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Abstract. Currently available biomechanical models of the human
eyeball focus mainly on the geometries and material properties of its
components while little attention has been given to its optics—the
eye’s primary function. We postulate that in the evolution process, the
mechanical structure of the eyeball has been influenced by its optical
functions. We develop a numerical finite element analysis-based
model in which the eyeball geometry and its material properties are
linked to the optical functions of the eye. This is achieved by control-
ling in the model all essential optical functions while still choosing
material properties from a range of clinically available data. In par-
ticular, it is assumed that in a certain range of intraocular pressures,
the eye is able to maintain focus. This so-called property of optical
self-adjustments provides a more constrained set of numerical solu-
tions in which the number of free model parameters significantly de-
creases, leading to models that are more robust. Further, we investi-
gate two specific cases of a model that satisfies optical self-
adjustment: �1� a full model in which the cornea is flexibly attached to
sclera at the limbus, and �2� a fixed cornea model in which the cornea
is not allowed to move at the limbus. We conclude that for a biome-
chanical model of the eyeball to mimic the optical function of a real
eye, it is crucial that the cornea is allowed to move at the limbal
junction, that the materials used for the cornea and sclera are strongly
nonlinear, and that their moduli of elasticity remain in a very close
relationship. © 2008 Society of Photo-Optical Instrumentation Engineers.
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Introduction
t is much easier to construct a numerical model of the human
yeball nowadays than it was 20 to 30 years ago due to ad-
ances in professional software programs for construction de-
ign based on finite element analysis �FEA�. Such programs
llow the construction of models of a complete eye globe with
omplicated geometry that possess both nonlinear and aniso-
ropic materials.1,2 However, most of the work done with such
umerical tools has been dedicated to the specific elements of
he eye globe, and in particular to the cornea and its mechani-
al properties, before and after corneal refractive surgery.3–5

lso, there has been a continuous effort to model and analyti-
ally describe the mechanical properties of the eye using
losed-form expressions.6,7

Thus, it would appear that biomechanical modeling of the
yeball should have been resolved and that the accuracy of
uch a model would only be a matter of performing a larger
umber of iterations to find the numerical solution. However,
otwithstanding the efforts that are being made toward devel-

ddress all correspondence to: D. Robert Iskander, School of Optometry,
ueensland University of Technology, Victoria Park Road, Kelvin Grove, Bris-
ane, Queensland 4059, Australia. Tel: 61 7 31385705; Fax: 61 7 31385665;
-mail: d.iskander@qut.edu.au
ournal of Biomedical Optics 044034-
opment of accurate algorithms, current eye models are still far
from describing the behavior of a real human eye. The reason
for this is rather prosaic. Despite the eye’s apparent structural
simplicity, the in vivo mechanical properties of the human eye
have not been categorically described. Using the words of
Shin et al.8 in referring to the cornea, “experimental data is
�often� meagre and flawed.” Detailed knowledge of the struc-
ture of all eyeball tissue components �i.e., cornea, sclera, iris,
lens, choroid, and retina� as well as their material properties
�nonlinear and anisotropic� is needed. Two of these eyeball
components, the cornea and the sclera, are fairly well de-
scribed when it comes to their geometries, but their material
properties have been disputed.8–14 On the other hand, knowl-
edge of the in vivo mechanical properties of the other compo-
nents of the eye is very limited. As a result, most reported
biomechanical models of the human eyeball contain the cor-
nea and the sclera, and sometimes the optic nerve,15 but omit
the other components.

Another deficiency in the majority of reported biomechani-
cal models of the eyeball is the developers’ apparent low in-
terest in the optics of the eye. Most authors develop their
models as if the eye was a strictly mechanical structure while

1083-3668/2008/13�4�/044034/8/$25.00 © 2008 SPIE
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ts optics was just a simple consequence of the mechanical
arameters, which are often chosen ad hoc. Subsequently, this
ften leads to problems with accurate mechanical identifica-
ion. To date, optical properties of the eye are hardly used to
dentify the mechanical parameters of the eyeball model.16

In this work we postulate that the optical functions of the
ye have strongly influenced its mechanical structure; that it is
he optics of the eyeball that took, in the evolution process,
ontrol over the mechanics �in terms of geometry and material
arameters� and subjected it toward its needs.17 It is well
nown from studies on a variety of species that there is a
irect role of vision in the material properties of the eye and
n regulation of its growth.18,19 Therefore, it is highly likely
hat the material properties of the eye must have been selected
y nature to optimize the optics and visual function in the first
lace. Thus, biomechanical modeling of the eyeball should
nclude some relationships between the mechanical and opti-
al parameters of the eye so the goal of developing an accu-
ate mechanical eyeball model can be achieved.

