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Abstract. We propose a stable scale-adaptive tracking
method that uses the centroids of the target colors in the
target localization and scale adaptation. Because of the spa-
tial information inherent in the centroids, a direct relationship
can be established between the centroids and the scale of
the target region. After the zooming factors are calculated,
the unreliable zooming factors are filtered out to produce a
reliable zooming factor that determines the new scale of the
target. C©2011 Society of Photo-Optical Instrumentation Engineers (SPIE).
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1 Introduction
Scale-adaptive tracking using only color information is a
difficult and important problem. One of the most success-
ful approaches using only color information is the kernel-
based approach, which has become popular due to its track-
ing speed.1, 2 However, due to the instability of color-based
tracking, research to stabilize the tracking has been done by
introducing the scale space,3 changing the kernel function,4, 5

using multiple kernels or patches,6–9 incorporating temporal
filtering,10 or discriminating local reliable regions.11 Most
color-based scale-adaptive tracking methods have utilized
the histogram to determine the target size.1–4, 12 However,
in certain cases, the histogram fails to provide a good es-
timate of the target size (e.g., in cases of occlusion or the
appearance of colors in the background similar to the target
colors). This is due to the fact that the histogram is related
to the numbers of pixels corresponding to the target colors.
Therefore, sometimes colors in the background similar to
the target colors cause the target region to spread out to the
background region. In other cases, the target window some-
times shrinks too much, because small partial regions of the
target show a similar distribution of colors as the entire target
region.

In this letter, we propose a stable scale-adaptive track-
ing algorithm that combines the color centroids–based track-
ing algorithm in Ref. 13 with a new scale-adaptation algo-
rithm also based on the use of centroids. The advantages of
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using centroids in the computation of the scale are as fol-
lows: first, centroids have a direct relationship with the scale
of the target, which makes the estimation of the scale simple
and fast. Second, centroids can be filtered by filtering algo-
rithms, leaving only the reliable centroids to be used in the
rescaling. The proposed tracking algorithm produces stable
scale-adaptive tracking results even in difficult cases when
the background is cluttered or contains target colors, or when
occlusion occurs.

2 Scale-Adaptive Centroid-Based Tracking
Algorithm

In this section, we first introduce the color centroids–based
target localization algorithm. Then, we propose the scale-
adaptation algorithm, which is also based on the use of the
color centroids. The combination of the two algorithms will
be explained at the end of this section.

2.1 Target Window Shifting Using Centroids of the
Target Colors

In Ref. 13, we proposed a stable target-shifting algorithm that
shifts the current target location to the next target location
based on the use of centroids of the target colors. The target
position in the current frame (ŷ0) is obtained by the area-
weighted mean of the color centroids in the current frame,
i.e.,

ŷ0 =
∑m

u=1 q̂u Cn
u∑m

u=1 q̂u
, (1)

where Cn
u represents the centroid of the color bin u in the cur-

rent frame, and {q̂u}u=1...m represents the m−bin histogram
of the target model obtained in the initial frame. Here, the
weights are {q̂u}u=1,...,m , which correspond to the areas in the
initial frame that the color bins {q̂u}u=1,...,m cover.

The location of the target in the next frame (ŷ1) can be cal-
culated in the same way as ŷ0 using Cn+1

u , the color centroids
in the next frame, instead of Cn

u in Eq. (1). Then, the shift-
ing vector ŷshift which shifts the location of the target in the
current frame to the location in the next frame, is computed
as ŷshift = ŷ1 − ŷ0.

2.2 Scale Adaptation Based on Centroid Difference
Vectors

Although most scale-adaptation algorithms utilize his-
tograms of the target colors, we utilize the centroids of the
colors for the rescaling of the new target region. The reason
for this is based on the following facts:

1. The centroids contain the spatiality information and
have a direct relationship to the scale of the target
region.

2. Centroids that deviate much from their real positions
due to the background colors can be easily detected
and eliminated from the estimation of the scale.

3. The rescaling based on the centroids is not very sen-
sitive to the appearance of background colors sim-
ilar to the target colors as that based on histogram
similarity.

For scale adaptation, we first divide the target region (which
is centered at ŷ1) into four equal subregions, as shown in
Fig. 1. Figures 1(a) and 1(b) show the target in the current
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Fig. 1 Distances between the centroids in different subregions: (a,b)
Corresponding to the current frame, and (c,d) corresponding to the
next frame. (a,c) Distance in the x-coordinates and (b,d) distance in
the y-coordinates.

frame and Figs. 1(c) and 1(d) show the target in the next
frame. The scale of the target changes in the next frame. After
dividing the target region into subregions, we calculate the
centroids in each subregion, independently. Figures 1(a) and
1(b) show the calculated centroids in the current frame, and
Figs. 1(c) and 1(d) show those in the next frame. As shown
in Figs. 1(a) and 1(c) or in Figs. 1(b) and 1(d), the distances
between the centroids in different subregions corresponding
to the same colors have a direct relationship to the size of the
target region. For example, in Figs. 1(a) and 1(c), the ratio
between dn

AD,u,x and dn+1
AD,u,x can be used as an estimate of

the ratio of the target’s width in the next frame to that in the
current frame.

