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bstract. Although stereo matching algorithms based on belief
ropagation (BP) tend to show excellent matching performance,
heir huge computational complexity has been the major barrier to
eal-time applications. In this light, we propose a parallel very large
cale integration (VLSI) architecture for BP computation, which has
nly simple integer operations and shows low matching error rate for
he Middlebury database. © 2008 SPIE and IS&T.
DOI: 10.1117/1.2892680�

Introduction
tereo matching algorithms find corresponding points in a
air of images to locate 3-D positions. They can be classi-
ed into either local or global matching approaches.1 Local
pproaches, like correlation and dynamic programming
ethods, deal only with subimages. These approaches have

he advantage of real-time speed,2,3 but tend to produce
igh errors. In contrast, the global approaches, like graph
uts and belief propagations �BPs�,4 deal with full images.
hese approaches have the advantage of low errors, but

end to execute huge computational loads. In real-time ap-
lications, like robot vision, the stereo matching system
hould be compact and fast. In this context, we present a
ery large scale integration �VLSI� architecture for stereo
atching with BP.

Belief Propagation Formulation for Stereo
Matching

iven the left and right images gr, gl, and the parameters
d, cv, Kd, and Kv, we describe the energy model for a 2-D
arkov random field �MRF� as follows.4

ˆ = arg min
d

E�d�, E�d� = �
p,q�N

V�dp,dq� + �
p�P

D�dp� ,

�dp� = min�cd�gr�dp + p� − gr�dp��,Kd� ,

�dp,dq� = min�cv�dp − dq�,Kv� ,

here D�dp� denotes the data cost of the label dp
�0,dmax−1� at the pixel p in the image P, and V�dp ,dq�

enotes the discontinuity cost between the label dp and dq

f the neighbor nodes N. The disparity d̂ can be estimated
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using the BP’s message�update�function �p ,q ,k ,k+1� and
the decision�function �p ,K� as follows:

mpq
k+1�dq� = min

dp
�V�dp,dq� + Dp�dp�

+ �
u�N�p�\q

�mup
k �dp� − ��� , �1�

d̂p = arg min
dp

	Dp�dp� + �
q�N�p�

mqp
K �dp�
 ,

�2�

� = �
dp

msp
k �dp�
dmax

,

where N�p� \q denotes the neighbors of p other than q, and
� denotes the normalization value. At each node p, the
message mpq

k+1�dq� at k+1 iteration times is updated syn-
chronously using neighboring message mup

k �dp� and sent

from node p to neighbor node q. After K iterations, the d̂p
at each node is decided by Eq. �2�.

3 Proposed Architecture of Stereo Matching
Generally, BP can be separated into two methods, mainly
according to the update style. The first method updates all
the nodes synchronously on the 2-D MRF.4 The second
method updates all the nodes sequentially; first in the in-
ward direction from the leaf to the root and next in the
reverse direction.5,6 The sequential method needs to update
only once at each node and obtains the final results. There-
fore, the nodes can be propagated fast with the small num-
ber of operations. In Ref. 5, the authors reported that the
sequential update based on spanning trees in MRF can
achieve fast convergence. We applied the tree structure to
each scan line, as shown in Figs. 1�a� and 1�b�. The tree
messages are updated using messages from the neighboring
scan lines that have been determined in the previous itera-
tion times. For the image with M �N pixels in Fig. 1�c�, N
scan lines can be separated into G groups, and the H lines
of each group g� �0,G−1� can be processed in parallel
with H processors. This observation is shown in our VLSI
parallel sequences as follows. A node located in a pixel is
denoted by a 2-D vector p= �p0 p1�T.
For synchronous iteration k from 1 to K,

for group g from 0 to G−1�=N /H−1�,
for each parallel processor h from 0 to H−1,
�p= �gH+hp �T�.

Fig. 1 Update sequence at k iteration times on 2-D MRF: �a� inward
processing, �b� outward processing, and �c� parallel processing
within group.
1
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1. Inward processing to root, for p1=0 , . . . ,M −1,
message�update�function �p ,p+ �0 1�T ,k ,k� for

rightward message.
2. Outward processing to leaf, for p1=M −1, . . . ,0,

message�update�function �p ,p− �0 1�T ,k ,k� for
leftward message

message�update�function �p ,p+ �1 0�T ,k ,k+1� for
downward message

message�update�function �p ,p− �1 0�T ,k ,k+1� for
upward message

decision�function �p ,K�.

As shown in Fig. 2�a�, the H processors calculate the
essages in the parallel, receiving the left and right pixel

ata from the H scan line buffers, and reading and writing
ith each message buffer. The processor consists of the
rocessing elements �PE� PEf,PEb,PEu, PEd, and PEo. Us-
ng the image data and the neighboring messages, PEf cal-
ulates the forward message in the inward time and PEb,

PEu, PEd, and PEo calculate each direction’s message and

isparity d̂ in the outward time.

Architecture of Processing Element
he PE is the basis logic to calculate the new message at
ach node as follows.

pq
k+1�dp� = min

dq��0,dmax−1�
V�dp,dq� + msum�dq� − � ,

Table 1 Error rate co

Methods
�iteration�

Tsukuba
384�288

Venus
436�383 4

Local casea 4.3% 1.5%

Local caseb 4.3% 2.2%

BP 4.8% 8.9%

Our chip�12� 2.6% 0.8%

aReference 2.
bReference 3.

ig. 2 Parallel and pipeline architecture: �a� processor array and �b�
E.
ournal of Electronic Imaging 010501-
msum�dq� = Dp�dq� + �
u�N�p�\q

mup
k �dq� .

