
D
a

M
A
A
U
S
U
N
U

W
S
N
D
Q
D
N
U

I
N
H
Q
D
N
U

A
U
M
R
E
U

H
U
C
C
Q
D
N
U

I
U
S
U
N
U

1
S
t
i
o
b

P
S
U
n

Journal of Biomedical Optics 14�5�, 054031 �September/October 2009�

J

evelopment of Raman microspectroscopy for
utomated detection and imaging of basal cell carcinoma

arta Larraona-Puy
drian Ghita
lina Zoladek
niversity of Nottingham

chool of Physics and Astronomy
niversity Park
ottingham, NG7 2RD
nited Kingdom

illiam Perkins
andeep Varma
ottingham University Hospital NHS Trust
ermatology Department
MC Campus
erby Road
ottingham, NG7 2UH
nited Kingdom

ain H. Leach
ottingham University Hospital NHS Trust
istopathology Department
MC Campus
erby Road
ottingham, NG7 2UH
nited Kingdom

lexey A. Koloydenko
niversity of London
athematics Department

oyal Holloway
gham, TW20 0EX
nited Kingdom

ywel Williams
niversity Hospital NHS Trust
entre of Evidence-Based Dermatology
Floor South Block, Nottingham
MC Campus
erby Road
ottingham, NG7 2UH
nited Kingdom

oan Notingher
niversity of Nottingham

chool of Physics and Astronomy
niversity Park
ottingham, NG7 2RD
nited Kingdom

Abstract. We investigate the potential of Raman microspectroscopy
�RMS� for automated evaluation of excised skin tissue during Mohs
micrographic surgery �MMS�. The main aim is to develop an auto-
mated method for imaging and diagnosis of basal cell carcinoma
�BCC� regions. Selected Raman bands responsible for the largest spec-
tral differences between BCC and normal skin regions and linear dis-
criminant analysis �LDA� are used to build a multivariate supervised
classification model. The model is based on 329 Raman spectra mea-
sured on skin tissue obtained from 20 patients. BCC is discriminated
from healthy tissue with 90±9% sensitivity and 85±9% specificity in
a 70% to 30% split cross-validation algorithm. This multivariate
model is then applied on tissue sections from new patients to image
tumor regions. The RMS images show excellent correlation with the
gold standard of histopathology sections, BCC being detected in all
positive sections. We demonstrate the potential of RMS as an auto-
mated objective method for tumor evaluation during MMS. The re-
placement of current histopathology during MMS by a “generaliza-
tion” of the proposed technique may improve the feasibility and
efficacy of MMS, leading to a wider use according to clinical need. ©
2009 Society of Photo-Optical Instrumentation Engineers. �DOI: 10.1117/1.3251053�
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Introduction
kin cancer is a growing source of concern, not only for being

he most common of all types of cancers, but also due to its
ncreasing incidence rate. Each year, there are more new cases
f skin cancer than the combined incidence of cancers of
reast, prostate, lung, and colon.1 In the United Kingdom and

lease address all correspondence to: Ioan Notingher, University of Nottingham,
chool of Physics and Astronomy, University Park, Nottingham, NG7 2RD
nited Kingdom Tel: 44-0-11595-15172; E-mail: ioan.notingher@
ottingham.ac.uk
ournal of Biomedical Optics 054031-
the United States more than 100,000 and 1,000,000 cases,
respectively, are diagnosed annually.1,2

About 80% of skin cancer cases worldwide are basal cell
carcinomas �BCCs�. This type of skin cancer belongs to the
keratinocyte or nonmelanoma family, and arises from the epi-
dermis. It commonly occurs in areas exposed to the sun, such
as the head or the neck.3

Mohs micrographic surgery �MMS� is the most suitable
treatment for large, rare, or recurrent BCCs, those growing

1083-3668/2009/14�5�/054031/10/$25.00 © 2009 SPIE
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nto the surrounding skin tissue and in critical areas, e.g., the
igh-risk zone of the face: nasolabial folds, eyelids, and peri-
uricular areas.4 MMS was first developed by Frederick Mohs
nd maximizes the evaluation of the surgical margin by patho-
ogic observation of the histologic slides during surgery. Se-
uential layers of tissue are removed until the lesion is clear
f BCC. If the pathologic evaluation indicates tumor persis-
ence, accurate location is recorded and further tissue removal
s performed by the surgeon. This procedure ensures high cure
ates and enables maximal conservation of healthy tissue,
hich can be particularly important on areas such as the face.5

