm�2 0.06 0.25 2.2 4.3 7.0 8.4 5.5 10.1 3.3 6.5 8.5 4.9 4.1 5.8 6.9

2 0.80 1.36 0.44 0.47 0.40 0.48 0.74 0.57 1.49 0.96 0.69 2.89 1.44 2.13 2.05
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rally related to tumor cells outgrowing their blood supply.
hus, numerical score is taken as a measure of biological

predictive� behavior of the tumor and is typically used by
athologists reviewing surgical biopsies of tumors.

The images were proportionally scaled in size from their
riginal size of 27.1�20.3 cm �1280�960 pixels� to a stan-
ard size of 16.5�12.4 cm �780�585 pixels� using Adobe
hotoshop 7.0. The images were further processed using Pho-

oshop, as shown in Fig. 1.
As can be seen, the tumor shape was first outlined and cut

rom the original image in color, then converted to grayscale
nd then black and white. Figure 2 shows the set of tumor
hapes generated after image preprocessing had taken place.
he digital resolution of the actual tumor size was
36 pixels /cm. A computer algorithm developed at the Vir-

inia Tech Applied Biosciences Center �VTabc� �Blacksburg,
irginia� was then used to determine the locations of all the
lack pixels defining the shape and record them in a data file
or further processing. All computer algorithms used for
nalysis of images developed at VTabc were written in the
utureBasic 7.0 computer language and run on a Macintosh
5 computer.

In analyzing the images of tumor shapes, we are in fact
nalyzing a representation of the tumor shape made up of
lled-in black pixels. It is clear, in analogy with differential
alculus, that the smaller the pixel size and the greater the
otal number of pixels, the more accurate the representation
ill become in terms of the area of the representation equal-

ng the actual cross sectional area. In practical terms, how-
ver, decreasing pixel size below some given size provides no
ractical gain. The camera optics, in the final analysis, define
he minimum effective pixel size. Having a pixel resolution
reater than the associated resolution of the optics serves no
urpose.

Estimating the perimeter length from those black pixels
ot entirely surrounded by other black pixels is not quite so
traightforward. One cannot simply sum these pixels and ob-
ain a correct result unless the analyzed shape involved is

ig. 1 Preprocessing of tumor images �color on Web, black and white
n print�.
ectangular. Our approach was to weight the contribution to

ournal of Biomedical Optics 014030-
perimeter length by each principal black pixel on the shape
surface according to the positions of the black pixels adjacent
to it on the surface. A line drawn through the centers of these
adjacent surface pixels was used to define the angle of the
contribution of the primary pixel to the perimeter. In our case,
the contribution could be 1, 1.12, or 1.41.

To calculate the shape factor, a computer algorithm was
developed to analyze the datasets obtained from the images.
The area of the shape A was equated with the total number of
black pixels in an image, while the length of the perimeter of
the shape L was equated with the summed edge feature length
contributions of all black pixels having at least one white
pixel adjacent to them. These feature lengths corresponded to
flat surfaces �length contribution�1�, surfaces angled at
26.6 deg �length contribution�1.12�, and surfaces angled at
45 deg �length contribution�1.41�. The angle of the perim-
eter across the pixel is estimated from the line through the
centers of the black pixels along the surface to the left and the
right of the pixel being considered. The features utilized,
along with their associated weights, are shown in Fig. 3. Al-
though only one set of features is shown, the analysis in-
cluded all features equivalent to the ones shown subjected to
rotations of multiples of � /2. Once the values of the area and
perimeter length were obtained, the shape factor S2 was cal-
culated using Eq. �6�. Specifically, after an image was prepro-
cessed to yield a spatial data field of either white �0� or black
�1� pixels, the following algorithm was applied to the data
field.

1. Set area�0, perimeter�0.

Fig. 2 Preprocessed tumor image set with associated rat numbers.
2. Go to first pixel location in array.

January/February 2008 � Vol. 13�1�5
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3. If pixel color is black, area=area+1.
4. If pixel color is black AND at least one of the surround-

ng pixels is white, then perimeter�perimeter+edge feature
ength contribution.

5. If pixel location is last location in array, go to step 8.
6. Go to next pixel location.
7. Go to step 3.
8. Print area and perimeter values.
9. Calculate and print S2.
The algorithm was validated using a number of known

mages whose values of S2 could be calculated theoretically,
.e., filled-in black rectangles with dimensions=L�NL and
lled-in black ellipses with �major, minor axes���Nb ,b�,
ith N taking all integer values between 1 and 10. The area of

ach rectangle�NL2 with perimeter=2NL+2. The area of
ach ellipse��Nb2, with perimeter estimated using Ramanu-
an’s approximation,11 i.e.,

C = �b�3�N + 1� − ��3N + 1��N + 3��1/2� . �7�

When the theoretically calculated values were compared
ith the calculated values from the algorithm for the same

hapes, very good agreement was found. This is shown in Fig.
and allowed us to use the algorithm with some confidence.

ig. 3 Edge features and their corresponding perimeter length
ontributions.
Fig. 4 Validation of algorithm with a variety of known shapes.

ournal of Biomedical Optics 014030-
4 Results
Data presented in Table 1 show the results of disease-time
calculation for rats with implantable hepatomas. A numerical
score for each tumor was calculated as a combination of tu-
mor size, tumor shape factor, and two histopathologic vari-
ables �cell pleomorphism/variation and necrosis�. Using this
disease-time score, tumors were classified as being either
early, midlife, or late in terms of development and progres-
sion. Such a classification would not have been possible if
only microscopic morphology was evaluated and is clearly
unrelated to absolute tumor size.

