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bstract. Custom color transformations for images or video can be
earned from a small set of sample color pairs by estimating a
ook-up table (LUT) to describe the enhancement and storing the
UT in an International Color Consortium profile, which is a standard
ool for color management. Estimating an accurate LUT from a small
et of sample color pairs is challenging. Local linear and ridge re-
ression are tested on six definitions of neighborhoods for twenty
olor enhancements and twenty-five color images. Excellent results
ere obtained with local ridge regression over proposed enclosing
eighborhoods, including a variant of Sibson’s natural neighbors.
he evaluation of the different estimation methods for this task com-
ared the fidelity of the learned color enhancement to the original
ample color pairs and the presence of objectionable artifacts in
nhanced images. These metrics show that enclosing neighbor-
oods are promising adaptive neighborhood definitions for local
lassification and regression. © 2008 SPIE and IS&T.
DOI: 10.1117/1.2955968�

Introduction
igital designers would benefit from tools that allow them

o define custom color enhancements that are easy to use,
hare, edit, and do not require expert knowledge of color
rocessing or statistical learning. A color enhancement is
efined by a mapping from an original colorspace to an-
ther colorspace. For example, one color enhancement
ould be to transform all color values to pastel colors. As

ecently proposed,1 one practical architecture for custom
olor enhancements is for a user to input a small set of
xample color transformations from which the complete
nhancement’s color mapping can be estimated. Estimating
he envisioned color-space mapping from only a few
amples is a difficult estimation problem, but a solution that
ses linear regression over a local neighborhood was shown
o give promising results.2 We expand on that work in this
aper.
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Three examples of user-defined sample color pairs are
shown in Figs. 1–3. In Fig. 1, the sample pairs are shown as
vectors in the CIELab color space; each vector connects
one of the 24 color patches of the standard Gretag Macbeth
color chart photographed under a specific illuminant to the
same color patch photographed under a different illumi-
nant; more details are available in Section 6.1. An example
of an image enhanced with a look-up-table �LUT� esti-
mated from the cloudy-to-sunset sample pairs is shown in
Fig. 2. Another example of color sample pairs is given in
Fig. 3, which shows how 16 colors would be displayed
using the Cinecolor film process; results with the Cinecolor
enhancement are shown in Fig. 5. The goal for estimating a
color enhancement from a small set of sample color pairs is
to accurately capture the user’s envisioned color enhance-
ment. More practically, we consider two metrics for the
estimation: how well the estimated color enhancement ac-
curately reproduces the user’s sample pairs and whether
images enhanced with the estimated mapping are free of
objectionable artifacts.

Once estimated, the custom color enhancement can be
stored as an International Color Consortium �ICC� profile.
ICC profiles are the most widely adopted standard for char-
acterizing and correcting color changes between devices,
such as printers and monitors.3–5 The core of an ICC profile
is a multidimensional LUT that spans the color space, such
as a 17�17�17 grid of points. The LUT defines how the
colors on the grid are modified. The transformation of non-
grid input colors are interpolated from the colors in the
LUT. Color management modules that process ICC profiles
are already implemented in many common hardware
and software systems.4 Though developed and used to
manage color between devices, ICC profiles provide a stan-
dardized and flexible architecture for defining any color
transformation.

ICC profiles were standardized for color management.
To estimate a LUT for color management of a device, one
can expect to have on the order of a few hundred color
sample pairs that span the color space and an underlying
color transformation that is generally monotonic, though
Jul–Sep 2008/Vol. 17(3)1
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onlinear. In contrast, to estimate a custom color enhance-
ent LUT, it must be possible to estimate the LUT based

n the order of 20 color sample pairs that do not necessarily
pan the color space. Additionally, the custom enhancement
o be learned may be nonmonotonic as well as nonlinear. A
rst exploration of learning ICC profiles from sample pairs1

howed that there were estimation trade-offs between over-
moothing the color enhancement and creating objection-
ble artifacts in enhanced images, such as unwanted false
ontours.