It is widely accepted that MMS is the most effective cur-
ent method for removal of aggressive BCC in terms of com-
romise between maximum conservation of healthy skin and
inimum recurrence rates.6–8 While 5-yr recurrence rates for
CC treated by MMS are 1.4% for primary tumors and 4%

or recurrent tumors,9 for standard excision, this rate reaches
.2 to 10% for primary tumors, and more than 17% for recur-
ent BCCs.10 It has also been reported that at shorter
ollow-up periods �18 months�, MMS was considerably more
dvantageous than surgical excision especially for recurrent
umors7 �recurrence rate 0 versus 3%�.7

However, in many cases, traditional methods such as sur-
ical excision, cryosurgery, curettage, and electrodessication
ather than MMS are applied for high-risk BCC removal, de-
pite its lower effectiveness, based solely on availability and
ost considerations.11–13 Focusing on the United Kingdom as
n example of the current worldwide situation, it has been
eported that there are fewer MMS centers and specialist sur-
eons than the number recommended by the medical commu-
ity according to clinical needs.14 The main reason for the
nequity of service provision is the need of time-consuming
nd costly procedures to obtain and evaluate tissue sections
uring MMS, as well as specialized staff, including trained
echnicians for frozen section preparation. In addition, several
tudies have reported that even the gold standard of histopa-
hology has interobserver differences.15 In a study16 on 48
amples evaluated by 20 pathologists, overall sensitivity was
7% �range, 55 to 100%� and specificity 94% �range, 83 to
00%�. Another study of 592 histopathology slides using two
athologists, found interobserver agreement in only 93% of
ases.17 However, the real values for effectiveness in BCC
iagnosis during MMS in terms of sensitivity and specificity
ay be lower because most MMS surgeons are not trained

istopathologists. Therefore, an automated, reliable, low-cost
ethod for BCC detection and imaging in MMS excised skin

ections, which can be used in a surgery theater environment
s an alternative to current histopathology tissue evaluation,
ould enable a wider use of MMS according to clinical
eeds. This would be a significant advance in the management
f BCCs.

Many optical techniques have been proposed for the detec-
ion and imaging of BCC. Methods using fluorescence spec-
roscopy showed differences between BCC and healthy skin.18

ispectral fluorescence imaging, combining skin autofluores-
ence with d-aminolaevulinic- acid-induced fluorescence was
roposed to improve imaging of tumor margins.19 However,
omparisons between this technique and histopathological
apping showed that good correlations were observed in only

ess than 50% of patients.19 The low sensitivity for BCC de-
ection is an intrinsic limitation of fluorescence imaging
ournal of Biomedical Optics 054031-
caused by the broadband nature of the fluorescence spectra of
biomolecules. Considering the complex composition of the
tissue, the fluorescent bands of the biomolecules overlap to
produce featureless fluorescent spectra.20 These wide fluores-
cence bands hide the subtle spectral details required for reli-
able discrimination between healthy skin and BCC. In addi-
tion, images produced by fluorescence spectroscopy are
difficult to quantify as discrimination relies mainly on emis-
sion intensity differences. Therefore, fluorescence images
were only qualitative and did not provide quantitative infor-
mation as required for automated imaging.

IR microspectroscopy studies showed that the discrimina-
tion accuracy between normal epidermis, BCC, squamous cell
carcinoma, and melanocytic lesions was21 93%. The distinc-
tion between normal epidermis and BCC was based on the
higher content of nucleic acids in the BCC regions. Despite
the high chemical specificity and discrimination accuracy, this
technique imposes severe limitations regarding sampling
depth. Since IR spectroscopy is based on the absorption of IR
radiation by tissue, this technique requires tissue sections
thinner than 10 �m to avoid complete absorption of the inci-
dent radiation.21,22 Therefore, IR techniques still require
preparation of thin frozen sections, which represents an intrin-
sic limitation toward the development of an automated quan-
titative imaging during MMS, particularly on tissue blocks.

The technique proposed in this paper for creating images
of skin tissue excised during MMS relies on Raman mi-
crospectroscopy �RMS�. In RMS, the Raman signal of differ-
ent micrometric regions within a sample is collected to pro-
duce an image based on the biochemical composition of the
sample. Raman spectra are “chemical fingerprints” of the mo-
lecular constituents of the sample and are based on the Raman
effect.

