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Abstract. A novel method for rapidly detecting metastatic
breast cancer within excised sentinel lymph node�s� of the
axilla is presented. Elastic scattering spectroscopy �ESS� is
a point-contact technique that collects broadband optical
spectra sensitive to absorption and scattering within the
tissue. A statistical discrimination algorithm was generated
from a training set of nearly 3000 clinical spectra and used
to test clinical spectra collected from an independent set
of nodes. Freshly excised nodes were bivalved and
mounted under a fiber-optic plate. Stepper motors raster-
scanned a fiber-optic probe over the plate to interrogate
the node’s cut surface, creating a 20�20 grid of spectra.
These spectra were analyzed to create a map of cancer
risk across the node surface. Rules were developed to con-
vert these maps to a prediction for the presence of cancer
in the node. Using these analyses, a leave-one-out cross-
validation to optimize discrimination parameters on 128
scanned nodes gave a sensitivity of 69% for detection of
clinically relevant metastases �71% for macrometastases�
and a specificity of 96%, comparable to literature results
for touch imprint cytology, a standard technique for intra-
operative diagnosis. ESS has the advantage of not requir-
ing a pathologist to review the tissue sample. © 2010 Society
of Photo-Optical Instrumentation Engineers. �DOI: 10.1117/1.3463005�

Keywords: elastic scattering spectroscopy; backscattering; breast
cancer; sentinel lymph node biopsy.
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1 Introduction
In the UK, there are 45,500 newly diagnosed cases of breast
cancer and 12,000 deaths every year; in the United States,
there are over 200,000 new cases and over 40,000 related
deaths per annum.1 Breast cancer spreads first through the
lymphatic tracts, to the lymph nodes in the axilla—the region
of the armpits.2 Lymphatic spread is a strong indicator of both
distant metastases and survival, and their presence informs
planning regarding additional treatment after surgery �adju-
vant treatment�, which includes chemotherapy, hormonal
therapy, and radiotherapy. The standard of care has previously
been to remove all of the axillary lymph nodes to control local
disease and screen for metastases �axillary lymph node dis-
section, ALND�. However, this has associated complications,
particularly lymph edema, a painful swelling of the arms with
undrained lymphatic fluid. Only 30% of women will typically
have lymphatic involvement with cancer, so for around 70%
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f cases, axillary clearance is unnecessary. Routine ALND
hanged with the advent of sentinel lymph node biopsy
SLNB�, which is accepted as the standard of care in manage-
ent of patients with early breast cancer.3,4 Breast cancer will

pread in a hierarchical fashion, first involving the sentinel
ode �the first in the chain� and then the other nodes in the
xilla. In some cases, there is more than one chain, so more
han one sentinel node. If the sentinel node�s� are free of
ancer, ALND is not necessary. If the presence or absence of
ancer in a sentinel node can be determined during surgery,
hen ALND can be completed during the same operation for
hose who need it. However, conventional histological analy-
is can take several days to return a result, leaving patients
ith a period of uncertainty and the possibility of a second

dmission to the hospital and surgery if cancer is found in a
ode.5 There is also additional cost involved to the healthcare
rovider with this approach.

Currently, intraoperative diagnosis is carried out using ei-
her touch imprint cytology �TIC�6 the microscopic examina-
ion of cells obtained by pressing the cut surface of the node
nto a glass microscope slide, or frozen section
istopathology,7,8 where the node is snap-frozen and cut
ithin minutes of excision. Both of these techniques require

issue preparation and a skilled, specialized pathologist to be
vailable in real time to provide analysis. Further, the accu-
acy of these histological and cytological techniques is highly
perator-dependent.9 Such a resource is beyond the reach of
any UK hospitals and, by extension, hospitals in many parts

f the world. This highlights the need for a technique for
ntraoperative sentinel node analysis that is inexpensive, non-
issue-destructive �to allow subsequent conventional postop-
rative analysis�, rapid, and consistent.