Using this concept, we develop a numerical model of an
yeball in which the structural parameters �in terms of the
yeball geometry and its material properties� are linked to the
ptical function of the eye. This is achieved by controlling in
he model all essential optical functions of the eye while still
ssuming material properties from the range of those available
n the literature experimental results.20–23 By combining the

echanical and optical functions of the eye in the model, the
umber of free model parameters significantly decreases,
hich makes the model more robust and the comparison be-

ween any two model conditions more tractable.

Methods
model of the eyeball is defined as a set of geometrical and
aterial parameters in the design of a mechanical construc-

ion that can be solved using the finite element method
FEM�. In this view, the type of the elements used or the
articular solution parameters of the FEM is of some impor-
ance, as they may have a significant impact on the accuracy
f the solution.

.1 The FEM Model
he model that we use to link the mechanical properties of the
ye to its optical functions is built from a 2-D quadrilateral
-node body of revolution elements. More than 500 of such
lements were used. The solution parameters include both the
onlinear material effects as well as the changes in the con-
truction configuration under loading.

A typical distribution of the density of elements used in
ur model is shown in Fig. 1. The boundary conditions
model mounting� limit the movements of the construction as
rigid body; otherwise the model is allowed to move freely.
he model includes three kinds of material properties corre-
ponding to the cornea, sclera, and limbus �the circled area in
ig. 1�. The only material that can remain linear in a model
nd satisfy optical self-adjustment is that of the limbus. Its
oung’s modulus is set to E=1 MPa. All numerical calcula-

ions have been performed using Cosmos/M™.24
ournal of Biomedical Optics 044034-
2.2 Assumption of Optical Self-Adjustment
The phenomenon of optical self-adjustment of the eye can be
observed during an increase in intraocular pressure �IOP�.
One would expect that an increase in IOP could result in a
slight expansion of the eyeball and the following sequence of
actions:

1. Corneal apex moving away from the retina,
2. Slight change in corneal curvature,
3. Slight axial movement of the limbus �that is internally

attached to crystalline lens�, and
4. Increase in the axial distance between the cornea and

the crystalline lens �see parameter d in Fig. 1�.
Such deformations would influence the position of the focal
point of the eye’s optical system �here we do not consider the
accommodative properties of the crystalline lens�. However, it
appears that it is possible to “tune” the geometries and mate-
rial properties of the cornea, limbus, and sclera in such a way
so that the focal point would remain in place in a given range
of IOP values. Thus, the self adjustment is understood as the
result of a subtle arrangement of eyeball mechanical param-
eters to ensure that the retinal image remains stable in the
presence of fluctuations in IOP. Figure 1 illustrates this
mechanism. It should be noted that optical self-adjustment is
related to the mechano-optical response of the eye to changes
in IOP. This response is almost instantaneous, so there is no
time for the eye to respond in a rheological deformation or to
accommodate. This hypothesis was postulated earlier,17 and
we used it in our earlier work where a solution for a linear
model of the eyeball was devised.16 Recent clinical studies of
McMonnies and Boneham provide further support for the pos-
tulate, though it has not been proved.25,26 Under the assump-
tions given in the postulate, our preliminary study indicated
that the following structural parameters of the eyeball have
the largest impact on the property of self adjustment:

Fig. 1 Geometry of the eyeball model used for the FEM together with
the displacements of the main optical plains for the cornea and the
crystalline lens caused by the increase in IOP. The inset shows the
displacement of the focal point which, in the range between 12 and
38 mm Hg, does not significantly change, making the model optically
self-adjusted.
July/August 2008 � Vol. 13�4�2
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1. The ratio of the corneal longitudinal modulus of elas-
ticity to that of the sclera,