For the last 2 decades, RMS has been recognized as a
powerful optical technique for biomedical applications.23

Compared to fluorescence spectroscopy, vibrational spectra of
biomolecules are characterized by molecule-specific narrow
peaks, which are sensitive to molecular structure, conforma-
tion, and interactions. This high chemical specifity constitutes
a major advantage of RMS, making it able to detect slight
chemical changes in biological samples.24 RMS achieves
diffraction-limited lateral resolution in the micrometer range,
which makes it an appropriate tool to imaging cells25 and
tissues.26

RMS is a suitable technique for cancer diagnosis because
of its high sensitivity to molecular and structural changes as-
sociated with cancer, such as an increased nucleus-to-
cytoplasm ratio, disordered chromatin, higher metabolic activ-
ity, and changes in lipid and protein levels.27 The potential of
RMS for detection and diagnosis of human cancers, both in
vivo and in vitro, has been demonstrated for a large number of
cancer types, including skin,28–34 breast,35 esophagus,36 lung,37

cervix,38 and prostate.39

Early studies on skin using RMS presented Raman spec-
troscopy as a useful tool in dermatological diagnosis, compar-
ing Raman spectra from normal, healthy human stratum cor-
neum with other skin tissues, such as callus tissue or
hyperkeratotic psoriatic plaques.37 The capability of Raman
spectroscopy to detect biochemical alterations in skin tissue
caused by BCC was first demonstrated by Gniadecka et al.28
September/October 2009 � Vol. 14�5�2
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everal protein and lipid alterations characteristics of BCC
issue, such as the alterations of the amide bands, attributed to
he conformational changes of proteins �essentially, changes
n collagen�, were reported.28,33 Further experiments showed
7% sensitivity and 98% specificity on BCC detection were
ealized using principal component analysis �PCA� for dimen-
ion reduction along with a neural network classifier for spec-
ral clustering.34 A more recent work also demonstrated the
bility of RMS combined with fiber optics for skin tumor in
ivo diagnosis.32

However, apart from tumor detection, MMS requires high-
patial-resolution imaging of BCC regions in tissue blocks
nd sections. Quantitative Raman spectroscopic images can
e built by representing the intensity of a certain spectral
eak, score, or weight obtained with a multivariate spectral
nalysis method for each individual location in the 2-D region
here Raman spectra were acquired. Raman spectroscopic
easurements do not require sample preparation, e.g., dying

he tissue; they are free of variations due to changes in the
olecular composition and structure of the sample, which
ay be caused by preparation protocols. Consequently, RMS

s an objective and quantitative method that can be used con-
inuously with the same level of accuracy, making it ideally
uitable for automatic implementation and biochemical imag-
ng. Since RMS does not rely on light absorption, tissue,
hickness, and water tissue these have little effect on the mea-
urements. Therefore, this technique could be used on both
issue sections and excised tissue blocks.

Many studies have applied this technique to tumor dis-
rimination, to create spectral maps of tissue sections contain-
ng cancerous cells. Images of brain tumors,40 gastrointestinal
GI� tract,41 lymph,42 lung,26 esophagus,43 and skin30 cancer
ave been created. These studies employed unsupervised
ethods for imaging, such as the intensities of the scores of a

elected number of principal components or k-means cluster-
ng. However, these unsupervised methods for creating Ra-

an images have an important disadvantage when applied to
etection and imaging of tumors: for building a specific image
f a tissue sample only information present in that particular
issue is used. Therefore, images obtained by these methods
o not provide an automated objective diagnosis, but require
dditional expert information. Supervised methods based on
easurements of a large number of tissue specimens have the

otential to overcome this limitation. The prior information
athered from a large number of samples and patients can be
sed to produce pseudocolor images based on biochemical
ontrast as well as providing an objective diagnosis on new
issue sections obtained during surgery.

In this study, a supervised classification method was devel-
ped to investigate the ability of RMS to detect and image
CC in skin tissue excised during MMS and skin surgery. A

pectral database using 329 tissue regions from 20 randomly
hosen patients was developed. The spectra were divided into
hree classes—BCC, dermis, or epidermis—according to his-
opathology diagnosis. Once the classification accuracy was
stablished, the model was applied on tissue specimens ob-
ained from new patients for imaging tumor regions.
ournal of Biomedical Optics 054031-
2 Methods and Materials
2.1 Skin Tissue Samples
Skin tissue sections were obtained from the Nottingham Uni-
versity Hospitals National Health Service �NHS� Trust. Con-
sent was obtained from the patients and ethical approval was
granted from Nottingham Research Ethics Committee. Tissue
sections were cut from blocks removed during MMS and
standard BCC excision into 20-�m sections for RMS inves-
tigations. After the RMS measurements, the analysed sections
were stained using conventional hematoxylin and eosin
�H&E� staining. Diagnosis was given by a consultant histo-
pathologist.