Building on previous work,2 new neighborhood defini-
ions are proposed for local linear and ridge regression in
rder to estimate custom color enhancements from a small
et of color sample pairs. Ridge regression is a penalized
orm of linear regression that can reduce estimation vari-
nce. Both linear and ridge regression are flexible estima-
ion methods when applied to local neighborhoods. We in-
estigate adaptive neighborhood methods that attempt to
nclose the points being estimated within a convex hull of
eighborhood training samples. Extensive experimentation
stablishes the effectiveness of the new methods.

First, related research on color enhancements is re-
iewed in Section 2. Then, different estimation approaches
re considered for estimating the ICC profile from the
iven color sample pairs in Section 3. A local learning ap-

Original Image (actual illuminant unknown) Cloudy-To-Sunset Enhanced Image

(a) (b)

ig. 2 Photograph �a� was taken under an unknown illuminant, pos-
ibly a cloudy morning. Photograph �b� is a color-enhanced version
f the left photograph, using a cloudy-to-sunset enhancement esti-
ated from the cloudy-to-sunset sample pairs shown in Fig. 1.

Color online only.�

Fig. 1 Two examples are shown of sample pa
pair is displayed as a vector in CIELab space th
colors correspond to the colors of the standard
under different illuminations.
ournal of Electronic Imaging 033005-
proach gives the user both flexibility and control, but re-
quires a local neighborhood to be defined. In Section 4, the
literature on neighborhood definitions is reviewed, and we
introduce the term enclosing neighborhood. New enclosing
neighborhoods are proposed in Section 5. Experimental de-
tails are given in Section 6, followed by results in Section
7. The paper ends with a discussion on the future usage of
ICC profiles and how enclosing neighborhoods may be ad-
vantageous for general learning problems.

2 Related Research on Color Enhancements
Related to this work, Trussell et al. proposed using a LUT
to help consumers correct color by fitting a low-order poly-
nomial to a small number of user-defined samples.6 Gatta
et al.7 and Rizzi et al.8 proposed using spatially local
LUT’s to approximate complicated color and image en-
hancements such as Retinex. For that application, no esti-
mation is needed. Other researchers have worked on en-
hancing images using statistical learning techniques; for
example, Hertzmann et al. showed that learning could be
used to enhance images by image analogies.9 Their work
uses a pair of input images to define a transformation. Us-
ing input image pairs allows them to create spatial enhance-
ments as well as color enhancements. Other researchers
have developed methods to create custom color image en-
hancements by transforming the color palette of an original
image based on the color palette of a single reference
image.10,11

Fig. 3 Input and enhanced sample colors are shown that map origi-
nal colors to how they would approximately appear in a Cinecolor
film, according to the American Widescreen Museum Web site �34�.
The Cinecolor color film process was used in the 1930s. Cinecolor
used only two film colors �roughly described as red and cyan�.
�Color online only�.

describe a change of illuminant. Each sample
nects an input color to its enhanced color. The
ple Gretag Macbeth color chart photographed
irs that
at con
24 sam
Jul–Sep 2008/Vol. 17(3)2
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Approaches to Estimation
et g�Lab be a gridpoint of a 3-D LUT of an ICC profile.

et ŷ= �L̂ , â , b̂� be the estimated enhanced CIELab color
orresponding to g. Let �xi ,yi� for i=1, . . . ,n be the user-
efined sample color pairs, where xi�Lab and yi�Lab.
he components of yi are denoted yi= �Li ,ai ,bi�. If the
ser-defined color sample pairs are not originally in
IELab, then it is assumed that they are transformed to
IELab before processing. The problem is to estimate ŷ for
very gridpoint g of the LUT based on the given sample
airs �xi ,yi�.