2. Limbus ring stiffness, and
3. The geometry of the anterior surface of the cornea.

.3 Model Geometry
e approximate the anterior and posterior surfaces of the cor-

ea by spheres similar to the Gullstrand—Le Grand model,27

aking sure that the data follow the available knowledge
ased on experimental measurements. The nominal parameter
alues for the considered eyeball are shown in Table 1 for a
odel under no load. Changes of these parameters with the

ncreasing level of IOP will be shown later. The sclera is
odeled as a 12.5-mm anterior radius sphere with varying

hicknesses: 0.8 mm near the limbus, 0.6 mm in the equato-
ial area, and about 1 mm in the foveal region �see Fig. 1�.

The corneal surfaces are better modeled by aspheric sur-
aces, such as an ellipsoid,31,32 because those shapes corre-
pond better to keratometric measurements of real corneas
han a sphere. In our previous study on optical
elf-adjustment,16 we did consider an elliptic shape with ec-
entricity e=0.5. This result, however, was achieved for a
inear model. Here, we decided to use the classical spherical

odel of the cornea so we could first study the behavior of a
odel with nonlinear materials.

able 1 Main parameters of the considered model of the eyeball.

Parameter Source �e.g.� Value

entral anterior
adius of curvature

Kiely et al.28 R=7.84 mm

entral posterior
adius of curvature

Edmund20 r=6.75 mm

entral corneal
hickness

Liu et al.22 CCT=0.52 mm

eripheral corneal
hickness adjacent
o the limbus

Dubbelman et al.29 PCT=0.65 mm

iameter of the
ornea

Baumeister et al.30 Dc=11.5 mm

verage corneal
efractive index

Patel et al.21 nc=1.3771

verage refractive
ndex of aqueous
umour and vitreous
ody

Le Grand and
El Hage27

na=1.336

efractive power
f the crystalline

ens

Le Grand and
El Hage27

Flens=22.07 D

oisson ratio �see text� �=0.49

ominal intraocular
ressure

Eysteinsson et al.23 IOP=16 mm Hg
ournal of Biomedical Optics 044034-
2.4 Boundary Conditions
There is no agreement in the literature on how the model of
the eyeball should be mounted despite the fact that there are
many studies devoted to orbital mechanics of the eye.33–36 For
obvious reasons, those analytical models that consider the cor-
neal surface only have either a roller or a fixed support.12–14

However, such simplified mountings are also considered in
numerical models.3,8,37 As we will show later, this could lead
to misinterpretation of the numerical results, particularly
when dealing with the optical function of the eye. A recent in
vivo study on corneal rigidity38 supports the assumption of
free mounting the eyeball, which we will also adopt here.

2.5 Materials
The anterior surfaces of cornea and sclera have been well
documented and their physical structures are known.39 How-
ever, the knowledge of their mechanical properties is less
complete. It is known that the materials are nonlinear, aniso-
tropic, and that under a large load, their rheological properties
must be taken into account. Fortunately, not all of these as-
pects need always to be considered. In particular, for a model
of a normal living eye, one can assume an isotropic and elas-
tic material. However, this material must be nonlinear. Here
we also restrict ourselves to only one layer of corneal tissue,
and from this point onward we identify the cornea with the
stroma. This simplification does not significantly reduce the
accuracy of the solution,2 since it appears that the Young’s
modulus of the Descemet’s membrane is much smaller than
that of the stroma.40

The stress-strain functional relationship, �= f���, that can
be used to characterize the eye surface materials can be ex-
pressed in the known exponential form39,41

� = A�exp���� − 1�, � � 0, �1�

where A and � are constants related to material properties.
This functional relationship has an important property that its
derivative, known as the tangential modulus of elasticity, is
nonzero for strain values approaching zero, i.e.,

E0 = �d�

d�
�

�→0
= A� . �2�

For the negative stress, we will assume that the material prop-
erties are governed by a linear relationship:

