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Abstract. We present an analytical model for the desired kinematics of the starshade-telescope
relative motion during exoplanet direct imaging observations. We combine this model with an
existing deadbanding strategy published by the NASA JPL S5 Team to define a dynamics frame-
work for deadbanding simulations. Global results of these simulations show that the fuel usage
and the number of observation interruptions vary as a function of the target star ecliptic coor-
dinates and time, meaning there exist optimal times to observe particular targets. We combine
these results with the telescope pointing constraints due to the relative position of the Sun and
other bright solar system objects. We show that optimally scheduling an observation could result
in up to 30 more min of integration time and 26 fewer interruptions per observation, improve-
ments of almost 300% in some cases. We also show how phasing the start time of the telescope
on its halo orbit is paramount for ensuring optimal observations, providing up to 68 additional
min and 31 fewer interruptions per observation. Choosing an optimal halo phasing can also
increase, for some near-ecliptic target stars, the fraction of a year that the target is observable
from a few percent to more than 30%. © The Authors. Published by SPIE under a Creative Commons
Attribution 4.0 Unported License. Distribution or reproduction of this work in whole or in part requires full
attribution of the original publication, including its DOI. [DOI: 10.1117/1.JATIS.7.2.021209]

Keywords: starshades; station-keeping; scheduling; observations; simulations; exoplanets.

Paper 20102SS received Jul. 20, 2020; accepted for publication Dec. 16, 2020; published online
Jan. 11, 2021.

1 Introduction

Creating optimal observation schedules for exoplanet direct imaging with a starshade requires
careful consideration of mission constraints. Of the two primary starshade flight modes—
formation flying and slewing—the former requires higher precision control. To image exo-
Earths at contrast levels on the order of 10−10,1,2 the starshade must fly in very tight formation
with the telescope-star line of sight (LOS) at a distance of about a dozen Earth radii. The centroid
of the starshade cannot stray more than 1 m from the LOS to the star. This constraint prevents
diffraction effects from degrading the contrast levels and ruining the sensing of the Arago spot.3–5

This level of precision control, fortunately, has been demonstrated both analytically and in exper-
imental simulations.6–8 The starshade, in many designs, carries out this precision control using a
bipropellant engine: it is allowed to drift from its desired positioning and fires its thruster only
when it reaches the lateral tolerance of 1 m from the LOS.4,9 However, every burst of propellant
used to maneuver the starshade back toward its desired trajectory creates a transient plume that
reflects light and prevents a successful observation. The bi-prop engine creates discrete plumes
that disperse quickly rather than the continuous cloud formed by solar electric propulsion. Many
starshade designs instead use a separate SEP engine to conduct slew maneuvers.4,10,11 Propellant
cloud interruptions from discrete, bi-prop maneuvers add overhead to the observation time.
Optimal trajectories around the desired starshade position should maximize the drift time
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between pulses. It is also important to know these overheads for different target stars as the
telescope and starshade orbit the Sun in complicated patterns. This will help us to predict optimal
times where overheads are low for a particular target star of interest. We, therefore, categorize the
aims of this study into three major areas:

1. present a thorough, analytical model for the telescope-star LOS and the nominal starshade
kinematics;

2. develop a dynamics model based on deadbanding strategies outlined by the JPL S5 Team
in Ref. 9 to simulate observations; and

3. perform observation simulations with a large target list to determine when and where opti-
mal observation conditions exist.

First, we develop a model to describe the complex geometry of the starshade relative to the
telescope. Previous works, including Sirbu et al.,12 have developed equations for the relative
position based on vector components. We have instead elected to use an analytical model using
Euler angles to define the LOS from the telescope to a target star solely as a function of time and
the ecliptic coordinates of the star. Doing so yields concise formulas for the required pointing of
the telescope as well as the necessary starshade kinematics for perfect formation flying—the
condition where the starshade sits perfectly on the LOS at its constant separation distance.
We also use this model to define the injection velocities required to start an observation.
These velocities serve as boundary conditions for solving slew trajectories.13 These analytical
provide a clear look into the variables that affect the kinematics of the starshade.