A key issue behind the estimation is that the user’s small
et of n given color samples may not cover the full color
pace; thus, many gridpoints fall outside the convex hull
panned by the given color samples. It was shown in earlier
ork1 that interpolative methods, such as tetrahedral linear

nterpolation or LIME,12 clip colors outside the convex hull
f the given color samples to the gamut defined by that
onvex hull. Instead, extrapolative methods, such as local
inear regression,13,14 must be used, at least for the outer
ridpoints. Local linear regression has also been shown to
ork better than other regression methods for estimating
UTs for color management, including a neural net, poly-
omial regression, and splines.15

Local linear regression fits the least-squared error hyper-
lane to some local neighborhood of each gridpoint of the
UT. For a gridpoint g,

ˆ = lTg + l0

ˆ = �Tg + �0 �1�

ˆ = �Tg + �0,

here l , l0 are regression coefficients of a least-squares hy-
erplane fit to the neighborhood samples �xi ,Li�, � ,�0 are
he vector of regression coefficients of a least-squares hy-
erplane fit to the neighborhood samples �xi ,ai�, and � ,�0

re the vector of regression coefficients of a least-squares
yperplane fit to the neighborhood samples �xi ,bi�.

Using too large a neighborhood can result in extrapola-
ions that are too smooth and do not capture the the sense of
he desired color transformation. Fitting a plane to a neigh-
orhood that is too small results in a plane with a slope that
s too steep, causing extrapolated colors to be grossly in-
orrect or clipped at the boundary of the display colorspace,
hich results in images with objectionable flat regions of

lipped color. A related danger occurs when bright white is
apped to a nonwhite color, which can have the unin-

ended effect that specular reflections and highlights in the
mage become colored in a manner inconsistent with the
erceived whitepoint for the image.1 Though affecting few
ixels, the eye is very sensitive to such deviations from the
erceived neutral axis4 and such colored highlights appear
nnatural.

In mock workflow simulations with custom color en-
ancements, the ability to fine-tune a particular region of
he color space was important to designers. Compared to
lobal regression surface-fitting techniques, such as neural
etworks, local learning methods enable designers to lo-
ournal of Electronic Imaging 033005-
cally edit the colors of a transform while minimizing
changes to other parts of the colorspace. Another concern
with neural networks is overfitting the surface to the train-
ing set. In related work by Trussell et al.,6 color corrections
were implemented by fitting low-order global polynomials
to a few user supplied color sample pairs. Local learning
allows more flexibility to define a more complicated or pre-
cise color enhancement.

Ridge regression is used to stabilize the estimation.13,16

Ridge regression forms a hyperplane fit, as in Eq. �1�, but

the ridge regression coefficients �̄ minimize a penalized
least-squares criteria, which discourages fits with steep
slopes. For example, for the luminance plane the ridge re-
gression coefficients solve

lridge = arg min
�,�0

��
i=1

n

Li − �Tg − �0�2

+ ��
d=1

3

�d
2. �2�

The parameter � controls the trade-off between minimizing
the error and penalizing the coeffcients, with larger � lead-
ing to flatter sloped hyperplane estimates.

Higher-order polynomial fits or spline fits are also pos-
sible solutions to estimating the LUT. These smoother fits
would have more continuous derivatives. Because colors
are perceptually indistinguishable if they are close enough,
a point discontinuity is unlikely to be noticed, and we ques-
tion the importance of continuous derivatives for this appli-
cation. However, the slower variation of a higher-order
polynomial fit could be an advantage over the disjoint fit
formed by local linear regression. The disadvantages of
such higher-order fits are an increased difficulty for the
designer to fine-tune the enhancement, and potentially wild
nonlinear estimates for colors that fall outside the convex
hull of the training samples.

4 Research into Neighborhoods

Local learning, such as local linear regression, requires a
definition of a local neighborhood for each test point. For
this application, each of the unknown gridpoints in the LUT
will, in turn, be considered a test point. A common neigh-
borhood choice is to use the k nearest neighbors as defined
by Euclidean distance, or as defined by some locally
adapted distance.17–24 In practice, it is common to choose k
by cross-validation.13

The challenge is to do well on average with a small set
of training data. On the basis of experiments reported in
Ref. 2 we hypothesized that using a neighborhood that en-
closes a test point in the convex hull of the neighborhood
points when possible will work well on average. Define an
enclosing neighborhood to be any set J of indices such that
the gridpoint g=� j�Jwjx j where w� �0,1	
J
 is a weight
vector over the set J subject to the constraint � j�Jwj =1.
The neighborhood defined by Sibson25 as the “natural
neighbors” is an enclosing neighborhood �when possible�.
Although Sibson proposed natural neighbors with a specific
generalized linear interpolation formula �called natural-
neighbors interpolation�, we consider them to be a promis-
ing neighborhood definition for more general learning
tasks. To define Sibson’s natural neighbors, let V be the
Voronoi tessellation of the complete set of training points
Jul–Sep 2008/Vol. 17(3)3
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xi� and test point g. The natural neighbors of g are defined
o be those training points whose Voronoi cells are adjacent
o the cell containing g.