� = E0�, � � 0. �3�

The anisotropy of the secant modulus of elasticity, dependent
on the sign of the strain, is associated with the molecular
structures of the stroma and sclera.39 The constitutive Eqs. �1�
and �3� approximate mechanical functions of a real human
cornea, particularly in a clinically relevant range of IOP. The
secant modulus of elasticity is often expressed in a form
ESecant=� /�. In our case, the secant modulus of elasticity is
given by

ESecant =
A�exp���� − 1�

�
. �4�

Despite the fact that expression �4� is a function, we will still
call it a modulus. It should, however, be distinguished from
July/August 2008 � Vol. 13�4�3
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he Young’s modulus, which is constant and used for linear
aterials only.
In the analysis of the stress state present in ocular surfaces

nder IOP, we also need to consider the value of another
ariable: the Poisson’s ratio. The limit of the Poisson’s ratio
or an isotropic incompressible material �e.g., water� is �
0.5, and in some works it has been used to describe corneal

issue.3,42 However, this limit value cannot be used in our
odeling, because the stress-strain relationship in this case is

o longer uniquely described. For this reason, we consider
oisson’s ratio values of the eye constructions values that are

ust below this limit. The problem is that Poisson’s ratios
anging from �=0.15 through �=0.3 to �=0.49 are being
eported.2,8,37,43,44 However, this wide range of values is being
isputed, because some of the considered values are sup-
orted by real measurements.1,45 In some cases, the use of real
easurements and the belief that they are correct may lead to

n unrealistic situation. See, for example, the work of Pandolfi
nd Manganiello,37 where the chosen values of the secant
odulus of elasticity and the Poisson’s ratio led to unrealisti-

ally low values of the bulk modulus. In our opinion, such a
iscussion is of no serious significance because the model
olution only marginally depends on the Poisson’s ratio. If we
ssume that the bulk modulus of elasticity of considered soft
issues is of the same order as that of water �K=2200 MPa�,
hat is 103 MPa, while their secant �Young’s� modulus of
lasticity is about three orders smaller, i.e., 100 MPa, then the
oisson’s ratio is

� =
3K − E

6K
=

3000 − 1

6000
= 0.4998.

t is worth noting that varying the parameters K and E within
he range of values that can be attributed to ocular tissues
oes not change this ratio significantly �see the mostly flat
egion of the relationship in Fig. 2�. For this reason, we will
ssume in our modeling the value of �=0.49.

The material parameters of the considered biomechanical
odel of the eyeball have been chosen in a way so that the
odel results match those of the Goldmann applanation

onometry.46 Despite its deficiencies it is still the most widely
ccepted method of determining intraocular pressure.47,48 In

ig. 2 Poisson’s ratio as a function of bulk modulus and secant
odulus.
ournal of Biomedical Optics 044034-
this technique, the cornea is modeled as a membrane filled
with fluid under certain pressure. Then, using a specially cali-
brated probe, a small force is applied to the central
3.06-mm-diameter flattened corneal area, which in turn exerts
a force directly related to the internal pressure as per the so-
called Imbert-Fick law.

Identification of the corneal material parameters with the
Goldmann’s test showed that, to adequately represent the per-
formance of a real eye in our modeling, the following criteria
must be met:

1. The material �function �= f���� must be strongly non-
linear �even under the physiological load�.

2. The modulus E0 from Eq. �2� must be relatively small
�of an order of magnitude smaller than the average se-
cant modulus of the cornea, ESecant, for IOP
=16 mm Hg.

3. The material elasticity ESecant for ��0 must be much
smaller than that for stretching, as described in Eq. �3�.

Using all the above information and criteria, we set two ex-
treme limit materials for the material properties of the cornea
for which the biomechanical model would behave close to the
performance of a real eye observed clinically. The most pli-
able material �the softest�, denoted by Ms, and the stiffest �the
hardest�, denoted by Mh, had the following parameters:

Ms: A = 500 Pa, � = 55, for � � 0,

and E0 = 0.0275 MPa for � � 0; �5�

Mh: A = 200 Pa, � = 130, for � � 0,

and E0 = 0.0260 MPa for � � 0. �6�

Note that for a given stress value, the strain in material Ms
was about twice that encountered in material Mh. Figure 3
shows the stress-strain relationships for the two considered
materials.