2.2 Raman Spectroscopy
A Raman microspectrometer was built based on an inverted
microscope �IX71, Olympus, Essex, United Kingdom�
equipped with an automated XYZ translation stage �H117,
Prior Ltd., Cambridge, United Kingdom�, deep-depletion
back-illuminated charge coupled device �CCD� detector
�DU401A-BR-DD, Andor Ltd., Belfast, United Kingdom� and
spectrograph �SR-303i, Andor Ltd., Belfast, United Kingdom�
and a 785-nm continuous wave GaAs diode laser �XTRA,
Toptica Photonics, Munich, Germany�. The laser power was
set to 50 mW at the sample to avoid sample damage and
ensure repeatable measurements. The objective lens of the
microscope has a numerical aperture of 0.75 and a magnifi-
cation of �50. A microscopy camera �2-1C Infinity, Lumen-
era, Ottawa, Canada� was used to record images of the tissue
sections. Figure 1 presents a schematic description of the in-
strument. The wave-number �vibrational frequency� axis was
calibrated using Raman standard samples �ASTM E 1840�,
such as naphthalene and 1,4 bis �2-methylstyryl benzene�
�Sigma, United Kingdom�. The wave-number accuracy was
found to be �0.5 cm−1.

Fig. 1 Schematic diagram of the Raman micro-spectrometer: L785,
laser; PF, plasmaline filter; m, mirror; M, microscope; ST, stage; s,
tissue sample; NF, notch filter; CL, collecting lens; SP, Czerny-Turner
spectrograph; CCD, detector.
September/October 2009 � Vol. 14�5�3
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.3 Building the RMS Database for BCC
Discrimination

.3.1 Data acquisition
irst, an adjacent H&E-stained skin section was placed on the
icroscope and the regions of interest �BCC, epidermis, or

ermis� were identified. The corresponding unstained skin
ection, which had been deposited on a MgF2 window, was
laced on the microscope and the position coordinates of the
easured regions were recorded. After RMS measurements,

he tissue section was returned to the pathology laboratory,
&E stained, and then placed on the Raman microscope for

etrospective acquisition of images to be used for diagnosis by
consultant histopathologist. Once identified, the measured

egions were classified into three groups: BCC, epidermis,
nd dermis. The precision of retrospective location was deter-
ined to be less than 5 �m based on two marks engraved on

ach slide.
To account for tissue heterogeneity, each spectrum used for

he multivariate analysis represented the average of 100 spec-
ra measured at 5-�m intervals over a 50- �50-�m region.
he integration time for each position was 1 s. A total of 329
ean Raman spectra were measured from tissue specimens

rom 20 patients: 127 BCCs �nodular and morphoeic�, 92 epi-
ermis, and 110 dermis.

.3.2 Data analysis
rior to analysis, the contribution of the microscope objective
as subtracted. All spectra were baseline corrected using a

ixth-order polynomial and normalized to zero mean and
nity standard deviation. Finally, data were smoothed using
he Savitsky-Golay algorithm �five points, second-order poly-
omial�.

Data analysis was performed using linear discriminant
nalysis �LDA�. LDA is a statistical technique for data clas-
ification that tries to provide the maximum class separability
nd draw a decision region between given classes.44 This
echnique has been widely used in oncological research to
lassify spectral data from healthy and malignant
issue.22,30,43,45 In our study, the LDA model was built using
he area of several selected Raman bands. The selection cri-
erion was to maximize the differences among the spectra
epresentative of each class. The peak areas were calculated
fter a local linear baseline was subtracted in the regions of
nterest. This approach enables direct control over the selec-
ion of spectral features that could be assigned to specific
issue biochemicals and avoided measurement artefacts, such
s baseline variations or spectral shifts. Thus, we selected a
mall number of features by directly optimizing their dis-
riminatory power. Other automated methods for dimension-
lity reduction have been reported,30,43 such as PCA. How-
ver, the use of selected Raman bands in our case produced
ore reliable results and was therefore preferred. Moreover,

utomated methods may not be optimal as a feature selection
pproach when the ultimate goal is classification because
lass-related information would not be directly taken into ac-
ount by such methods.46

Our LDA-based classifier enables automated diagnosis of a
easured tissue region as BCC, epidermis, or dermis. We

mplemented our three-class classifier as a composition of two
ournal of Biomedical Optics 054031-
two-class classifiers. The classification process can be flexibly
tuned to a desirable regime by controlling either specificity or
sensitivity while optimizing the other measure. To emulate a
realistic scenario of BCC detection, we currently target highly
sensitive regimes �90% or higher�. As our current data size is
modest, we used cross-validation �CV� to assess the perfor-
mance of our method.47 A k-fold CV splits the data set into k
equally sized parts: k−1 parts are used to produce a model,
and the last part is used to test it.47 The different CV methods
can also be labeled with the percentages corresponding to the
splitting, e.g., the fivefold CV can also be refered to as the
80% to 20% CV. The case in which k is equal to the total
number of elements in the data set is called leave-one-out CV
�LOOCV�. In this method, all spectra except one are used to
build a model and then to classify the left out spectrum. This
method is repeated so that each spectrum is predicted once.47

As CV estimation might depend on the splitting ratio, we
obtained our CV estimates with three different settings,
namely, 70% to 30%, and the more commonly used fivefold
CV and LOOCV schemes.