Although these formulas define perfect formation flying for the starshade, the starshade is not
required to maintain these conditions exactly. Gravitational and other disturbance forces will pull
it away from the desired track toward some offset trajectory. Rather than continuously correct
these offsets—which would require more fuel usage and ruin observations with continuous
plumes—we can instead allow the starshade to drift from the defined desired track onto an offset
trajectory and only perform corrective maneuvers when it reaches the deadbanding limits set by
telescope contrast requirements. We study the dynamics of these offset trajectories using the
framework developed by Flinois et al.9 from the JPL S5 Team14 which assumes that, for short
trajectories, lateral differential forces are constant. Flinois et al.9 demonstrated Monte Carlo sim-
ulations of the offset dynamics using high-fidelity guidance, navigation, and control algorithms
and integrators. We conduct similar simulations of the offset dynamics, first by defining the
necessary frames using our analytical starshade model and then integrating our equations of
relative motion within a Python environment using standard scipy and numpy packages.15

Our open-source software provides accessibility and the ability to simulate deadbanding of the
starshade during observations with a wide set of parameters, including any target star coordinate
at any point throughout the mission time and any telescope orbit.

Our model and simulations provide results that are particularly useful as heuristics for exo-
planet direct imaging simulations. Full end-to-end direct imaging missions for starshades can be
simulated using EXOSIMS.16,17 At every decision step, a scheduling algorithm selects the next
best star to observe. Many metrics are considered in this scheduling step: how likely a star is to
have an orbiting exoplanet that is observable to your instrument,18–20 whether each star is observ-
able due to the relative location of the Sun or other bright solar system objects,13,20 and the
required fuel needed to slew to that next star,13,21 among others. The station-keeping fuel usage
has not been used as one of these metrics. The station-keeping fuel used during each observation
was previously calculated with a simplistic model within EXOSIMS. Increasing the precision of
the station-keeping fuel determination is important because long integration times are required to
photometrically detect and spectrally characterize the atmospheres of smaller, dimmer exopla-
nets. The station-keeping fuel use is dominated by the lateral forces pushing the starshade off the
desired LOS trajectory. The lateral component of the disturbance acceleration varies with the
LOS configuration relative to the Sun, Earth, and Moon. This causes variation in the fuel use
and required number of thruster firings as a function of time (or its position in orbit) and the
location of the target star on the sky. We determine optimal times for observing particular stars.
These are combined with keepout constraints to ensure that whenever stars are observable, the
starshade can optimally observe the target. The phasing of the telescope on its Sun–Earth L2 halo
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orbit—where the telescope is positioned at the mission start time—is also key to ensuring
optimally timed exoplanet observations.

In the work presented, we first define the reference frames and general dynamics used to
analyze motion in Sec. 2. We then give an overview of the starshade formation flying dynamics,
defining all forces acting on the starshade in Sec. 3. We then develop expressions for the desired
starshade formation flying kinematics and parallax correction acceleration in Sec. 4. Keepout
angles are defined for the telescope in Sec. 5. In Sec. 6, we integrate the relative dynamics of the
starshade and connect them to the model given by Flinois et al.9 We list the algorithms used to
simulate deadbanding within the lateral tolerances. Finally, we present global trends of key met-
rics in Sec. 7, such as daily fuel usage and thruster firings per observation, as a function of the
target star chosen and the mission elapsed time. We also show the relationship between the keep-
out zones and halo orbit phasing, presenting an optimal phasing for given target stars that will
always lead to optimal observations.

2 Dynamical Background

The formation flying dynamics of the starshade are derived in Sec. 3 using the Sun–Earth–Moon
model of the circular restricted three body problem (CR3BP).22 In this model, the Earth and
Moon are treated as a single entity located at their center of mass. The Earth–Moon barycenter
and the Sun are then assumed to orbit their common Sun–Earth–Moon barycenter (SEMB) on
circular orbits. This model captures most of the spacecraft dynamics and enables computational
efficiency when conducting simulations to produce formation-keeping costs.

2.1 Definition of Reference Frames

We first define an inertial frame I with basis vectors ê1, ê2, ê3 and origin O coinciding with the
SEMB point. Position components in the I frame are represented along each axis as ðX; Y; ZÞ
using the convention in Ref. 22. Scalar time derivatives of components will be denoted with
single dots ð _X; _Y; _ZÞ and double dots ðẌ; Ÿ; Z̈Þ for velocities and accelerations, respectively.
In this frame, the Sun and the combined Earth–Moon system both move in circular orbits about
O. We represent the Earth–Moon system barycenter as the point O 0 shown in Fig. 1. We then
define the rotating frame R, which is central to the CR3BP model, relative to our inertial frame.

Fig. 1 Diagram of telescope-starshade-target star vector configuration in the inertial frame relative
to origin O. Orbital path of the reference halo orbit is shown both in the inertial frame and as a
closed orbit relative to the Sun–Earth rotating frame (which is rotated from the inertial frame by an
angle t ). Star coordinates are defined by ecliptic longitude (λ) and latitude (β).
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The R rotates with the Sun and O 0 at a constant rate and shares the same origin O with basis
vectors x̂, ŷ, ẑ. Position components in the R frame are represented along each axis as ðx; y; zÞ.
Scalar time derivatives of these components will be denoted the same way as for the inertial
components. The I andR frames are initially aligned at some reference epoch which we assume
to be March 20, 2034. On this date, the vernal equinox coincides with the alignment of the lunar
orbital nodes with the ecliptic and is a useful reference for ephemerides approximations.