The assumption that the model satisfies the principle of
optical self-adjustment leads to another structural condition.
Specifically, for a given stress value, the secant modulus of
the sclera must be several times larger than that of the cornea.
By denoting this relationship by

Fig. 3 Stress-strain relationship for the two considered nonlinear
materials.
July/August 2008 � Vol. 13�4�4
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m =
ESecant�sclera�
ESecant�cornea�

, �7�

t follows that the material used for the sclera is given by the
ollowing stress-strain function:

� = A�exp�m��� − 1�, � � 0, �8�

here the constant A is the same as the one used for the
ornea. We have determined ratio m in our preliminary studies
o be in the range between 4.6 and 6. This ratio has its sig-
ificance even in a linear model of the eyeball49 and has its
onfirmation in experimental studies.9

We have numerically validated this proposed nonlinear
odel by comparing its stiffness to that of a real eye.38,50 In

his particular aspect, material Mh showed much better per-
ormance than that given by material Ms. That is why in the
emaining part of this paper we will only consider the corneal
odel realized from material Mh. The material for the sclera,

n the other hand, satisfies relationship �8� with m=5.
Finally, the main role of the limbus in the model is to

optically couple” the cornea and sclera so that optical self-
djustment is satisfied. The limbus is defined as an annular
ransition zone between the cornea and sclera. Histologically,
t the limbus, the epithelium gradually thickens toward the
clera where it is replaced by conjunctival tissue. In our mod-
ling, we simplify this limbus area to a limbus ring with me-
hanical properties that are between those of the cornea and
clera. Since the secant modulus of the cornea is close to
.5 MPa and that of the sclera is m=5 times larger, i.e.
.5 MPa, the modulus for the limbus must be set between
hese two values, say E=1 MPa, so that the structure is not
erturbed.

.6 Optical System of the Eyeball
he total optical power of the eye depends on the respective
owers of the cornea and crystalline lens and their mutual
ositions �i.e., distance d�. Figure 1 shows the optical system
nd the notation used. The parameters of the eyeball are given
n Table 1. Changes in the pressure p influence the optical
ower of the cornea �by changing its axial curvature R� as
ell as the distance d between the cornea and the crystalline

ens.
The optical power of the eyeball is given by.

Feye = Fcornea + Flens −
d · Fcornea · Flens

n
, �9�

hile its focal length is

f =
n

Feye
. �10�

ere it is assumed that the power of the lens Flens is constant,
ut the distance d and the power of the cornea,

Fcornea =
n − 1

R
, �11�

epend on the pressure p. Both d and R are obtained from the
EM solution. The above formula describes the optical power
ournal of Biomedical Optics 044034-
of the anterior corneal surface that divides areas of signifi-
cantly different refractive indices �i.e, n=1 for air, and nc
=1.3771 for the cornea�. The contribution of the posterior
corneal surface to total power changes is just above 1%. How-
ever, this contribution is much lower when changes in optical
power are considered. That is why we remain with formula
�11� in all further calculations.

The displacement of the focal point with respect to the
back of the eye is influenced not only by the changes in op-
tical power of the cornea-crystalline-lens interface, but also
by the “optical” elongation of the eyeball, which is under-
stood here as a shift of the secondary principal plane He� with
respect to the back of the eye. Thus, displacement of the focal
point is composed of the axial elongation of the sclera �i.e.,
axial translation of the crystalline lens al� and the change in
the distance SH� between the crystalline lens and the second
principal plane He� �see Fig. 1�,

�l = al + �SH� . �12�

The distance SH� is given by

SH� = d · Fcornea/Feye,

while the axial translation of the crystalline lens al is obtained
from the FEM solution.

Finally, the displacement in focus �positive sign toward the
cornea� is given by

B = �l − �f . �13�

The function B can be treated as a measure of optical blur on
the retina. If its change is due to the intraocular pressure p,
then the criterion of optical self-adjustment can be analyti-
cally expressed as

dB

dp
= 0. �14�

The deformation of the sclera has a crucial role in the above
criterion. Thus, studying optical self-adjustment in models
that contain only the corneal surface that is fixed at its perim-
eter is an oversimplification.