To express the diagnosis accuracy of our model, the clas-
sification results of the CV procedures were expressed in
terms of its sensitivity and specifity. While the sensitivity is
related to how precise the technique is in detecting true BCC,
the specifity shows how accurately it identifies healthy tissue.
The errors in sensitivity and specificity of a k-fold CV were
obtained by repeating the algorithm for a large number of
k-fold partitions. Note that in medical practice, it may be ben-
eficial to provide an end-user with the option of adjusting
sensitivity �or specificity� and, in effect, operating in several
regimes. In this scenario, it is imperative for the regime to be
controlled with high degree of confidence. The statistical
models employed in our classifiers enable us to achieve this
�cf. Sec. 3.2�.

2.4 Spectral Imaging of BCC
After the LDA model was built, the ability of RMS to detect
and image BCC was tested on a set of six skin sections ob-
tained from three new patients �no samples from these pa-
tients were included into the LDA classification model�. Ra-
man spectra from a selected region were acquired at 5-�m
intervals with 2-s integration time at each position �total ac-
quisition time was 3 to 5 h, depending on the size of the
sample�. Each spectrum was smoothed using the Savitsky-
Golay algorithm �five points, second-order polynomial�. Ra-
man spectra of the MgF2 substrate were detected using a
threshold filter in the 1370 to 1500-cm−1 spectral range and
eliminated from the classification model.

Spectra were binned over 10 or 15 �m to account for tis-
sue heterogeneity, i.e., each new spectra was the average of
the four or nine adjacent spectra to ensure that the acquired
spectral data were representative of the tissue class. Thus, the
spatial resolution of the biochemical images achieved was 10
or 15 �m, respectively. The LDA model was then applied to
predict the class of each spectrum as BCC, epidermis, or der-
mis. An image was constructed based on the LDA model clas-
sification. An alternative method combining unsupervised
k-means clustering followed by LDA discrimination was also
proposed �k-means-LDA�. The aim of this method was to ob-
serve any loss in spectral images caused by the data compres-
September/October 2009 � Vol. 14�5�4



s
k
R
k
d
t
e
e
T
i
t
p
s
k
c
d
a
s
c

3
3

M
�
u
s
d
m
d
t
i
2
d
t
D
h
F
o
p
b
f
c
c
i
R
c
w

3

B
t
s
t
e
c

Larraona-Puy et al.: Development of Raman microspectroscopy for automated detection and imaging…

J

ion methods required when large data sets are used. The
-means clustering is a classification technique that groups the
aman spectra of the data set into a fixed number of clusters
by minimizing the intragroup and maximizing intergroup

ifferences. First, the initial data set is separated into an arbi-
rary number of k clusters. Second, the vector of centroids of
very cluster is calculated. The centroid is defined as the av-
rage expression value for all the samples in that cluster.
hen, the distance between every sample and every centroid

s calculated, each sample being reassigned to the closest clus-
er. The process is repeated iteratively until it converges.48 To
roduce qualitative false-color images, the centroid Raman
pectra corresponding to each group were obtained by
-means clustering. The LDA model was then applied on the
entroid spectra to classify these image groups into BCC, epi-
ermis, or dermis, thus providing an automated objective di-
gnosis. Note that k-means clustering is not part of the clas-
ifier training phase, but it is used only to apply the final
lassifier to the new data from the unseen tissue sections.

Results and Discussion
.1 Spectral Database

ean Raman spectra of the 329 measured tissue specimens
127 BCCs, 92 epidermis, and 110 dermis� from 20 patients
sed to construct the multivariate classification model are pre-
ented in Fig. 2�a�. This figure shows that there exist spectral
ifferences between BCC and epidermis or dermis, in agree-
ent with previous reported works on skin cancer.28,30,39 The

ifferences between dermis and BCC appear to be mainly due
o the presence of collagen I in dermis and not in BCC, as
nferred from the computed spectrum difference shown in Fig.
�c�. In addition, the main differences between BCC and epi-
ermis can be explained by the higher amount of DNA in the
umor tissue, as shown in Fig. 2�b�. The higher amount of
NA is caused by the smaller amount of cytoplasm and
igher density of cells present in the tumor, as can be seen in
ig. 3, where a typical H&E image of measured tissue regions
f 50�50 �m diagnosed as BCC, epidermis, and dermis is
resented. The H&E technique stains cell nuclei in purple/
lack �hematoxylin�, depending on section thickness and the
ormulation of hematoxylin used, and most components of the
ell cytoplasm in pink/red �eosin�.49 However, the images in-
luded in this study showed DNA in dark brown and dermis
n pale orange as an effect of the CCD camera calibration.
egions with higher DNA will be darker, as it is the case of
ancerous areas. On the contrary, regions with higher collagen
ill present a paler colour, as it is the case of dermis.