Elastic scattering spectroscopy �ESS� is a point-
easurement technique10 that has shown early successes in

he detection of cancer and precancerous changes.11–14 Tissue
f interest is interrogated with short pulses of white light and
he spectrum of the backscattered light analyzed to discrimi-
ate between normal and cancer tissue. It is not tissue destruc-
ive, requires limited training to use, and has no consumables.
ur previous work14 utilized statistical discrimination meth-
ds to assign spectra to “malignant” or “nonmalignant”
lasses, using ESS spectra matched with conventional histol-
gy. In this study, we extend this work by creating a “risk
ap” of an excised sentinel node to provide an automated

iagnosis for the node using our optical scanner.
If the decision to undertake ALND is to hinge on ESS, it is

ssential that the false positive rate is minimized to avoid
atients undergoing an unnecessary ALND. We optimized our
nalyses to obtain as high a specificity as possible, 95% being
he minimum acceptable, and then chose the approach that
ave the highest sensitivity. If cancer in a node is missed
uring the ESS analysis, this will be detected on subsequent
outine histology. Any reasonable ESS sensitivity will hence
roduce some reduction in second operations. However, the
nnecessary axillary clearance instigated by a false positive is
rreversible and to be avoided. By reducing our false positive
ate, we maximize the population positive predictive value
PPV�, which is of most interest in the long-term assessment
f this technique. However, in this small data set, maximizing
pecificity gives a more stable result, and so the question of
ptimizing PPV will not be discussed further.
ournal of Biomedical Optics 047001-
2 Materials and Methods
2.1 Elastic Scattering Spectroscopy
The ESS system has been described in a number of previous
publications.13,14 In brief, the optical probe used in this study
consists of one 365-�m and one 200-�m fiber bound closely
together in a parallel geometry, resulting in a 315-�m center-
to-center separation, allowing for the fiber cladding. These
fibers are brought into perpendicular contact with the tissue to
be interrogated. A xenon short arc lamp �Perkin Elmer LS
1130/FX1100, California� delivers short pulses of white light
�10 �s, 5�10−7 J� via the 365-�m fiber; the light is col-
lected from the 200-�m fiber and analyzed using a spectrom-
eter �Ocean Optics S2000�. All components are controlled by
a laptop computer, which also performs the statistical analy-
sis. The system takes a dark spectrum of the same duration
just before the lamp is flashed to compensate for background
light. A software-based “autoranging” algorithm is employed
to examine the amount of light collected and adjusts the pulse
number and integration time to ensure that the CCD does not
saturate and that the signal is sufficiently high to give optimal
signal-to-noise.

Before the collection of clinical data, a spectrum is col-
lected with the fibers held at a short distance ��10 mm� from
a piece of spectrally flat material �Spectralon, Labsphere,
UK�. All subsequent spectra are divided by this spectrum to
correct for the overall system response. This yields a system-
independent measurement reflecting the intrinsic tissue optical
properties.

2.2 ESS Scanning
Random point measurements cannot be expected to give an
accurate overall picture of lymph nodes—we would expect
that a random, noncomprehensive sampling technique would
inevitably miss small deposits of tumor in an otherwise
healthy node. The smaller the deposit, the less likely random
sampling is to coincide with it; and smaller deposits are less
likely to be clinically apparent and hence more difficult to
deliberately target with the ESS probe. A more comprehensive
sampling method was called for and realized in the form of an
ESS raster-scanning device.