We first make some notations. We denote by dn+1
A,B,u,x the

absolute difference in the x-coordinates between the cen-
troids in subregions A and B corresponding to the color u:

dn+1
A,B,u,x = ∣∣Cn+1

A,u,x − Cn+1
B,u,x

∣∣, (2)

where Cn+1
A,u,x and Cn+1

B,u,x represent the x-coordinates of the
centroids corresponding to the color u in subregions A and
B, respectively, and the superscript n + 1 denotes the next
frame. Likewise, we can define dn+1

A,B,u,x , dn+1
A,D,u,x , dn+1

C,B,u,x ,
and dn+1

C,D,u,x . Then, we compute the weighted average of the
distances dn+1

A,B,u,x , dn+1
A,D,u,x , dn+1

C,B,u,x , and dn+1
C,D,u,x to obtain

dn+1
u,x , where the weight is related to the numbers of pixels in

the color bin u in the following subregions:

dn+1
u,x = WA,B,udn+1

A,B,u,x + WA,D,udn+1
A,D,u,x + WC,B,udn+1

C,B,u,x

+ WC,D,udn+1
C,D,u,x (3)

where

WA,B,u = NA,u NB,u

NA,u NB,u + NA,u ND,u + NC,u NB,u + NC,u ND,u
,

(4)

and likewise for WA,D,u , WCB,u , and WC,D,u . Here, NA,u , NB,u ,
NC,u , and ND,u denote the numbers of pixels corresponding
to the color u in the subregions A, B, C, and D.

The zooming factor corresponding to the color u is then
defined as

zn+1
u,x = dn+1

u,x

dn
u,x

. (5)

Here, dn
u,x represents the weighted average of the distances

dn
A,B,u,x , dn

A,D,u,x , dn
C,B,u,x , and dn

C,D,u,x in the current frame,
which is computed in the same way as dn+1

u,x using the cen-
troids in the current frame. The zooming factor zn+1

u,x is an
estimate of the resizing ratio of the target’s width with re-
spect to the color u. The zooming factor with respect to the
y-axis can be obtained in the same way. The pair of zooming
factors zn+1

u,x and zn+1
u,y can be used as the estimates of the

resizing ratios of the target, where zn+1
u,x can be used as the

resizing ratio of the width and zn+1
u,y as the resizing ratio of

the height.
However, it is not guaranteed that the centroid that corre-

sponds to a certain color u is reliable. Therefore, we perform
filtering on the estimated zooming factors to obtain a pair of
reliable zooming factors. The filtering first trims off all the
extreme values because the size of the target cannot change
dramatically. After the extreme zooming factor values have
been trimmed off, the remaining zooming factor values are
averaged. The filtering suitable for this kind of problem is
the α-trimmed mean filtering,14 which is performed by first
sorting the remaining zooming factor values to get
{
zn

x (1), . . . , zn
x (k)

}
,

{
zn

y(1), . . . , zn
y(k)

}
, (6)

where zn
x (1) and zn

y(1) represent the minimum values, and
zn

x (k) and zn
y(k) represent the maximum values. Then, the

α-trimmed mean value is obtained by

zn
x = 1

k − 2[αk]

k−[αk]∑

j=[αk]+1

zn
x ( j), (7)

where [·] represents the greatest integer part and 0 ≤ α
< 0.5.

2.3 Scale-Adaptive Tracking Algorithm
The principle steps of the tracking algorithm that combines
the centroid-based target shifting with the centroid-based
scale adaptation can be described as follows:

1. Initialize the target window in the initial frame by any
motion detection algorithm.

2. Set a search window having the same center as the
target window but with a larger size in the next frame
and compute the color centroids within this window.
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Fig. 2 Experimental results with a cluttered background: (a) Result
with the Camshift algorithm, (b) result with the mean-shift-particle
filtering, (c) result with the mean-shift blob algorithm, (d) result with
Kwon–Lee (Ref. 9) algorithm, and (e) result of the proposed algo-
rithm.

3. Using the computed centroids, estimate the location
of the target in the next frame and shift the target
window to the estimated location.

4. Partition the target window into four subregions with
respect to the center and calculate all the zoom factors
in the four subregions.

5. Filter the zoom factors to obtain a pair of reliable
zoom factors, and resize the target window according
to the zoom factors.

6. Acquire the next frame and repeat steps 2–5.

3 Experimental Results
We performed several experiments and compared the results
to the Camshift,1 the meanshift blob,3 the mean-shift par-
ticle filtering,10 and the Kwon–Lee algorithm,9 which we
chose as a representative of patch-based tracking. For all the
algorithms, the background colors were not removed when
obtaining the initial target colors. Figure 2 shows the exper-
imental results when the background is cluttered. This is a
very difficult case for color-based tracking, because colors
in the background similar to the target’s colors are included

Fig. 3 Experimental results with fast enlargement: (a) Result with
Kwon–Lee (Ref. 9) algorithm and (b) result with proposed algorithm.

Table 1 Summarization of the localization and scaling errors.

Localization error Scale error

Sequence Algorithm (distance) (%)

rainy Camshift 181.98 367.2

Mean-shift particle 70.34 70.82

Mean-shift blob 71.98 73.2

Kwon–Lee methoda 68.98 69.4

Proposed 21.42 15.86

aReference 9.

in the target window. In this case, all the algorithms except
the proposed one fail in the tracking. Figure 3 shows the case
where the object experiences fast enlarging with a complex
background. The mean-shift blob and mean-shift particle-
filtering tracking fail in this case and are not shown here. The
Kwon–Lee algorithm can track the object with a small initial
target window, including not too much of the background
colors. In comparison, the proposed scheme succeeds in the
tracking even with a rather large target window. Table 1 shows
the quantitative error results for the rain sequence.
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