We use the CR3BP canonical units for all values unless otherwise specified. The distance unit
is equal to the Sun-O 0 separation, or 1 AU, and the time unit is scaled such that the mean motion
of the Sun and O 0 orbits is 1. As a consequence, the period of these orbits is equal to 2π and the
gravitational parameter G is 1. The mass unit is the sum of the primary masses and we define the
dimensionless parameter μ�, given as

EQ-TARGET;temp:intralink-;e001;116;603μ� ≡
m� þm☾

m⊙ þm� þm☾

: (1)

The individual masses for the primary bodies are then defined as μ⊙ ≡ 1 − μ� and μ�þ☾ ≡ μ�.
The individual Earth and Moon mass parameters μ� and μ☾ are their masses scaled by the sum of
the primary masses. With this parameter, we define the positions of the Sun andO 0, respectively,
as r⊙∕O ¼ −μ�x̂ and rO 0∕O ¼ ð1 − μ�Þx̂ in components of the rotating frame. In inertial frame
components, the positions vary as a function of time as

EQ-TARGET;temp:intralink-;e002;116;498½r⊙∕O�I ¼ −μ�

2
4 cos t
sin t
0

3
5; (2)

and

EQ-TARGET;temp:intralink-;e003;116;430½rO 0∕O�I ¼ ð1 − μ�Þ
"
cos t
sin t
0

#
; (3)

where t is the time elapsed from the reference epoch.
We also assume that any star in our catalog or target list will be stationary relative to this

inertial frame I for the duration of the mission. The position of a given star i is defined relative to
the origin O as

EQ-TARGET;temp:intralink-;e004;116;327½ri∕O�I ¼ 1

ϖ

"
cos β cos λ
cos β sin λ

sin β

3
5 (4)

in inertial frame components. The ecliptic latitutde β is measured from the ecliptic plane and the
ecliptic longitude λ is measured from the vernal equinox at our reference epoch. The parallax
angle ϖ is defined as tanϖ ¼ 1

Si
where Si is the stellar distance from O in canonical units.

Parallax angles and other stellar parameters are catalogued and calculated using the astropy
Python package.23 We can approximate tan ϖ ≈ϖ. Here we take O as an approximation of the
solar system barycenter. In reality, the solar system barycenter and the defined position of O has
varied on average by about 0.005 AU over the last 20 years according to ephemerides from the
JPL Horizons system.24 However, the worst possible viewing scenario—on a star at 1 pc located
at an ecliptic pole—would produce an ∼3.7 mas directional error. A star at 30 pc would create an
error of 0.17 mas. When compared to a telescope field of view of 12 × 12 arc sec2 for HabEx at
visible wavelengths, we can assume that treating stellar spherical coordinates relative to O has a
negligible effect for our simulation purposes.11 Proper motion can be applied to the model for
high-fidelity star tracking, but the effects will be negligible for the mission times considered.
Other effects like stellar aberration should be considered in the future for a higher fidelity model.
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2.2 General Dynamic Model

The motion of any spacecraft in either the inertial or rotating frame will be driven by their respec-
tive equations of motion. In the inertial frame, the inertial acceleration of some particle P is
governed, through Newton’s Second Law of Motion by

EQ-TARGET;temp:intralink-;e005;116;680

IaP∕O ¼
X

fP ¼ gP∕⊙ þ gP∕ð�þ☾Þ; (5)

where the superscript I represents a vector derivative with respect to the inertial frame,
P

fP is
the summation of specific forces on the particle P, gP∕⊙ is the gravitational specific force on P
from the Sun, and gP∕ð�þ☾Þ is the combined gravitational specific force on P from the Earth and
Moon. These forces are

EQ-TARGET;temp:intralink-;e006;116;595gP∕⊙ ¼ −μ⊙
rP∕⊙

krP∕⊙k3
; (6)

and

EQ-TARGET;temp:intralink-;e007;116;540gP∕ð�þ☾Þ ¼ −μ�þ☾

rP∕O 0

krP∕O 0 k3 ; (7)

noting that rP∕⊙ ¼ rP∕O − r⊙∕O and rP∕O 0 ¼ rP∕O − rO 0∕O. We define the inertial frame com-
ponents of P as ½rP∕O�I ≡ ½XP; YP; ZP�T to generate the relative positions to the Sun andO 0 using
Eqs. (2) and (3). The resultant acceleration of P from Eq. (5) is, therefore, dependent only on the
position of P and time. We refer to these equations of motion, namely Eq. (5), as the inertial
CR3BP (or ICR3BP) since they share the same nomenclature and canonical units.