The exposed surface of a typical bivalved node will be
uneven, and so a method is required to provide smooth move-
ment of the fiber probe across the sample and simultaneously
give good optical coupling between the probe and tissue. We
tackled this problem by using a fiber-optic plate �FOP;
Hamamatsu Photonics, Japan�, illustrated schematically in
Fig. 1. This plate measures 15 mm by 20 mm and is 3 mm
thick. It is composed of contiguous 4-�m optical fibers, run-
ning along the short axis. The tissue is pressed firmly but
gently against the underside of the plate using a drop of sterile
water or saline to ensure good optical coupling where neces-
sary. The point of the optical fiber is coupled to the top sur-
face of the FOP with microscope immersion oil. In this con-
figuration, the image of the tissue is transmitted directly to the
fiber via the plate. The numerical aperture of the plate chan-
nels is the same as the optical fiber, which means that the ESS
geometry is almost perfectly preserved, notwithstanding the
small attenuation due to the packing efficiency of the fibers
within the plate.
July/August 2010 � Vol. 15�4�2
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The UV transmission of the FOP is weaker, so to remove
ny spectral bias introduced by the plate, we performed our
ystem-response calibration with Spectralon through a fiber-
ptic plate of the same geometry and construction.

This flat geometry enabled the smooth and efficient scan-
ing of a 1-cm2 area. The node and fiber-optic plate are
ounted on an x-y stage driven by stepper motors, and the

ode and FOP moved together in a raster-scanning pattern
elative to the fixed fiber. A 0.5-mm step size was used to
enerate a 20�20 grid of spectral measurements. Applying
he statistical discrimination algorithms allowed the construc-
ion of a false color map based on the canonical score for the
pectrum from each pixel.

.3 Study Design
ur standard methodology is based on the statistical discrimi-
ation tools described here and requires a data set to train the
achine learning algorithms to discriminate between normal

nd metastatic tissue. Therefore, the study was conducted in
wo phases: a training phase followed by a validation/test
hase. Ethics committee approval was obtained.

.4 Training Data
xcised nodes from patients with a preoperative diagnosis of
reast cancer undergoing sentinel node biopsy or ALND were
ncluded. Each node was bivalved along its long axis and a set
f point ESS spectra collected by placing the optical probe
anually on up to 16 random sites on the cut surface. The

odes were then fixed in 10% formalin and sent for routine
istopathological analysis with hematoxylin and eosin �H&E�
taining. Only nodes that subsequent histology showed to be
ither completely normal or completely replaced by cancer
ere used in the training set, avoiding misregistration of the
ber with respect to any metastases in the node.

.5 Scanned Nodes �Test Set�
atients with a preoperative diagnosis of breast cancer who
id not have known cancer in their axillary lymph nodes un-

ig. 1 Schematic of ESS scanning device �not to scale�. The bivalved
ode is mounted on a mobile scanning stage. It is coupled to a fiber-
ptic plate above it using a drop of saline or sterile water and gentle
ut firm pressure. The fiber-optic plate is coupled to a fixed fiber-optic
robe with microscope immersion oil. Stepper motors move the scan-
ing stage in an x-y raster pattern to create a 20�20 grid of spectra at
.5-mm intervals.
ournal of Biomedical Optics 047001-
derwent sentinel lymph node biopsy �SLNB� using the com-
bined technique of blue dye and radiocolloid for node
localization.15 In brief, the approximate location of the senti-
nel node was established by external gamma camera after
injection of the colloid into the breast adjacent to the tumor.
An incision was then made over this area, and the node was
identified by using a handheld gamma detection probe and
uptake of blue dye, injected into the breast 10 to 15 min prior
to surgery.

Excised nodes were immediately bivalved, ESS scans were
taken from the cut surface as described earlier, and the node
subsequently fixed in 10% formalin and sent for routine his-
tology. Nodes found to contain cancer on histology were sub-
classified as macrometastases �cancer deposit �2 mm� or mi-
crometastases �cancer deposit 0.2 to 2 mm�. It is possible to
detect smaller cancer deposits using conventional histology or
immunohistochemistry. However, the American Society of
Surgical Oncology current guidelines do not recommend ax-
illary clearance for metastases �0.2 mm, so for the purpose
of this study, these nodes have been regarded as
nonmetastatic.15

2.6 Algorithm Generation
The literature on physical correlation of ESS spectra suggests
that the spectral components important in ESS are slowly
varying, with features on the scale of tens of nanometers.12

Therefore, applying moderate smoothing to ESS data should
give improved signal-to-noise without obscuring important
features within the spectrum. We applied a 3-pixel halfwidth
��1.5 nm� cubic Savitzky-Golay algorithm. We cropped
from 400 nm to 800 nm, the region in which the signal-to-
noise was highest, and reduced the data set by taking every
seventh point. This reduced the size of each spectrum from
1000 to 87 points, ameliorating the computational complexity
of the statistical analyses to follow.