The property of optical self-adjustment determines the ra-
tio of the corneal longitudinal modulus of elasticity to that of
the sclera �parameter m�. Together with the material proper-
ties of the cornea, they “automatically” determine the param-
eters of the sclera and limbus, hence reducing the number of
free parameters used in the model.

3 Results
3.1 Full Model
First, we consider a full model of the eyeball with standard
geometry �see Table 1�, material Mh, and free movement
mounting under internal load p. The free model parameters
include the thickness of the sclera �0.8 mm near the limbus,
0.6 mm in the equatorial area, and about 1 mm in the foveal
region�, the central corneal thickness �CCT�, peripheral cor-
neal thickness adjacent to the limbus �PCT�, central anterior
radius of curvature, parameters A and � of the corneal mate-
rial, and the ratio m.
July/August 2008 � Vol. 13�4�5
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Figure 4 shows the solutions of the FEM for several func-
ions dependent on p. The load was applied in steps and the
EM solutions were fast-converging. The solutions include B,

he displacement in the focus; R, the central anterior corneal
adius of curvature; VLimbus and ULimbus, the axial and radial
isplacements of the limbus; and VApex, the axial displace-
ent of the corneal apex. Comparing the displacement in the

ocus B�p� with the displacements in the corneal curvature
nd limbus, we note that they are all of the same order, say
bout 0.1 mm. However, function B�p� shows that for the
ressure larger than 10 mm Hg, the changes in displacement
f focus are much smaller; thus, the model fullfills the crite-
ion of optical self-adjustment. Note also that because the
ornea has a flexible mount at the limbus, its radius of curva-
ure R increases with the pressure p.

Figure 5 shows the radial profile of the anterior cornel
urface for the same seven loads considered in Fig. 4, i.e.,
rom 0 mm Hg to 40 mm Hg in steps of 8 mm Hg, and addi-
ionally for p=3.2 mm Hg, for which the displacements are

ost rapid.

ig. 4 Parameters of the full model as functions of intraocular pressure
. B is the displacement in the focus, �f is the displacement in the

ocal point with respect to He�, �l is the change in eye length, �R is the
hange in the central anterior corneal radius of curvature, VApex is the
xial displacement of the corneal apex, and VLimbus and ULimbus are the
xial and radial displacements of the limbus.

ig. 5 Radial profile of the anterior corneal surface �the displacements
re magnified 3�� for the same seven loads considered in Fig. 3, i.e.,
rom 0 to 40 mm Hg in steps of 8 mm Hg, and additionally for p
3.2 mm Hg. The average angle of trajectory of the limbus is 58 deg.
he limbal ring limits the movements of the limbus, causing a larger
isplacement of the corneal apex.
ournal of Biomedical Optics 044034-
3.2 Fixed Cornea Model
In many applications, it is a quite common practice to reduce
the full model of the eyeball to a model of the cornea that is
fixed at the limbus.5,13,47 However, such an approach signifi-
cantly alters the results of the calculated optical power of the
model because it significantly changes the location of the fo-
cal point with respect to the cornea. It also changes other
optical functions of the eye that are important in biomechani-
cal studies of the eyeball.

The FEA solution for the fixed cornea model is similar to
that of a model with a limbal ring that has infinitely high
stiffness. However, two such models are not identical, be-
cause in the fixed corneal model the sclera expands. Figure 6
indicates that the optical mechanism of this model is different
than that of the full model described earlier �see Fig. 4�. The
most important difference is in the shape of function �R. That
is, unlike in the full model, the central anterior corneal radius
of curvature decreases with an increase in p. As a conse-
quence, the focal distance in the fixed cornea model shortens
and its amplitude gets larger than in the case of the full model.
Also, the displacement of the focal point differs with changes
in p—it moves forward much more while previously it moved
slightly backward. The reason for all of these differences be-
tween the two considered models is the dynamic behavior of
the anterior corneal surface when it is fixed at the limbus
�see Fig. 7�. However, it is counterintuitive that these radically
different boundary conditions lead also to a model
that is optically self-adjusted in the range from
16 mm Hg to 32 mm Hg �see function B�p� in Fig. 6�. It
should be noted that it is not easy to achieve optical self-
adjustment for the model. For the material Mh, a deviation
from criterion �7� and ELimbus=1 MPa quickly puts the model
“out of tune” in which function B�p� changes strongly in the
whole range of considered pressures.