The equations of motion in the rotating frame, the CR3BP for the same particle P, are given
similarly as

EQ-TARGET;temp:intralink-;e008;116;409

RaP∕O ¼ νP∕O þ
X

fP; (8)

where the superscript R represents a vector derivative with respect to the rotating frame R and
νP∕O encompasses the noninertial accelerations, which in rotating frame components is

EQ-TARGET;temp:intralink-;e009;116;349½νP∕O�R ¼
" xP þ 2_yP
yP − 2_xP

0

#
: (9)

The specific gravity forces are the same as in Eq. (5) but are written in rotating frame
components. The R frame components of both sides of Eq. (8) are

EQ-TARGET;temp:intralink-;e010;116;269

2
4 ẍP
ÿP
z̈P

3
5 ¼

2
6664
xP þ 2_yP þ ð−μ−xPÞð1−μÞ

krP∕⊙k3 þ ð1−μ−xPÞμ
krP∕O 0 k3

yP − 2_xP − ð1−μÞyP
krP∕⊙k3 −

μyP
krP∕O 0 k3

− ð1−μÞzP
krP∕⊙k3 −

μzP
krP∕O 0 k3

3
7775: (10)

Since the Sun andO 0 are stationary in theR frame, Eq. (8) is time-independent and therefore
an autonomous system.

2.3 Halo Orbit of the Telescope

The space telescope is assumed to be on a halo orbit about the Sun–(Earth + Moon) L2.
25,26 The

distance of L2 from the Earth–Moon barycenter is krL2∕O 0 k ¼ 0.010075 AU. Halo orbits are
generated using the rotating frame equations of motion in Eq. (10). Initial conditions that lead
to a periodic halo orbit are found using an iterative differential correction process combined with
a single shooting algorithm.21,27 The reference halo generated for our simulations is shown in
Fig. 2. It has a period of about 179 days, with amplitudes of 800,000 km in the y direction,
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400,000 km in the x direction and also above the ecliptic plane. We calculate sufficient points
throughout its period to create an interpolant which allows us to effectively know the full tele-
scope trajectory—position, velocity, and acceleration—as a function of time. In rotating frame
components and derivatives, these are

EQ-TARGET;temp:intralink-;e011;116;4032
64

rT∕OðtÞ
RvT∕OðtÞ
RaT∕OðtÞ

3
75
R

¼ ½xTðtÞ; yTðtÞ; zTðtÞ; _xTðtÞ; _yTðtÞ; _zTðtÞ; ẍTðtÞ; ÿTðtÞ; z̈TðtÞ�T; (11)

where the subscript T denotes the telescope. The first six terms, the telescope position and veloc-
ity components, are computed by integrating Eq. (10) in first-order form; the last three accel-
eration components are the resultant accelerations from directly evaluating Eq. (10) with the
previous six terms. We do not consider station-keeping of the telescope on this halo orbit, assum-
ing that the telescope is responsible for maintaining that reference halo trajectory.

Although generating the reference halo orbit in Fig. 2, we assumed the starting point at our
reference epoch to be at the southern-most point of the halo. Since the CR3BP equations are
autonomous, we can choose a different injection point on the halo orbit for the telescope, in-
dependent of time. We implement this variation of injection points as a halo orbit phase timeΔtP.
Different halo orbit phasings are shown in Fig. 2 over half the halo period. Although this may
affect the initial transfer fuel costs of the telescope and starshade from Earth, there exist many
trajectory options with marginal Δv changes.28 The effects of varying this phase for different
missions are discussed in Sec. 7.4.