Some of the tumor sections ended up being quite complex
in cross section �tumors 26 and 28�, and one tumor displayed
an inner void �tumor 35�. When the image perimeters were
calculated, the entire surface area was included, even the sur-
face area of the void in tumor 35. This was done to minimize
the effects of human judgment on the process. We believe that
the images as displayed are in fact truly representative of the
tumors involved.

A plot of shape factor S2 versus disease time is shown in
Fig. 5. As can be seen, the initial shapes have a difference
from a circular shape with corresponding high values of S2.
As the small tumors grow and become more regular, i.e., more
circular in cross section, S2 decreases and passes through a
minimum. At the point at which the tumors become infiltra-
tive, their shapes undergo a structural phase transition and
become highly irregular. This is manifested as a large sudden
increase in S2. Finally, as the tumor evolves toward the more
regular state at which it would cause a fatality, S2 decreases.

5 Discussion
These data support the concept that there is significant indi-
vidual variation in the progression of disease �disease time�,
and that shape factor analysis may provide an additional im-
portant tool for assessing tumor status. In this study, geneti-
cally identical rats of the same sex, age, and housed in iden-
tical laboratory conditions were transplanted with a well-
established neoplastic cell line. As nearly as possible, each
animal was treated identically, and yet there was considerable
variation at each chronological time point in tumor size,
shape, and microscopic morphologic characteristics. Notable
were the variations from round and ovoid shapes to more
irregular shapes, characterizing later stages of tumor growth,

Fig. 5 Shape factor versus disease time with number of tumors con-
tributing to each data point next to the point.
amounts of necrosis in individual tumors, and changes in the

January/February 2008 � Vol. 13�1�6
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rganization of tumor cell clusters with advancing disease
ime. Some features evaluated �amount of inflammatory cell
esponse to the presence of tumor cells� were not considered
o be significant.

In both clinical practice and in laboratory models of neo-
lastic growth, an early expansile phase is common. In those
eoplasms with more aggressive behavior, the extension of
ellular projections from the main tumor mass, sometimes
ccompanied by penetration of the fibrous capsule around the
umor, is considered to be an indication that some tumor cells
re expressing a capacity for motility that may later result in
umor metastasis. In the current model, there are clear transi-
ions in shape factor, and these are correlated with the devel-
pment of more robust and viable cell clusters late in the
ourse of disease that may be the players in infiltration. Al-
hough not examined here, we believe there may be subtle
hanges in vascularization over the lifespan of the tumor, with
idlife tumors outgrowing vascular supply. This may be im-

ortant, since it may provide both a stimulus for infiltration
i.e., vascular seeking� and for the evolution of new vascular
eds later in the lifespan of the tumor that facilitate tumor
rogression. Work in our laboratory to include a vascular
coring component to the disease-time score is underway.

Our work here suggests the need for additional studies to
est the entire disease-time paradigm and to see if shape factor
nalysis is, indeed, correlated highly with tumor progression.
e are currently studying shape factors in outcomes of human

rain tumors, where infiltrative patterns of growth are com-
on and where patchy necrosis is indicative of irregular

rowth and vascularization. It is interesting to compare the
ange of shape values found in this study to those of more
omplex human cancers such as glioblastoma multiforme. An
RI scan of such a tumor is shown in Fig. 6 along with its

reprocessed image. The calculated shape factor for this tu-
or was S2=4.90, significantly greater than the maximum

alue of S2 seen in our study of hepatoma. This suggests that
his formulation of shape factor might have some utility if
pplied to other types of cancer.

MRI technology, however, allows us to measure shapes in
hree dimensions in a nonintrusive manner. To make maxi-

um use of this capability, a 3-D shape factor should be used.

ig. 6 MRI of glioblastoma multiforme and its extracted shape. �Color
nline only.�
e define the ratio
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R� =
A

V2/3 , �8�

where V is the volume occupied by the shape and A is its
surface area. The ratio R� for a sphere is given by

RS� =
4�r2

	4

3
�r3
2/3 = 4.836. �9�

In analogy to our definition of a 2-D shape factor, we define a
shape factor for three dimensions,

S3 = 10 log10
R�

RS�
= 10 log10

A

4.836V2/3 . �10�

In future MRI-based studies of shape factor versus disease
time, we will consider 3-D shapes and use the shape factor
defined by Eq. �10�.

6 Conclusions
These results demonstrate that tumor growth in groups of ge-
netically identical animals can be quite variable and stress the
need to define a bioinformatics dataset �disease time� on
which therapeutic decisions could be based. An analysis of
tumor shape factor appears to indicate this is an important
predictor of progression that should be studied and included
as a measure of disease time.

It is clear from the great proliferation of shape descriptors
that continues to this day that none of them are perfect, even
though in general they seek to be invariant to translation,
rotation, and scale.1,12,13 Perhaps the most simple shape factor,
compactness, or area divided by perimeter squared, which is
at the heart of our modified shape factor definition, has dem-
onstrated the most usefulness over time. Since compactness is
a measure applied to 2-D representations, it does not provide
useful information when analyzing multiple shapes when they
are part of a single image, or the image is extremely complex
and simple coding schemes are employed. Compactness,
along with other 2-D shape measures, has a usefulness com-
pletely dependent on the relationship between the 2-D image
and the 3-D object that it seeks to represent. If this relation-
ship is not consistent and meaningful, then the shape factor
analysis will not be meaningful either.

We believe that the preliminary research presented in this
work suggests that the modified shape factor proposed holds
some promise as a method for aiding the determination of
disease state and accurate diagnoses. The real promise of this
kind of analysis will come, however, when it is combined
with the 3-D images that are becoming increasingly available
with the more general use of high resolution imaging tech-
niques.
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