Natural neighbors has been reported to be an accurate
ethod for linear interpolation in two and three

imensions.25 Unfortunately, to find the natural neighbors
he entire Voronoi tessellation must be computed, which is
omputationally problematic as the dimension rises.26,27

or 3-D color problems, such as the application considered
n this work, natural neighbors are a feasible solution.

Sibson’s local coordinates property of the natural
eighbors25 proves that the natural neighbors form an en-
losing neighborhood when possible. The local coordinates
roperty establishes that, for a point g inside the convex
ull of the entire training set, a weight vector ��g� exists
iven g’s natural neighbors N such that

�
i�N

�i�g�xi = g ,

here the weight vector � is non-negative and its compo-
ents sum to one.

Other neighborhoods have been defined based on spatial
elationships between sample points.28,29 For example, de-
ning a test point’s neighbors as all Gabriel neighbors from

he training set has been investigated26,24 �pg. 90�. Decision
rees can be viewed as an adaptive neighborhood definition
here the neighborhood is chosen to be �typically� a re-
ned hyperrectangle or half-space that minimizes some em-
irical risk. A variation uses the decision tree to restrict the
nearest-neighbor search to only those samples in the same
ranch of a learned decision tree.30

Enclosing Neighborhood Definitions
n this section, new enclosing neighborhood definitions are
roposed. It is useful to define a distance to the enclosure of
he neighborhood, which is the Euclidean distance between
test point and the convex hull of a set of training points.
iven a gridpoint g, consider a set of neighborhood indices
. Let the distance to the enclosure of the neighborhood J

bout g be denoted D�g ,J�, and defined

x8

x7

x5

x2

g

x6

x3

x1

x9

x4

x8

x7

smallest enclosing neighborhood smallest en

(a)

Fig. 4 The four enclosing neighborhoods are
neighborhood. Here, the point x6 was needed to
did not decrease the distance to enclosure after
the smallest enclosing inclusive neighborhood,
furthest neighbor. Image �c� shows the natural n
the natural neighbors inclusive neighborhood, w
ournal of Electronic Imaging 033005-
D�g,J� = min
w ��

j�J
wjx j − g�

2

, �3�

where w� �0,1	
J
 is a weight vector over the J subject to
the constraint

�
j�J

wj = 1. �4�

Then, a neighborhood can be proposed that is the smallest
enclosing neighborhood.

Smallest enclosing neighborhood. Reorder the samples by
distance from the gridpoint g so that x j is the j ’ th nearest
neighbor to g. Then, consider each x j in turn for j
=1, . . . ,n. After considering k neighbors, denote the set of
neighborhood indices Jk. Then the j ’ th neighbor is added
to the neighborhood if it reduces the distance to the enclo-
sure of the neighborhood D, that is, if

D�g,�Jk, j�� � D�g,Jk� . �5�

The smallest enclosing neighborhood is defined by the set
of neighbor indices Jn. An example is shown in Fig. 4. For
a given set of samples and a gridpoint g, one can solve for
the neighborhood using quadratic programming.

Smallest enclosing inclusive neighborhood. Given the set of
smallest enclosing neighborhood indices Jn, define the
smallest enclosing inclusive neighborhood to include xj if


g − xj
2 � max
i�Jn


g − xi
2.