Though it would be convenient to frame our model in the CR3BP rotating frame and take
advantage of its time independence during numerical integration, the starshade station-keeping
problem is inherently time dependent—we must either keep track of the moving Sun, Earth, and
Moon in the inertial frame or the moving stars in the rotating frame. We choose to develop our
station-keeping models in the inertial frame to ease the additions of perturbation forces and
because the line of sight definitions are more intuitive in inertial frame components. The tele-
scope’s trajectory on the halo orbit, in the inertial frame as a function of the computed rotational
frame components, is

Fig. 2 Reference halo orbit for the space telescope relative to L2. Telescope positions at different
halo orbit phasings are shown in red.
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EQ-TARGET;temp:intralink-;e012;116;735

2
4 rT∕O

IvT∕O
IaT∕O

3
5
I

¼

2
66666666666664

XTðtÞ
YTðtÞ
ZTðtÞ
_XTðtÞ
_YTðtÞ
_ZTðtÞ
ẌTðtÞ
ŸTðtÞ
Z̈TðtÞ

3
77777777777775
¼

2
66666666666664

xTðtÞ cos t − yTðtÞ sin t
xTðtÞ sin tþ yTðtÞ cos t

zTðtÞ
_xTðtÞ cos t − _yTðtÞ sin t − YTðtÞ
_xTðtÞ sin tþ _yTðtÞ cos tþ XTðtÞ

_zTðtÞ
ẍTðtÞ cos t − ÿTðtÞ sin t − 2 _YTðtÞ þ XTðtÞ
ẍTðtÞ sin tþ ÿTðtÞ cos tþ 2 _XTðtÞ þ YTðtÞ

z̈TðtÞ

3
77777777777775
: (12)

These time histories for the inertial halo trajectories are continuous and can also be inter-
polated over a finite mission time.

3 Starshade Formation Flying Dynamics

Science requirements for a starshade observation dictate that the starshade be positioned at a
constant separation distance from the telescope during an observation. This ensures the best
possible contrast at the desired observing wavelength. We, therefore, define a desired position
D for the starshade and state that rD∕T be constant along the LOS to a star. In reality, the distance
from the LOS can vary from this desired location. The actual position of the starshade S is rS∕O.
Both vectors are shown in Fig. 1. The purpose of formation-keeping maneuvers is then to keep
the difference between the desired and actual positions, namely

EQ-TARGET;temp:intralink-;e013;116;457rS∕D ¼ rS∕O − rD∕O; (13)

within the lateral limits that still guarantee high-contrast imaging. These are 1 m laterally from
the LOS and 250 km axially along the LOS. Differentiating the positional difference vector in
Eq. (13) twice with respect to time results in

EQ-TARGET;temp:intralink-;e014;116;389

IaS∕D ¼ IaS∕O − IaD∕O: (14)

Expanding the acceleration of the desired starshade position and grouping terms results in

EQ-TARGET;temp:intralink-;e015;116;343

IaS∕D ¼ ðIaS∕O − IaT∕OÞ − IaD∕T: (15)

The dynamics of the formation flying error—the deviation of the actual starshade from its
desired trajectory due to the disturbance acceleration IaS∕D—consists of the relative dynamics

ðIaS∕O − IaT∕OÞ between the starshade and telescope modified by the acceleration IaD∕T of the
desired relative position relative to the telescope. We use Eq. (15) to numerically integrate the
deviation of the starshade trajectory and implement formation keeping costs in Sec. 6.2. We
derive and discuss the three individual terms of Eq. (15) before discussing simulations. The
inertial acceleration of the telescope IaT∕O is known as a function of time from Eq. (12).
The acceleration of the actual starshade IaS∕O is discussed in more detail in Sec. 3.1. The desired
starshade acceleration IaD∕T , often called the parallax correction, is derived from geometric
constraints on the starshade kinematics in Sec. 4 and is discussed specifically in Sec. 4.5.

3.1 Summed Forces on the Starshade

We develop equations for the starshade directly in the inertial frame using an enhanced version of
the ICR3BP in Eq. (5) to find IaS∕O. To add higher fidelity to the ICR3BP, we split Eq. (7) into
separate Earth and lunar gravity specific forces. A solar radiation pressure (SRP) specific force is
also added as a perturbing force. The full equations of motion of the starshade is therefore

EQ-TARGET;temp:intralink-;e016;116;94

IaS∕O ¼
X

f S ¼ gS∕⊙ þ gS∕� þ gS∕☾ þ pS∕⊙; (16)
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where pS∕⊙ is the specific force on S due to SRP. The gravitational specific force from the Sun on
the starshade S gS∕⊙ is the same as in Eq. (2). The Earth and lunar gravity specific forces are
derived from a more detailed model in Sec. 3.2. The new set of equations in Eq. (16) will be
referred to as the enhanced ICR3BP.