When V�t , l�=min�Cv�t− l� ,Kv�, by the recursive backward
and forward methods of the distance transform,4 the time
complexity is O�5D� for D disparity levels. Due to our
pipeline structure, 2-D clocks are necessary for calculating
the message mpq

k+1�dp�. In the forward initialization,
D1�−1�=B, D2�−1�=B �B is as big as possible�.

For clock t from 0 to D−1 in the forward PE,

D1�t� = min�msum�t�,D1�t − 1� + Cv� ,

D2�t� = min�msum�t�,D2�t − 1�� ,

mf�t� = D1�t�, mf�− 1� = D2�D − 1� + Kv, � = D2�D − 1� .

�3�

In the backward initialization, D3�−1�=B.
For clock t from 0 to D−1 in the backward PE,

D3�t� = min�mf�D − 1 − t�,D3�t − 1� + Cv�,

mpq
k+1�t� = min�D3�t�,mf�− 1�� − � .

Figure 2�b� shows the PE architecture. The data cost PE
calculates the data cost D�t� from the left and right image
pixels. The forward PE reads msum�t�, which is the sum of
the messages and the data cost; outputs the forward cost
mf�t�, which is the minimum value between msum�t� and
D1�t−1�+Cv; and saves it to the stack. In Eq. �3�, the pa-
rameters are calculated for the backward time. In our sys-
tem, the minimum cost of msum�t� is used for the normal-
ized parameter �.

The backward processor reads the mf�D−1− t� from the
stack, calculates the minimum value D3�t� recursively, out-
puts the minimum value between D3�t� and the parameter
mf�−1�, and then subtracts it by � for the normalization.

5 Experimental Results
As shown in Fig. 3, we tested our system using four gray-
scale images and ground truth data from the Middlebury

on in several images.

80
Sawtooth
284�216

Speed
performance

1.3% No real-time hardware

2.1% SIMD in Pentium 4,
320�240, 7 fr/s

1.4% No real-time hardware

0.8% FPGA 256�240, 25 fr/s
mparis

Map
36�3

0.8%

0.8%

4.2%

0.2%
Jan–Mar 2008/Vol. 17(1)2
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atabase.1 The error rate represents the percentage of dis-
arity error of more than 1 between output d�x ,y� and
round truth dTRUE�x ,y�,

rror�%� =
100

Nm
�

�x,y��Pm

��d�x,y� − dTRUE�x,y�� � 1�,

Nm = �
�x,y��Pm

1,

here Pm is the pixel area except for the occlusion part, and
m is the pixel number in this area. As shown in Fig. 4 and
able 1, our system, iterated a small number of times,
hows the results superior to the local method2,3 and BP in
he Tsukuba image. Based on Fig. 4�b�, our disparity error
onverges rapidly around 12 iterations.

Given an M �N image, D disparity levels, and T itera-
ions, we need only 2-D forward and backward processing
locks in PE, and 2M inward and outward processing steps
t each scan line. G�=N /H� groups are iterated T times by

processors in parallel at F frame rates. From Fig. 5�b�,
he total necessary number of clocks to process F frames in
ne second is 49M clocks �=2D�2M��N /H�TF= �16�2�
�256�2�� �240 /24��12�25�. Our system’s 65-MHz

lock was enough for real-time processing.
As shown in Fig. 2�a�, the overall memory is spent for

he scan line buffer and message buffer. For real-time pro-
essing, our processors should be allowed to access a pair
f images in the scan line buffer, while the buffer loads new
mages from the cameras continuously. Hence, the size of

ig. 3 Left images: �a� Tsukuba, �b� Venus, �c� Sawtooth, and �d�
ap.

ig. 4 Comparison of outputs in Tsukuba: �a� ground truth, �b� con-
ergence rate, �c� our system at 12 iterations, �d� BP at 12 iterations,
e� local method,2 and �f� local method.3
ournal of Electronic Imaging 010501-
buffer for four images is allocated on the field program-
mable gate array �FPGA�, which means 2 Mbits�=4
� �256�240�8��. Given C�=4� bits as the size of mes-
sage at each disparity level and H�=24� processors, the
message buffer memory size is as follows:

leftward message: 1.5 kbits=HCD,
rightward message: 0.4 Mbits=HCDM,

upward and downward message: 8 Mbits
=2HCDMG.

In outward processing, the newly calculated leftward
message is only used for the next pixel processing. One
scan line size of rightward messages in inward time should
be stored for outward processing. Since the upward and
downward messages are updated synchronously for the en-
tire image, we need to store all the pixel messages in the
image. Due to this big memory size, 22 processors access
the external memory through an 8�22-bit data bus. Two
processors use the internal block RAMs on the FPGA. The
overall memory resource usage is described in Fig. 5.

6 Conclusions
Although BP produces good error performances in the area
of image processing, the VLSI architecture has not been
fully studied yet. In this context, we propose a parallel
VLSI architecture for stereo matching. The test system has
only 16 disparity levels, which might not be satisfactory for
3-D recognition tasks. However, for applications, like real-
time Z-keying and target-background separation, where
low disparity error at the object boundary is important, the
proposed chip can be effectively used.
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