Natural neighbors was defined in Section 4. Here, a vari-
ant is proposed that may lead to lower estimation variance:

Natural neighbors inclusive neighborhood. Let N be the set
of indices of the natural neighbors for a given gridpoint g.
The natural neighbors inclusive neighborhood includes any
sample point x that is closer to the gridpoint than the fur-

x5
x3

x9

x4

x8

x7

x5

x2

g

x6

x3

x1

x9

x4

inclusive natural neighbors (inclusive)

(c)

red. Image �a� shows the smallest enclosing
it an enclosing neighborhood. Points x4 and x5
ing x3 and are thus excluded. Image �b� shows
includes x4 and x5, as they are nearer than the
rs marked as squares �x1 ,x2 ,x3 ,x4 ,x6 ,x7� and
dditionally includes x5.
x2

g

x6

x1

closing

(b)

compa
make
includ

which
eighbo
hich a
j
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hest natural neighbor. That is, x j is included in the neigh-
orhood if

g − x j
2 � max
xi�N


g − xi
2.

igure 4 shows a comparison of the different
eighborhoods.

For the experiments, the following additional neighbor-
ood definitions are compared:

our nearest neighbors: This neighborhood consists of the
our sample points closest to the gridpoint g, which is the
inimium needed to solve for linear regression coefficients

assuming all the sample points are in general position�.

ll-but-one neighbors. Smoother interpolations should be
chieved by regressing over larger neighborhoods. The all-
ut-one neighbors include all the training samples except
he furthest training sample from the gridpoint g.

Experiments
eighborhoods are formed as per the descriptions in Sec-

ion 5, where “nearest neighbors” are computed with re-
pect to Euclidean distance in CIELab, and any distance or
orm is computed in CIELab color space. If a neighbor-
ood consisted of less than four neighbors, then nearest
eighbors were added to make a minimum of four neigh-
ors �to ensure stable regression�. For each neighborhood
ethod, a 3-D LUT is formed using local ridge regression
ith smoothing parameters �� �0, .5,1�. Ridge regression
ith �=0 is equivalent to linear regression. The set of grid-
oints G formed a 21�21�21 LUT in CIELab color space
ith gridpoints spaced five units apart for the L channel

nd spaced 10 units apart for the a and b channels. All
olors were either originally described in CIELab or origi-
ally described as RGB samples and transformed to
IELab using the standard sRGB-to-CIELab transforma-

ion with the default white point of D65.
For each of the different neighborhood definitions, a

UT was generated by estimating the corresponding output
olor ŷ using local ridge regression for each gridpoint

Table 1 Errors for the Cinecolor trans

M

�=0

Four neighbors 29

All-but-one neighbors 13

Natural neighbors 11

Natural neighbors inclusive 12

Smallest enclosing
neighborhood

22

Smallest enclosing inclusive
neighborhood

17
ournal of Electronic Imaging 033005-
g�G. Then, each of the different LUTs was used to en-
hance the test set of images. The ICC standard does not
constrain which estimation method is used for the LUT
interpolation; the experiments used trilinear interpolation.
Trilinear interpolation is a standard method for interpolat-
ing profiles31 and is a 3-D version of the common bilinear
interpolation. Code for trilinear interpolation is available in
Ref. 32 and is implemented by the Matlab function
interpn.33 Recently, it has been shown that trilinear interpo-
lation weights the vertices of the LUT cell with weights
that have the maximum entropy out of all solutions that
satisfy the linear interpolation equations.12

The test set of images included 24 Kodak images from
the Kodak Photo CD PCD0992 and the 918 sample Chro-
mix color chart �available at www.chromix.com�. The
Kodak images have been released by Kodak to the public
domain and are 24 bit RGB color natural images of a vari-
ety of scenes with 768�512 pixels. We converted the im-
ages to CIELab using the default sRGB-to-CIELab for-
mula. For each estimation method, the image quality of
enhanced test images was compared and the error on the
training sample pairs was calculated to measure the fidelity
of the enhancement to the given color sample pairs. The
experimental data and images are available at
idl.ee.washington.edu/projects.php.