Analysis of the training data set was undertaken by extract-
ing spectral features using principal component analysis
�PCA�16 and discriminating between classes by linear dis-
criminant analysis �LDA�.17 By projecting the spectral vector
onto the axis of maximum discrimination, we derive a canoni-
cal score, which is our predictive measure of cancer risk. The
resulting discrimination algorithms could then be applied to
unseen spectra in the second phase of the study. The per-
spectrum accuracy of the algorithm was assessed by leave-
one-out cross-validation. These analyses were carried out in
the statistical programming language R,18 and a number of
algorithms developed for 5, 10, 15, 20, and 30 principal com-
ponents �PCs�. The optimum is chosen with reference to the
scanned nodes, as described later. It should be noted that these
PCs will contain the majority ��99.9%� of the variation
within the data set.

2.7 Image Analysis
In the previous section, the statistical procedure for analyzing
individual spectra was described; we then developed tools to
analyze the map of canonical scores and produce a binary
decision of whether the node contained cancer, and hence
whether an axillary clearance was called for.

It is desirable in the operating theater that interpretation of
these images by the surgeon or a pathologist is not required,
July/August 2010 � Vol. 15�4�3
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nd that an automated and operator-independent result is gen-
rated by the system. The training data provides a rule �or
ore precisely, a number of rules, depending on the number

f principal components selected and the cut-off applied to the
anonical score� for classifying a pixel, but this needs to be
xtended to a rule for classifying an image. Making a diagno-
is of a whole node based on isolated spectra is not reliable
nough, with a considerable overlap between the canonical
cores of spectra from normal and metastatic areas giving rise
o individual false-positive pixels. In a tumor area, however,
e are more likely to see a “clump” of positive pixels, so we

onsidered that the simplest approach would be a “clump-
ounting” method. A clump was defined as a series of positive
ixels contiguous via their vertical or horizontal but not diag-
nal edges. Diagonal contiguity was not considered because
he distance between pixel centers linked diagonally is
.7 mm, compared to the 0.5 mm for the horizontal/vertical
eparations. The volume of tissue interrogated at each position
f the fiber probe is addressed in the following discussion. We
xamined all of the clumps within a node and counted the
umber of pixels within each clump. The size of the largest
lump within the node was used for the classification of the
hole node.

This was implemented by an iterative counting method;
ach metastatic pixel was identified in turn. Any metastatic
eighboring pixels were noted; in the next cycle, any meta-
tatic neighbors of these pixels were noted; and so on, itera-
ively, until no more contiguous neighbors were found. This
ave rise to a clump size associated with every metastatic
ixel; in general, these will not be unique—e.g., if all of the
etastatic pixels in a hypothetical node are found in one

lump of size 10, this analysis will generate 10 clump sizes,
ach of them having numerical value 10. Because we use only
he largest clump size, this redundancy does not compromise
ur results.

The most robust test of discrimination accuracy would be
chieved by using a test set independent of the data sets used
o train the PCA/LDA algorithm and tune the additional dis-
rimination parameters. For this study, there was a limited
ata set available, and so it was necessary to choose a statis-
ical method that offered as robust an approach as possible,
hile acknowledging that a completely prospective test is not

ensible. In order to both tune the classification rule and get a
ealistic assessment of its likely performance, the following
eave-one-out procedure was adopted, with two variants:
eave-one-node-out �LONO� and leave-one-patient-out
LOPO�. The second approach should remove any overfitting
ue to the patients with multiple nodes: 40% of the patients
ad two or more sentinel nodes scanned, and 10% had three
r more nodes scanned. Leaving out one node, or one patient,
he classification rule was tuned on the remaining data. Three
arameters were varied: the number of principal components
sed for the algorithm �5, 10, 15, 20, 30�; the canonical score
ut-off �0.5, 1.0, 1.5, 2.0, 2.5�; and the clump size �1–20: In
heory, we could allow this to vary from 0 to 400, but we want
o ensure that the smaller metastases are not excluded.
0 pixels corresponds to metastases �2.5 mm in diameter�.