3.2 Earth and Lunar Gravity

We add more detail to the Earth–Moon model by including their individual orbital positions
about O 0. We assume a circular orbit for the Moon about O 0 with radius r and inclination
i. The precession of the lunar nodes relative to the ecliptic plane is represented by a constant
lunar nodal rate _Ω of 1 revolution per 18.59 years, converted to canonical units. We assume that
the lunar nodes cross the ecliptic at our reference epoch. The lunar ephemerides are then

EQ-TARGET;temp:intralink-;e017;116;587

½r☾∕O 0 �I ¼ −r☾

2
64
sinðn☾tÞ sinð _Ω☾tÞ cos i☾ þ cosðn☾tÞ cosð _Ω☾tÞ
sinðn☾tÞ cosð _Ω☾tÞ cos i☾ − cosðn☾tÞ sinð _Ω☾tÞ

sinðn☾tÞ sin i☾

3
75: (17)

where r☾ ¼ 384;748 km, n☾ ¼ 2π
T☾
, i ¼ 5.15 deg, and T☾ is the lunar orbital period of 29.53 days

converted to canonical units. The full lunar orbit is calculated as r☾∕O ¼ r☾∕O 0 þ rO 0∕O. The
lunar gravity specific force on the starshade is

EQ-TARGET;temp:intralink-;e018;116;481gS∕☾ ¼ −μ☾
rS∕☾

krS∕☾k3
(18)

noting that the gravitational parameter G is equal to 1 because of canonical units. We can sim-
ilarly define an orbit for the Earth, though more simply, as

EQ-TARGET;temp:intralink-;e019;116;413½r�∕O 0 �I ¼ −r�

2
4 cosðn�tÞ
sinðn�tÞ

0

3
5; (19)

where n� ¼ n☾ and r� ¼ μ☾
μ�
r☾ ¼ 4730 km. The full lunar orbit is calculated as

r�∕O ¼ r�∕O 0 þ rO 0∕O. The gravitational specific force due to the Earth on the starshade is then

EQ-TARGET;temp:intralink-;e020;116;329gS∕� ¼ −μ�
rS∕�

krS∕�k3
: (20)

Both forces are time dependent and have varying magnitude ranges as shown in Table 1.

Table 1 Maximum specific force magnitudes on the desired starshade position. The maximum
lateral and axial components are separately calculated, directions are relative to the LOS.

Total acceleration Lateral component Axial component

kgD∕⊙k (mm∕s2) 5.85 5.84 5.85

kgD∕�k (μm∕s2) 318.49 282.43 318.48

kgD∕☾k (μm∕s2) 8.15 6.91 8.15

kpD∕⊙k (μm∕s2) 3.31 0.02 3.31

kIaT∕Ok (mm∕s2) 6.10 6.10 6.10
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3.3 Solar Radiation Pressure Force

Due to the size of the starshade, which can have a radius as large as 72 m for the HabEx design,
we implement an SRP force on the starshade. The model of the SRP force is given by Refs. 29
and 30. The SRP specific force is

EQ-TARGET;temp:intralink-;e021;116;680pS∕⊙ ¼ 2
PA
mS

cos α½b1r̂S∕⊙ þ ðb2 cos αþ b3Þn̂�; (21)

wheremS is the mass of the starshade, α is the pitch angle of the starshade pointing relative to the
Sun-starshade line, P is the solar radiation pressure at L2, A is the starshade area based on the
starshade radius RS, and b1, b2, and b3 are the optical parameters whose starshade-relevant
values are taken from Ref. 31. The solar radiation pressure P is an inverse square law

EQ-TARGET;temp:intralink-;e022;116;589P ¼ P0

�
r0
rS∕⊙

�
2

; (22)

where P0 ¼ 4.563 μN∕m2 and r0 ¼ 1 AU. The pitch angle can be computed from the relation

EQ-TARGET;temp:intralink-;e023;116;531 cos α ¼ r̂S∕⊙ · n̂: (23)

Assuming no tilting of the starshade during an observation, the normal vector n is assumed to
point along the LOS to a star as is explained in Sec. 4.

4 Desired Kinematics of the Starshade

The last term to consider from Eq. (15) is the parallax correction term. These are geometrical
constraints placed on the starshade desired motion to ensure its trajectory keeps up with the
changing LOS from the telescope to a star. We first define the geometry of the LOS in general
terms and use that definition to derive the desired starshade kinematics in the inertial frame.

We now have analytic formulas for the LOS from the telescope to any target star assuming a

known orbit for the telescope in an inertial frame. Knowing the look vector b̂3, we can now
define the full kinematics—position, velocity, and acceleration—of the starshade on its nominal
or fully aligned trajectory.