For each neighborhood definition, the estimated LUT
are compared on their ability to accurately recreate the
original sample pairs �xi ,yi�. Each estimated LUT is used

with each xi to obtain the estimated yi
ˆ , which is then com-

pared to the true training sample output color yi. The mean
and median �E CIELab errors for each estimated LUT for
the given training samples are reported in Table 1. The �E
numbers are calculated as per the original CIE formula
�Ref. 5, pg. 80�, where �E is Euclidean distance in the
CIELab space. These errors are based on testing on the
training samples and thus reward overfit solutions. How-
ever, this still is a useful metric of the fidelity of the en-
hancement to the given color sample pairs. Furthermore,
the overfitting potential is limited, as some smoothing will
have taken place when estimating the LUT gridpoints, and
smoothing occurs again when the original sample points are

rrors have been rounded for display.

Median �E

�=1 �=0 �=0.5 �=1

10 9 5 8

14 11 12 13

12 10 11 11

13 11 12 13

11 15 7 9

11 14 8 8
form. E

ean �E

�=0.5

8

13

11

12

10

10
Jul–Sep 2008/Vol. 17(3)5



i
m
f
c

6
T
T
t
d
c
c
i
a
f
M
s
T
s
t
t
D
b
i
s
u
c
t
l

w
t
a
a
s
s
g
T
p
�
l
v
s
p
i

m
h
t
e

7
T
t
E
r
d
t
�
i
r
w

Gupta, Garcia, and Stroilov: Learning custom color transformations…

J

nterpolated based on the cell vertices of the LUT. Further-
ore, any overfitting that does occur is likely to lead to

alse contours in the enhanced test images and would be
ounted negatively under image quality.

.1 Experimental Transforms
wenty custom enhancements were used for testing.
welve transforms simulated illuminant changes as a digi-

al designer �without access to a spectrophotometer� might
o. For these, the standard 24 sample Gretag Macbeth color
hart was photographed under four different illumination
onditions: D65, Seattle cloudy, Seattle sunset, and a soft
ncandescent lightbulb. Twelve different pairings of input
nd output illumination samples defined 12 of the trans-
orms. Photographs were taken with a Sony DSC-F828 8

egaPixel camera. For each picture, the color chart and a
tandard photographer’s gray card were set up on an easel.
he camera was set to manual mode with the white balance
et to “daylight.” The metering mode was set to “spot,” and
he angle of the board was adjusted until all the readings on
he gray card were equal. Then the photo was taken. The
65 illuminant photograph was taken under a Gretag Mac-
eth SolSource D65 filtered lamp. For each of the four
lluminant conditions, the pixels of each of the 24 color
quares was averaged, forming a data set of 24 sRGB val-
es for each illumination condition. The sRGB values were
onverted to CIELab values by the standard formula, using
he default D65 white point to match the camera’s “day-
ight” white point.

The other eight transforms were designed in consultation
ith or by professional digital designers. The thirteenth

ransform maps 16 colors to approximately how they would
ppear if rendered by the two-color Cinecolor film process,
s shown in Fig. 3. The fourteenth transform maps input
ample colors to the closest color in a forest palette �14
ample pairs�; the fifteenth maps sample colors to the
amut of a product line of ceramic tiles �27 sample pairs�.
he sixteenth transform only saturates midtones �15 sample
airs�. The seventeenth transform only brightens yellows
28 samples�. The eighteenth transform tints all the high-
ights rose-colored �22 samples�. The nineteenth transforms
arious small parts of the color space to bright red �42
amples�. The twentieth transform maps nongrays to the
urple and gold school colors of the University of Wash-
ngton �111 samples�.

In practice, a user would apply a transform and then
ight change, add, or delete sample pairs to edit the en-

ancement. To compare the quality of the different estima-
ions, the enhancements were not edited in these
xperiments.

Results
he results show that the proposed architecture can be used

o effectively learn the tested set of custom enhancements.
xample results are shown in Figs. 5 and 6. Using ridge

egression over any of the enclosing neighborhoods pro-
uced consistently good results. In Fig. 5, the Cinecolor
ransformation is shown for different neighborhood choices
rows� and with linear or ridge regression �columns�. The
mages in Row �2� of Fig. 5 use four nearest neighbors. The
idge regression on the right �c� successfully dampens the
ild extrapolations seen on the left �b�, but there are still
ournal of Electronic Imaging 033005-
unacceptable image quality problems on the red sweater.
Objectionable artifacts occur often in the test set when the
four nearest neighbors are used with any of the ridge re-
gression parameter settings.