.2 LDA Classification Model

ased on the comparison among the mean Raman spectra of
he three classes shown in Fig. 2, six Raman bands were cho-
en as “fingerprints” to discriminate between healthy skin and
umor regions. The selection criterion was to maximize differ-
nces among classes, thus the following band area ratios were
hosen:
ournal of Biomedical Optics 054031-
r1 =
I788 cm−1

I1003 cm−1
, r2 =

I850 cm−1

I1003 cm−1
, r3 =

I950 cm−1

I1003 cm−1
,

r4 =
I1093 cm−1

I1003 cm−1
, r5 =

I1312 cm−1

I1268 cm−1
.

These Raman bands can be assigned to specific vibrations in
DNA and collagen type I. The 788- and 1093-cm−1 bands
correspond to the O-P-O phosphodiester and PO2 vibrations
in DNA, respectively.50 Regions of healthy dermis are char-
acterized by high Raman bands at 850 and 950 cm−1, which
are associated to proline and C-C backbone vibrations in
proteins.51 Significant spectral differences are also observed in

Fig. 2 �a� Mean Raman spectra of 329 tissue specimens—127 BCCs,
92 epidermis, and 110 dermis—from 20 patients used to construct the
model. Spectra have been shifted vertically for clarity. Comparison
between the Raman spectra of computed differences drmis minus
BCC and BCC minus epidermis are shown in �b� and �c� along with
Raman spectra of purified Collagen type I and DNA �Sigma, United
Kingdom�.
September/October 2009 � Vol. 14�5�5
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he amide III spectral region �1200 to 1350 cm−1�, which is
ensitive to the secondary structure of proteins.50 Most signifi-
ant differences in this region appeared mainly at 1268 and
312 cm−1, which have been identified to correspond to mo-
ecular vibrations of collagen �Ref 52 and Fig. 2�. Intensity of
he 1003-cm−1 band corresponding to the ring breathing of
henylalanine was chosen as the denominator of the ratio be-
ause it showed insignificant differences only between
lasses.

For building an automated detection and imaging method,
multivariate model based on LDA was developed, in which

he ratios of the peak intensities, i.e., r1, r2, r3, r4, and r5,
ere used as input parameters. Two consecutive LDA routines
ere used.30 The order of the LDAs takes into account the

asiest discrimination among dermis and the other two classes
lucidated in Fig. 2�a�. The model showed that RMS is able to
iscriminate nodular and morphoeic BCC from healthy tissue
ith 90�9% sensitivity and 85�9% specificity in a 70% to
0% split CV algorithm. The reported estimates are the means
nd standard deviations of sensitivity and specificity over ran-
omly chosen partitions. The values obtained for fivefold CV
ere 89�11% sensitivity in BCC discrimination and
4�10% specificity, showing the stability of our estimates.
OOCV also reinforces this statement, achieving 94 and 84%

or sensitivity and specificity, respectively.
A typical result for CV is shown in Fig. 4, where all 329

ata from the spectral database are classified into three

ig. 3 H&E image of a typical skin tissue sections showing measured
egions of 50�50 �m, being represented as empty squares. Color
ode: blue for epidermis, red for BCC, green for dermis. �Color online
nly.�

ig. 4 Classification of 329 Raman spectra from BCC, epidermis, and
boundary 1� and the solid line �boundary 2� represent the 95% target
ercent of the data were used for training the model, and are represen
f the model, and their symbol in the figure are color-filled symbols. Sy
Color online only.�
ournal of Biomedical Optics 054031-
groups, circles for BCC, diamonds for epidermis, and tri-
angles for dermis. Data used for training the model are repre-
sented as empty symbols in Fig. 4, while the symbol for data
employed for validation of the model in Fig. 4 are color-filled.
The employed algorithm consists of two consecutive LDAs.
First, dermis is separated from the other two classes, BCC
+epidermis, which are considered one only group, by LDA
�LDA1�. Then, BCC is separated from epidermis by a new
LDA �LDA2�. The dashed line �boundary 1� and the solid line
�boundary 2� represent the 95% target sensitivity discrimina-
tion lines of LDA1 and LDA2, respectively. The LDA score
plot in Fig. 4 shows that there is a significant clustering of the
spectra into three groups corresponding to BCC, epidermis,
and dermis. Misclassifications occur mostly between BCC
and epidermis, where clusters overlap over the 95% sensitiv-
ity boundary. Such overlap is expected considering the great
similarities between the mean spectra of BCC and epidermis
�see Fig. 2�.