The tuning criterion was to find the highest sensitivity for
specificity of 95% or greater. The resulting tuned rule, and

nly this rule, was then used to classify the omitted node or
odes. This was repeated, leaving out each node, or patient, in
ournal of Biomedical Optics 047001-
turn. The result of this exercise is a classification for each
node in which the tuning has been done without using the
node being classified. One implication of the procedure is that
the tuned rule may be different every time, and thus any as-
sessment of performance using the resulting classifications
does genuinely incorporate the uncertainty in the tuning pro-
cess. Comparing the leave-one-out predictions with the
known histology for the nodes, we generated four headline
figures: sensitivity, specificity, �population� positive predictive
value �PPV�, and �population� negative predictive value
�NPV�. These are referred to as the leave-one-out results. The
rules generated for each left-out node/patient were compared
to investigate the stability of the tuning process, and the
modal rule was identified and applied to all the nodes to gen-
erate a further set of predictions. We refer to the latter as the
modal result.

3 Results
3.1 Training Set
The training set used in the first phase to develop the diag-
nostic algorithm consisted of 2989 spectra �2722 normal and
267 metastatic� collected from 361 nodes �330 completely
normal and 31 completely metastatic� excised from 205 pa-
tients �184 with completely normal nodes and 21 with at least
one completely metastatic node�.

The leave-one-out analysis of our initial training set
yielded a canonical score for each spectrum. Figure 2 shows
the distribution of canonical scores for the 20-PC algorithm;
the normal nodes have an asymmetric peak with a mean of
−0.2 and a standard deviation of 0.8. In contrast, the meta-
static scores are widely distributed between −2 and +6 �mean
2.4, standard deviation 2.4�, with no clear structure within that
range. It seems that the algorithm has the ability to classify
the normal tissue consistently while giving a range of scores

Fig. 2 Distribution of canonical scores generated from the point-
measurement training set. We show the scores generated using an
LDA from 20 PCs.
July/August 2010 � Vol. 15�4�4
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or the metastatic tissue. This is typical for the algorithms
enerated using other numbers of PCs �not shown�.

By varying the cut-off, a receiver operator characteristic
ROC� curve for per-spectrum discrimination was generated
or the point-measurement training set �Fig. 3�. These gave
imilar results irrespective of the number of PCs used, with an
rea under curve �AUC� of 0.83 to 0.85 and sensitivities of
.68 to 0.70 for a specificity of 0.90. It should be remembered
hat these results were generated on “totally normal” and “to-
ally metastatic” nodes only; in these polarized cases, we

ight expect the gross changes to be detectable, no matter the
umber of PCs considered. However, the scanned nodes con-
ained subtler cases—potentially, tumors as small as
.2 mm—and there is no guarantee that each algorithm would
e as sensitive in detecting these smaller deposits of cancer.
e therefore selected a range of PCs �5, 10, 15, 20, and 30�

nd generated algorithms for each, to be validated in the next
tage.

.2 Scanned Nodes
he scanned set comprised 129 nodes from 81 patients, in-
luding 72 normal, 3 with submicrometastases �regarded as
onmetastatic for this study�, 4 containing micrometastases,
nd 50 with macrometastases. This constitutes 1 node each
rom 49 patients, 2 nodes each from 24 patients, 3 nodes each
rom 4 patients, 4 nodes from 1 patient, 5 nodes each from 2
atients, and 6 nodes from 1 patient.