4 Discussion
We have considered biomechanical models of a standard eye-
ball �surgically unaltered�. The FEA solutions of the two con-
sidered models clearly indicate that the boundary conditions
�in particular the way the cornea is fixed to the sclera�

Fig. 6 Parameters of the fixed cornea model as functions of intraocu-
lar pressure p. B is the displacement in the focus, �f is the displace-
ment in the focal point with respect to He�, �l is the change in eye
length, �R is the change in the central anterior corneal radius of cur-
vature, and VApex is the axial displacement of the corneal apex.
July/August 2008 � Vol. 13�4�6
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trongly influence the optics of the eyeball. The investigated
ase of the fixed cornea model is somewhat extreme. How-
ver, even for the model with the roller support of the
ornea3,13 at 40 to 45 deg, it is not possible to achieve optical
elf-adjustment because this type of support does not fullfill
ondition �7�.

Thus, the most important feature of our proposed optically
nspired model is its optical self-adjustment for intraocular
ressure above 10 mm Hg. The principal condition for such
ehavior of the eye model is the constraint on the secant
odulus of the sclera to be several times larger than that of

he cornea. The Young’s modulus of the limbal ring, ELimbus
1 MPa, also had to be chosen carefully. It is quite remark-

ble that these purely mechanical conditions were imposed
imply by the optics.

These modeling results have indicated that the increase of
ocal length �f , as well as the corresponding change in eye
ength �l, are functions of p and are closely related for pres-
ures above 10 mm Hg since their difference �equal to B� is
lmost constant. For example, for p=16 mm Hg, the focal
ength changed by �f =0.264 mm �from the clinically unseen
n a real eye but biomechanically relevant case where p=0�.
f the length of the eye had not changed at the same time, one
ould expect that the focal point had moved by this value.
owever, in the optical self-adjustment model, the focus
oved only by about B=−0.121 mm, a difference of about
.7 to 0.3 D �again, from the nominal point of p=0�. Note
hat in a real eye, where the intraocular pressure may range
etween 10 and 20 mm Hg, the condition of optical self-
djustment results in changes of focal point that are not no-
iceable by a human.

The solutions for the fixed cornea model �shown in Figs. 6
nd 7 indicate that it is a drastically different model. The
isplacement of the second principal plane �l, despite origi-
ating mainly from the displacement of the crystalline lens
SH� �see Eq. �12��, is much larger than in the full model.
owever, the largest difference can be seen in changes of the

ocal point �f with respect to the initial value of f =22.426
for p=0�. Not only has the change radically increased, but
he sign also changed. Instead of moving by −0.121 mm
backward�, it moved by 0.894 mm �forward�. This leads to
ignificant optical power changes:

ig. 7 Radial profile of the anterior cornel surface �the displacements
re magnified 3�� for the same seven loads considered in Fig. 5.
nlike in the full model, here the limbus is fixed and not allowed to
ove.
ournal of Biomedical Optics 044034-
�Feye =
1.336

0.022426 − 0,000894
−

1.336

0.022426 + 0.000121

= 62.05 − 59.25 = 2.8D.

Thus, fixing the limbus results in a completely different opti-
cal model of the eyeball than in the case where the cornea is
attached to the flexible sclera.

The displacements of the limbus, although small, have a
crucial impact on the optical power Feye of the whole system
being a function of the intraocular pressure p. This functional
relationship has an important role in the numerical studies of
the eyeball. On the other hand, the displacements of the lim-
bus caused by changes in p depend on the material properties
of both the sclera and the limbal ring. Therefore, it is impor-
tant that these displacements are carefully considered in nu-
merical models of the eyeball.
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