In Rows �3� and �4� of Fig. 5, images are shown for the
smallest enclosing neighborhood and the smallest enclosing
inclusive neighborhood, respectively. These two neighbor-
hoods yield small estimation error on the original color
sample pairs, as reported in Table 2. However, they occa-
sionally suffer image quality problems when used with lin-
ear regression. The objectionable artifacts disappear when
ridge regression is used. There were only two instances of
objectionable false contouring in the test set that were not
removed by using ridge regression; both instances occurred
with the Cinecolor transform. Additionally, ridge regression
did not remove mildly objectionable color distortion on the
Kodak hat test image when transformed with D65-to-Soft-
Incandescent.

The natural neighbors neighborhood generally achieved

(a)

(b) (c)

(d) (e)

(f) (g)

Fig. 5 The original image �shown in Row �1�� and the image trans-
formed by the different Cinecolor LUT’s. Row �2�: four nearest
neighbors: �b� local linear regression, and �c� local ridge regression
�=0.5. Row �3�: smallest enclosing neighborhood: �d� local linear
regression, and �e� local ridge regression �=0.5. Row �4�: smallest
enclosing inclusive neighborhood: �f� local linear regression, and �g�
local ridge regression �=0.5. �Color online only�.
Jul–Sep 2008/Vol. 17(3)6
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high image quality, but on occasion led to objectionable
false contouring. When used with ridge regression ��
=0.5�, no objectionable false contouring was seen with the
natural neighbors enhanced images. However, the Kodak
test image of brightly colored hats transformed with the
D65-to-Soft-Incandescent enhancement using natural
neighbors showed mildly objectionable color distortion on
one of the hats, even with ridge regression. The larger
neighborhood size of the natural neighbors inclusive neigh-
borhood did not exhibit objectionable artifacts in the test
set, even when used with linear regression.

Using the all-but-one neighborhood never resulted in ob-
jectionable image artifacts, but failed to accurately capture
some of the more nonlinear color-space transformations.
For example, the results of the purple-and-gold enhance-
ment for each neighborhood with ridge regression ��
=0.5� is shown in Fig. 6. The image �g� is the all-but-one
neighborhood, and the colors appear oversmoothed com-
pared to the enclosing neighborhoods. In particular, be-
cause the neutral color axis was mapped to itself in the
reference samples, the the bikers’ shirts should appear
white. The larger neighborhoods smooth the colors such
that the shirts do not appear white. The oversmoothing of
the colors is reflected in Table 3, which gives the average
error on the original color sample pairs for the purple-and-
gold transform. For �=0.5, the all-but-one neighbors has
twice as much error as the smallest enclosing neighborhood
for reproducing the original sample color pairs. Four neigh-
bors achieves the lowest error on the original sample pairs,
but the image shows that four nearest neighbors fails to
produce reasonable image quality when faced with the
larger test set of colors that appear in the image.

Similarly, the four nearest neighbors performs well in
terms of fidelity to the original color sample pairs for the
Cinecolor transform for �=0.5, as shown in Table 1, but the
four neighbor images in Row �2� of Fig. 5 contain objec-
tionable artifacts �here, the appearance of gray mold on the
red sweater�. Table 2 shows fidelity to the given enhance-
ment color sample pairs averaged over the 20 different
transforms. At �=0.5, the smallest enclosing neighborhood

ll 20 transforms. Errors have been rounded for

E Median �E

.5 �=1 �=0 �=0.5 �=1

8 9 8 6 7

2 12 10 10 11

0 11 8 9 9

0 11 9 9 9

7 8 7 6 7

8 8 7 7 7
(a)

(b) (c)

(d) (e)

(f) (g)

ig. 6 The original image �shown in Row �1�� and the image trans-
ormed by the different purple-and-gold LUTs that were estimated
ith local ridge regression with �=0.5. Row �2�: �b� four nearest
eighbors, and �c� smallest enclosing neighborhood. Row �3�: �d�
mallest enclosing inclusive neighborhood, and �e� natural neigh-
ors. Row �4�: �f� natural neighbors inclusive, and �g� all-but-one
eighbors.
Table 2 The mean and median errors averaged over a
display.