Figures 4 and 5 show examples of scanned nodes with
orresponding photographs. Applying the discrimination rules
n a leave-one-out fashion gave us an estimate of the best
ombination of parameters and their accuracies. In optimizing
pecificity, the optimal parameters for both leave-one-node-
ut �LONO� and leave-one-patient-out �LOPO� analyses were
0 PCs, a canonical score cut-off of 2.0, and a clump size of
pixels. This choice of parameters was identical for all runs

n the LOPO and LONO analyses. The LONO and LOPO
nalyses both gave a leave-one-out specificity of 96% and a
ensitivity of 69%, which was �trivially� identical to the
odal result. Assuming a population prevalence of 30% and

he same sensitivities and specificities, this choice of param-
ters would give us a positive predictive value �PPV� of 88%

ig. 3 ROC curve from leave-one-out cross-validation point measure-
ent from the point-measurement ESS training set. These results are
n a per-spectrum basis.
ournal of Biomedical Optics 047001-
and a negative predictive value �NPV� of 88%. When consid-
ering macrometastases only, the sensitivity rises to 71%.

Each pixel is separated by 0.5 mm, so a tumor with circu-
lar cross section that is detected in only 9 pixels gives a di-
ameter of at least 1.5 mm; we do not want to introduce crite-
ria that make us any less sensitive, indeed we would like
greater sensitivity �see Sec. 4�. We examined different param-
eter sets with an eye to improving PPV and found that it was
very difficult to obtain a PPV above 90% in the leave-one-out
analysis, possibly due to the small numbers involved in this
data set—and therefore chose to focus on the sensitivity and
specificity.

4 Discussion
In normal clinical practice, the surgeon will identify and ex-
cise the sentinel lymph node at the beginning of the breast
cancer operation. It will then typically take 30 to 45 min for a
surgeon to perform a mastectomy or a wide local excision
�“lumpectomy”�, and this is the window of opportunity for
intraoperative lymph node diagnosis. The prototype scanner
took 20 to 25 min to scan 1 cm2 of the surface of single
node, comparable to the time required for TIC, and certainly
well within the required time scale.

If we compare the ESS results drawn from the whole data
set to the TIC results in the literature,6,9 we see that while TIC
has very robust specificity �typically, 98 to 99%�, the sensi-
tivity varies enormously depending on operator, from 100% to
as low as 23% �Ref. 9�. This source quotes a typical sensitiv-
ity of 63%, to which ESS compares favorably. In the

Fig. 4 A sample scanned node containing metastatic deposits. �a� The
false-color map was constructed using point-wise analyses of spectra
by a 20-PC LDA algorithm. Red shows regions of metastases; blue
normal tissue. �b� Binary map on a cutoff of 2.0—pink identifies can-
cer; black normal tissue. �c� Photograph of cut surface of node. The
two regions show �1� normal tissue and �2� a central region of normal
tissue surrounded by a halo of metastases.
July/August 2010 � Vol. 15�4�5
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iterature,6 TIC has 75% sensitivity to macrometastases com-
ared to the ESS result of 71%. However, TIC is much less
ensitive to micrometastases; within this data set, ESS de-
ected two of four micrometastases. The numbers are too
mall for the difference to be statistically significant, but this
esult is encouraging. We do not expect either technique to be
ensitive to the presence of isolated tumor cells, but the
merican Society of Clinical Oncology states that this is not

ssential for optimum clinical practice.
Frozen section histology is the main alternative to touch

mprint cytology, is employed in centers in other parts of the
orld, and achieves 67 to 75% sensivity and 100%

pecificity,7,8 dependent on whether the cancer is lobular or
uctal. Clearly, ESS needs to be able to compete with these
echniques if it is to be of interest to clinicians. Early indica-
ions are encouraging, but it will be necessary to examine a
arger data set before this can be assessed fully.