4.1 Tracking the Line of Sight Using Euler Angles

The LOS from the telescope T to a target star i is defined using the vector triad shown in Fig. 1,
also written as

EQ-TARGET;temp:intralink-;e024;116;272ri∕O ¼ ri∕T þ rT∕O: (24)

The inertial position of the star ri∕O is given in Eq. (4) and the telescope position rT∕O is
known from Eq. (12). We now solve for the relative position of the star to the telescope ri∕T and
do so component-wise as has been done previously in Ref. 32. We have elected, however, to
further introduce Euler angles to define the target star LOS from the telescope. We develop
analytical formulas for these LOS tracking angles and their derivatives. This helps us to define
tracking rates for the telescope to aid mission planning and design. These Euler angles also help
us rigorously to define the lateral and axial directions in which starshade perturbations will occur
and provide formulation that leads to greater insight of the starshade formation flying problem.

We use a 3-2-3 Euler angle sequence to define the LOS from the telescope to the target star as
illustrated in Fig. 3. We first rotate the inertial frame I about its third axis by an azimuth angle θ,
effectively a rotation on the ecliptic plane to create an auxiliary frame A. We then rotate this
frame about its second axis by a polar angle ϕ, creating a new frame B. We complete the Euler
angle set in Sec. 6.1 once we define the forces on the starshade. These first two Euler angles are
sufficient to define the direction from the telescope to the target star relative to the inertial frame.
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The relative position of the target star to the telescope in inertial frame components is fully
defined as

EQ-TARGET;temp:intralink-;e025;116;549½ri∕T �I ¼ ST

2
4 sin ϕ cos θ
sin ϕ sin θ

cos ϕ

3
5; (25)

where ST is the distance from the telescope to the target star. Note that all variables, components,
and time derivatives of components are given in canonical units unless otherwise specified. We
combine Eqs. (24) and (25) to solve for the Euler angles and the telescope-star distance:

EQ-TARGET;temp:intralink-;e026;116;457ST ¼ sin β −ϖZT

ϖ cos ϕ
; (26)

EQ-TARGET;temp:intralink-;e027;116;401 tan θ ¼ ϖYT − sin λ cos β

ϖXT − cos β cos λ
; (27)

EQ-TARGET;temp:intralink-;e028;116;367 tan ϕ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðϖXT − cos β cos λÞ2 þ ðϖYT − sin λ cos βÞ2

p
sin β −ϖZT

; (28)

and all are given as functions of known or measurable values: time, the ecliptic coordinates and
parallax distance of the target star, and the position of the telescope in inertial frame components.
Note that we have dropped the ðtÞ notation from the telescope coordinates only for clarity. An
unfortunate consequence is the existence of a singularity in the angular kinematics at ϕ ¼ 0 and
ϕ ¼ π. However, current mission concepts only consider stars up to ∼30 pc away as candidates
for exoplanet detections, which means we do not encounter targets located exactly at the ecliptic
poles. Moreover, our selected Sun keepout angles, discussed in Sec. 5, exclude ecliptic coor-
dinates near the poles. If, in the future, target stars near the ecliptic are selected, one could
redefine the Euler angle set to place the singularities elsewhere (perhaps changing the definition
of ϕ to be a latitude rather than colatitude).

4.2 Line of Sight Tracking Rates

The tracking rates for the LOS to a given target star are a function of star coordinates and time.
Differentiating the Euler angles in time yields the angular rate of change of the azimuthal angle

EQ-TARGET;temp:intralink-;e029;116;160

_θ ¼ cos2 θ
d
dt

�
ϖYT − sin λ cos β

ϖXT − cos β cos λ

�
; (29)

EQ-TARGET;temp:intralink-;e030;116;104

_θ ¼ ϖð− _XT sin θ þ _YT cos θÞ; (30)

and the angular rate of change of the polar angle

Fig. 3 Auxiliary frames used to define the target star LOS from the telescope. Two Euler angles
are used: an azimuth angle (θ) and a polar angle (ϕ).
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EQ-TARGET;temp:intralink-;e031;116;735

_ϕ ¼ cos2 ϕ
d
dt

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðϖXT − cos β cos λÞ2 þ ðϖYT − sin λ cos βÞ2

p
sin β −ϖZT

#
; (31)

EQ-TARGET;temp:intralink-;e032;116;681

_ϕ ¼ ϖ

�
cos ϕð _XT cos θ þ _YT sin θÞ þ _ZT

sin ϕ

�
; (32)

both as functions of time dependent variables—the trajectory of the telescope and Euler angles—
as well as the time-independent parallax angle of the target star. The tracking rates scale with
parallax, meaning they are smaller for target stars that are further away. We differentiate again to
find the angular accelerations of the tracking angles:

EQ-TARGET;temp:intralink-;e033;116;608θ̈ ¼ ϖ½ðŸT − _XT
_θÞ cos θ − ðẌT þ _YT

_θÞ sin θ�; (33)