The mean Raman spectra of dermis and BCC in Fig. 2
show large differences in some of the selected peaks used in
our model, such as those of r5, i.e., the main collagen peaks.
Thus, we could expect that few dermis would misclassified as
BCC and vice versa. However, Fig. 4 shows that several der-
mis spectra are located in the middle of the BCC cluster.
Inspection of these spectra showed that they were more simi-
lar to the BCC mean spectrum of Fig. 2 than to the mean
Raman spectra of the dermis presented also in Fig. 2. Corre-
lation with the H&E images indicated that these spectra cor-
responded to inflamed dermis regions, which had a higher
number of cell nuclei than normal dermis. The variability in
Raman spectra of dermis depending on its distance to the
tumor has already been reported.30

Recall �cf. Sec. 2.3.2� that we are also interested in a reli-
able control of the classification regime. For example, an end-
user might decide in real time to increase sensitivity of BCC
detection to 99%. In our implementation, this can indeed be
delivered immediately, i.e., without retraining the classifica-
tion model. Certainly, sensitivity �or specificity� can be con-
trolled with respect to any class, but here we illustrate this
using BCC as the class of most interest. Thus, when the target
sensitivity is 99%, we observe the following CV estimates of
the delivered sensitivity: 98.6�2.5% �70% to 30%�,

sampled into three groups by two consecutive LDAs. The dashed line
vity discrimination lines of the LDA1 and LDA2, respectively. Seventy
the figure as empty symbols. The other 30% were used for validation
ode: circles for BCC, diamonds for epidermis, and triangle for dermis.
dermis
sensiti
ted in
mbol c
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8.9�2.6% �80% to 20%�, and 98.4 �leave-one-out�; also,
he corresponding �uncontrolled� specificity estimates ob-
ained on the training subsets agree closely with those on the
alidation subsets under all three settings, and are around
6%.

.3 Raman Spectral Imaging
he LDA model was applied to create 2-D biochemical im-
ges of tissue sections using two different procedures. In the

ig. 5 Schematic diagram of the two different supervised procedures
ollowed to build 2-D biochemical images of skin tissue sections.

ig. 6 Imaging nodular BCC in skin sections. Comparison between ps
upervised methods and corresponding hispathology �e� H&E images
CC. Images �b� and �e� were producd by the k-means-LDA metho
00�500 �m. �Color online only.�
ournal of Biomedical Optics 054031-
k-means method, at least 11 classes were required to ensure
discrimination between BCC and epidermis. As k-means clus-
tering is an unsupervised method, the presence of any skin-
irrelevant element or alteration in the sample was detected
and classified first as a new class, prior to BCC and epidermis
discrimination. After splitting the spectra into 11 clusters, the
Raman band ratios of the centroid spectra corresponding to
each cluster were introduced as input in the LDA model.
Therefore, each cluster, corresponding to a color in the
pseudocolor image, was classified as BCC, epidermis, or der-
mis. The second method consisted of directly applying the
LDA model to the individual Raman spectra measured at each
location of the analyzed tissue region to classify each un-
known spectra as BCC, epidermis, or dermis. The schemes of
both procedures are presented in Fig. 5. Pseudocolor images
using both classification methods are presented in Figs. 6–8.
These figures contain the automated RMS diagnosis and are
presented for comparison with the gold standard histopathol-
ogy images. Typical RMS images of skin sections containing
nodular BCC are shown in Fig. 6. Figures 6�a�–6�c� show the
ability of the RMS models to image tumor regions in a tissue
section containing only BCC and dermis. Both dermis and
tumor were accurately located within the tissue and were cor-
rectly classified. Only a few regions of inflamed dermis were
misclassified as epidermis. The reason for this misclassifica-
tion is likely to be due to the lower amount of DNA at those
locations. In Figs. 6�d�–6�f�, RMS was used to detect nodular
BCC in a typical section containing all three regions included
in the model: BCC, epidermis, and dermis. The correlation of
the spectral images with the H&E image is extremely high.
The dermis was correctly identified despite the presence of a
large number of cells. The k-means-LDA model had a better
accuracy in classification of epidermis and fewer misclassifi-
cations of BCC as epidermis. Extremely close agreement with
H&E–stained images was also obtained with morphoeic BCC

lor Raman images �b� and �c� and �e� and �f� produced with the two
�d�. Color code: yellow, dermis; light blue, epidermis; and dark blue,

le �c� and �f� were produced by the direct LDA model. Tissue size:
eudoco
�a� and
d, whi
September/October 2009 � Vol. 14�5�7



i
d
h
d
t
b
c
t
l
i

F
p
t
i
b
d
b
2

Larraona-Puy et al.: Development of Raman microspectroscopy for automated detection and imaging…