Mean �

�=0 �=0

Four neighbors 14

All-but-one neighbors 12 1

Natural neighbors 10 1

Natural neighbors inclusive 10 1

Smallest enclosing
neighborhood

10

Smallest enclosing inclusive
neighborhood

9

Jul–Sep 2008/Vol. 17(3)7



p
b
g
t
r
t
T
�
t
p

h
e
n
h
n
s

8
I
c
c
r
r
a
v
n
m
h
e

d
v
o
l
s
R
g
fi
c
a

Gupta, Garcia, and Stroilov: Learning custom color transformations…

J

erforms best by the total mean error metric and is tied for
est by the total median error metric. Overall, the combined
oals of fidelity and image quality are best satisfied for the
est set by the smallest enclosing neighborhood with ridge
egression at �=0.5. Not shown in the figures or tables are
he ridge regression results for smoothing parameter �=1.
hose results are generally very similar to the results with
=0.5. CIELab errors are difficult to interpret quantita-

ively, but larger errors will generally correspond to greater
erceptual errors.

Histograms of neighborhood size for two example en-
ancements are shown in Fig. 7. On average, the smallest
nclosing inclusive is smaller than the natural neighbors
eighborhood. The natural neighbors inclusive neighbor-
ood is often quite large relative to the other enclosing
eighborhoods and that explains the relatively color-
moothed images produced with this neighborhood.

Discussion
n earlier work, we proposed the use of ICC profiles to
apture custom color enhancements based on a small set of
olor sample pairs.1 In this work, we have established that
idge regression over enclosing neighborhoods will produce
easonably accurate transforms with consistently good im-
ge quality and without the need for training �or cross-
alidation�. In particular, new definitions of enclosing
eighborhoods provide the most faithful color enhance-
ents while rarely producing objectionable artifacts for en-

ancements where a smooth enhanced image could be
xpected.

ICC profiles are a flexible standard that has penetrated
esign software and hardware. This makes them an ideal
ehicle for color processing far beyond the original intent
f color management. In this work, we focused on how to
earn an enhancement from an arbitrary small set of color
ample pairs. As suggested in work by Gatta et al.7 and
izzi et al.8 complex color transforming functions or pro-
rams can be approximated and implemented as ICC pro-
les. An open problem with color-space transformations of
olors described as 3-D vectors is that they do not take into
ccount semantic information about image content and thus

Table 3 Errors for the purple-and-gold tr

M

�=0

Four neighbors 36

All-but-one neighbors 16

Natural neighbors 11

Natural neighbors inclusive 14

Smallest enclosing
neighborhood

15

Smallest enclosing inclusive
neighborhood

15
ansform. Errors have been rounded for display.

ean �E Median �E

�=0.5 �=1 �=0 �=0.5 �=1

6 6 31 3 3

16 16 16 16 16

10 10 9 8 9

14 14 13 13 14

7 7 14 5 5

11 11 13 10 10
ournal of Electronic Imaging 033005-
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Fig. 7 Histograms show the frequency of each size neighborhood
over the 9261 gridpoints for �a� the Cinecolor transform, and �b� the
cloudy-to-sunset transform.
Jul–Sep 2008/Vol. 17(3)8



f
s
v
r

d
p
s
t
s
i
p
t
o

A
T
M
d

R

1

1

1

1

1

1

1

1

1

1

Gupta, Garcia, and Stroilov: Learning custom color transformations…

J

ace the problem of metamers. For example, regions of blue
ky, blue jeans, and blue water may all have the same color
alue, but their physical nature is different and how they
eflect incoming light spectra is different.

Another limitation of ICC profiles is the lack of spatial
ependence. An ICC profile can be applied to segmented
arts of an image, but the color transform itself ignores
patial information. This limits the ability to implement
extural or spatial color enhancements. Color management
cientists know that spatial effects on color perception are
mportant and have proposed color appearance models.5 We
onder what a general spatial color transforming architec-
ure would be that would have the flexibility and simplicity
f the ICC profiles.
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