Sentinel node analysis techniques such as the rapid poly-
erase chain reaction, a gene assay, are sensitive enough to

etect isolated tumor cells and are potentially more sensitive
ven than immunohistochemistry staining.19 The disadvan-
ages of this technique are that it currently has large capital
osts and expensive consumables and is tissue destructive.
urthermore, it is not clear that this degree of sensitivity is
equired in this application, when even the clinical signifi-
ance of micrometastases is not fully agreed upon. The
imple, non-tissue-destructive and potentially inexpensive

ig. 5 Sample scanned node showing a ��2 mm� metastatic deposit
confirmed on histology�. �a� Scanned false-color image using 20 PCs.
b� Binary map based on a cutoff of 2.0—pink identifies regions of
ancer; black denotes normal tissue or background. �c� Photograph of
ut surface of node. This deposit was not detected with touch imprint
ytology—possibly because the metastatis was below the cut surface
f the node. However, this is an isolated case, and one should not
raw too many conclusions from it.
ournal of Biomedical Optics 047001-
ESS method may be more appropriate and would likely be
within the reach of more centers around the world.

In the long term, it will be essential to assess the smallest
metastases that ESS is able to detect. To be comprehensive,
the technique would have to be able to detect metastases as
small as 0.2 mm �the definition of micrometastases�. Small
��5 mm� tumor deposits in lymph nodes have an aspect ra-
tio close to unity; it is unusual to see “fingers” of invasive
tumor at this scale. For simplicity, let us consider a tumor
covering 9 pixels and having circular cross section, detected
in all of the pixels of a 3�3 grid. If we treat the measurement
extent of ESS as small compared to the 0.5-mm step size,
metastases with a radius of less than 0.7 mm, the distance
between pixels on the diagonals, will not be sufficient to de-
clare a node as positive for cancer. However, this is not a
constraint imposed by the ESS geometry, but rather the image
analysis rules. It would be desirable in the future to detect
micrometastases, and in doing so, it would be necessary to
detect cancer in a single pixel. It is here that the ESS sampling
volume becomes important.

Sample volume is a complex issue with regards to ESS.
The mean path that light takes and degree of variation about
this path are highly sensitive to the absorption and scattering
properties of the tissue. We carried out Monte Carlo simula-
tions based on existing code20 at some typical tissue values to
examine the maximum scattering depths for our geometry.
Figure 6 plots these voxel visualizations for 3000 collected
photons from a material with optical properties representative
of tissue at 400 nm �highly scattering, highly absorbing, �a

=10 cm−1, �s�=20 cm−1� and 650 nm �where absorption is
substantially lower but scattering still significant: �a

=0.1 cm−1, �s�=10 cm−1�. For each photon, we record the
maximum depth of a scattering event �MDSE�, which deter-
mines how deeply that photon will have traveled into the tis-
sue. This parameter can be averaged over all photon paths,
weighted by the final photon intensity to account for the at-
tenuation incurred by the longer path lengths. The MDSE val-
ues place an upper limit on the depths probed by the geom-
etry.

For �a=0.1 cm−1, �s�=10 cm−1, the mean MDSE is
700 �m, the modal MDSE is 300 �m, the standard deviation
of the MDSE is 650 �m, and 90% of photon contributions
have an MDSE of less than 1400 �m. For �a=10 cm−1, �s�
=20 cm−1, the mean MDSE is 280 �m, the modal MDSE is
220 �m, the MDSE standard variation is 170 �m, and 90%
of photon contributions have an MDSE of less than 500 �m.
In both cases, the sample volume extends 300 to 400 �m in
the x direction; therefore, we might expect any tumor that
substantially occupies these volumes to be readily detectable
at any wavelength sensitive to metastatic change. The modal
MDSE values suggest that a tumor with diameter �0.3 mm
lying close to the cut surface will occupy the detection vol-
ume and be identified by ESS, but this neglects the effects of
the presence of tumor on photon path, which is not well un-
derstood. Smaller deposits may be detectable, but this is a
complex question beyond the scope of this article and will
require further investigation of the interaction of tumor prop-
erties, scatter sampling volume, energy deposition/absorption
volumes, and their relative contribution to the ESS signal.
July/August 2010 � Vol. 15�4�6
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Future Work
ased on these approximations, we see that the 9-pixel crite-