J

n Fig. 7, where BCC regions as small as 30 to 40 �m were
etected. In these cases, the k-means-LDA method showed a
igher number of epidermis misclassifications as BCC than
irect application of the LDA model to each individual spec-
rum. From a clinical point of view, however, it is crucial that
oth classification methods were able to detect with high ac-
uracy the presence of nodular and morphoeic BCC within
he tissue sections, as well as the dermis regions. Neverthe-
ess, due to the overlap of BCC and epidermis clusters shown
n Fig. 4 some of the epidermis spectra were misclassified as

ig. 7 Imaging morpheic BCC in skin sections. Comparison between
seudocolor Raman images �b� and �c� and �e� and �f� produced with
he two supervised methods and corresponding hispathology �e� H&E
mages �a� and �d�. Color code: brown, substrate; yellow, dermis; light
lue, epidermis; and dark blue, BCC. Images �b� and �e� were pro-
ucd by the k-means-LDA method, while �c� and �f� are produced
y the direct LDA model. Tissue size: �a� 240�720 �m; �d�
40�840 �m. �Color online only.�
ournal of Biomedical Optics 054031-
BCC. However, this misclassification of epidermis as BCC
has a lesser clinical significance, because if a region at the
edge of the tissue is predicted as BCC but shows no BCC
regions within the dermis, it is likely that it is real epidermis
that has been misclassified as BCC. Also, areas located deep
into the sample predicted as epidermis are more likely to be
BCCs or very highly inflamed dermis than epidermis, unless
they belong to hair follicles.

Finally, the technique was applied to skin tissue sections
excised during MMS and declared clear of BCC by histopa-
thology �Fig. 8�. Both methods where able to detect dermis
with high accuracy and no BCC regions were predicted within
the dermis. Some epidermis regions were misclassified as
BCC, particularly by the k-means-LDA method, due to the
higher spectral similarities between BCC and epidermis.

Therefore, due to the current lower specificity, we envisage
that initially RMS may be used to image all tissue layers
removed during MMS and only the sections declared clear of
BCC or where BCC is detected at the edge of a tissue section
would be evaluated by the surgeon using frozen sections to
check that no BCC was missed. As the prediction accuracy
and specificity would increase in time by inclusion of a large
number of tissue specimens, the RMS may be used as an
automated imaging method for BCC, eliminating the need of
frozen section preparation and histopathology observation. In
addition, the provision of automated objective diagnosis may
also reduce interobserver variations during the histopathology
evaluation of skin sections. These potential changes in surgery
practice have the potential to improve the MMS efficiency,
enabling more BCC patients to benefit from the best treatment
available.

4 Conclusion
We have shown that RMS using supervised classification
models can be used for detection and imaging of BCC in skin
tissue sections excised during MMS. Therefore, this technique

Fig. 8 Imaging of a skin tissue section clear of BCC. Comparison be-
tween pseudocolor Raman images �b� and �c� produced with the two
supervised methods and corresponding hispathology H&E images �a�.
Color code: brown, substrate; yellow, dermis; light blue, epidermis;
dark blue, BCC. Image �b� was produced by the k-means-LDA method
and �c� was produced by the direct LDA model. Tissue size:
240�540 �m. �Color online only.�
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ay represent a feasible alternative toward the development
f automated tumor imaging during surgery.

The LDA model was developed using 329 Raman spectra
rom 20 patients, including 127 BCCs, 92 epidermis, and 110
ermis. Selected Raman bands corresponding to nucleic acids
nd collagen type I were computed and used as input into the
ultivariate model. BCC was discriminated from healthy tis-

ue with 90�9% sensitivity and 85�9% specificity in a
0% to 30% split cross-validation algorithm.

The model was utilized to build 2-D biochemical images
f unknown skin tissue samples excised during MMS. The
mages were obtained using two supervised methods. The first

ethod applied k-means clustering to the whole spectral da-
abase, and then ratios of selected Raman bands for each cen-
roid were computed and introduced into the LDA classifica-
ion model. The second method directly applied the LDA

odel to compute the peak ratios of the whole spectral data-
ase. Both analysis methods provided quantitative images by
pplying a classification model on new tissue samples. The
seudocolor images produced revealed the presence/absence
f tumor without histopathologist intervention and determined
ccurately its location within the sample.

This study has demonstrated the potential of RMS for au-
omated diagnosis of nodular and morphemic BCC. Further
tudies are required to establish the ability of this technique to
etect more types of BCC �superficial, cystic, and infiltrative
CC� and to identify other skin structures that can be con-

used with BCC, such as hair follicles: inflammation, espe-
ially lymphocytic: trichoblastoma; and trichoepithelioma. In
ddition, the potential of RMS to image BCC regions in tissue
locks remains to be demonstrated.
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