ion puts a lower limit on detectable tumors of over 1 mm in
iameter. If ESS is sensitive to micrometastases, we do not
ant to limit its efficacy by our image analysis rules; future
ork will aim to increase ESS sensitivity while retaining

pecificity. Scanning smaller steps, repeating scans, and re-
eating measurements at each step will have overlapping
dvantages—namely, of repetition and resolution. Repetition
ill average out noise and allow the removal of outlier data

hat might give false-positive or false-negative pixels. An in-
rease in resolution will increase sampling in the x-y plane
nd potential sensitivity; and increasing the resolution further
o create overlapping measurements will allow further checks
f spectrum-to-spectrum consistency and spatial correlation.
ith the current prototype scanner, it takes 20 to 25 min to

can the cut surface of the node and generate the false color
ap. The majority of this time is due to the raster-scanning
otion; a smaller portion to spectra collection; and a tiny
inority �typically 40 s� due to spectral processing, discrimi-

ation, and image generation. The next-generation scanner is
ble to scan the same area in �10 min, and we hope to re-
uce this time further by simple improvements in the spec-
rometer. Recent work within our group has utilized statistical
nalysis of repeated measurements to remove clinical vari-
bility in ESS spectra taken in Barrett’s esophagus21; although
e are not prey to the same sources of noise, an analogous
ethod might be employed for removing spectral noise and

ther sources of variation. Another potential methodology is
o create a “coarse scan” at the current resolution and then
can a region of interest �i.e., a region containing positive
ixels� at a higher resolution.

Other workers have succeeded in creating simple and
ransparent analytical models to describe ESS spectra in terms
f basic tissue optical properties.20,22,23 Our statistical analysis
akes no assumptions about the underlying tissue changes

hat occur when lymph nodes become cancerous but leaves us
ithout a scientific understanding of the physical and biologi-

al structures. The standard-normal-variate normalization that
e utilize by necessity redistributes information in different

ig. 6 Monte Carlo simulation of photon transport for a homogeneo
ollected at z=0, 200�x�400; these plots show binned voxel visuali
or tissue at 400 nm, where absorption is highest�. �b� �a=0.1 cm−1,
ower�.
ournal of Biomedical Optics 047001-
parts of the spectrum. For example, regions with zero “load-
ings” do not have zero contribution to the analysis—because
the spectral data from these regions is used in the normaliza-
tions, and hence implicitly in the final analysis. Furthermore,
no region of the spectrum is clearly dominant in these load-
ings. Physical analysis will be a key goal of future work if we
want to understand the underlying physiological changes and
generalize analyses from lymph node to other organs. How-
ever, we will need to ensure that the correct calibrations and
supporting data, such as spectra from standard phantoms, are
collected at the time of the measurement, which will require a
new data set. Prospective prediction and comparison with his-
tological gold standards will be the litmus test for our
machine-based approaches, and further clinical study will be
key in demonstrating the accuracy and robustness of our ap-
proach to sentinel lymph node biopsy.

6 Conclusions
We have demonstrated an operator-independent optical
method for immediate automatic detection of metastatic sen-
tinel lymph nodes based on a scanning ESS system. The head-
line figures of 69% sensitivity and 96% specificity are close to
the standard intraoperative cytological techniques. The tech-
nique is fast enough to be applied intraoperatively, is non-
tissue-destructive, does not require the presence or expertise
of a specialized pathologist, is potentially inexpensive, and
requires no consumables and minimal training. Future work
will explore physical correlation, while in parallel ensuring
the comprehensive scanning of the node. To demonstrate and
further assess the effectiveness of the current technique, we
want to carry out a multicenter prospective clinical study on a
larger number of patients.
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