EQ-TARGET;temp:intralink-;e034;116;563θ̈ ¼ ϖ

2
½ϖ _X2

T sinð2θÞ − 2ϖ _XT
_YT cosð2θÞ −ϖ _Y2

T sinð2θÞ − 2ẌT sin θ þ 2ŸT cos θ�; (34)

and
EQ-TARGET;temp:intralink-;e035;116;533

ϕ̈ ¼ ϖ

sin ϕ
f½ðẌT cos θ þ ŸT sin θ − _XT

_θ sin θ þ _YT
_θ cos θÞ cos ϕ

− ð _XT cos θ þ _YT sin θÞ _ϕ sin ϕþ Z̈T � − _ϕ2 cos ϕg: (35)

We have also given approximate values for the second derivatives after eliminating all ϖ2

terms since these terms are very small and approach machine precision. The angular acceler-
ations are then

EQ-TARGET;temp:intralink-;e036;116;437θ̈ ≈ϖðŸT cos θ − ẌT sin θÞ; (36)

EQ-TARGET;temp:intralink-;e037;116;393ϕ̈ ≈ϖ

�
cos ϕðẌT cos θ þ ŸT sin θÞ þ Z̈T

sin ϕ

�
: (37)

An important note is that, while we are assuming a halo orbit for the telescope, these equa-
tions work for any telescope orbit so long as its time history is known.

4.3 Positioning the Starshade

The desired trajectory of the starshade D relative to the telescope T is derived using our geo-
metric LOS definitions as a function of the known telescope inertial trajectory, star location, and
time. The desired placement of the starshade is perfectly along the LOS. Adherence to the axial
distance constraints along the LOS enables observations in specific science bands based on the
telescope and starshade size.7 In reality, the actual starshade position S can vary by up to 250 km
axially but only 1 m laterally from the LOS.4 We assume, for the desired trajectory D, a constant
separation distance s and measure deviations from the desired trajectory using Eq. (15).
The starshade, therefore, can be located relative to the telescope using the B-frame which,
by definition, points toward the target star as follows:

EQ-TARGET;temp:intralink-;e038;116;198rD∕T ¼ sb̂3: (38)

The position vector of the starshade from the origin of the inertial frame, in inertial frame
components, is therefore

EQ-TARGET;temp:intralink-;e039;116;139½rD∕O�I ¼ ½rD∕T þ rT∕O�I ¼
2
4 s sin ϕ cos θ þ XT

s sin ϕ sin θ þ YT

s cos ϕþ ZT

3
5: (39)

Knowing the position vector of the starshade as a function of time and star coordinates allows
us to define initial conditions when integrating the equations of motion in Eq. (15).
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4.4 Starshade Velocities in Inertial and Rotating Frames

Before fully deriving the desired starshade velocity, we must first define the angular velocities of
each auxiliary frame in Fig. 3. The angular velocity of the B frame in the inertial frame is given
by

EQ-TARGET;temp:intralink-;e040;116;680

IωB ¼ IωA þ AωB ¼ _θâ3 þ _ϕâ2; (40)

or, in component form:

EQ-TARGET;temp:intralink-;e041;116;638½IωB�I ¼
2
4− _ϕ sin θ

_ϕ cos θ
_θ

3
5: (41)

Due to our assumption of constant separation distance, the starshade velocity relative to the
telescope in the B-frame is zero, or BvD∕T ¼ 0. We use this to derive the inertial velocity relative
to the telescope as

EQ-TARGET;temp:intralink-;e042;116;546

IvD∕T ¼ BvD∕T þ IωB × r; (42)

or

EQ-TARGET;temp:intralink-;e043;116;501½IvD∕T �I ¼ s

2
4 _ϕ cos ϕ cos θ − _θ sin ϕ sin θ
_ϕ cos ϕ sin θ þ _θ sin ϕ cos θ

− _ϕ sin ϕ

3
5: (43)

The magnitude of this relative inertial velocity is shown in Fig. 4 over half the reference halo
orbit period in SI units. Finally, we complete the vector triad with the telescope’s inertial velocity
to get

(a) (d)

(b) (e)

(c) (f)

Fig. 4 Magnitude in SI units of the (a)–(c) inertial velocity and (d)–(f) acceleration of the starshade
relative to the telescope on a reference halo orbit as a function of time after mission start. Target
stars are placed at distance of 1 pc from originO. Both colorscales are logarithmic. Relative veloc-
ities are small and the relative accelerations can be considered negligible for stars further
than 1 pc.
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EQ-TARGET;temp:intralink-;e044;116;735

IvD∕O ¼ IvD∕T þ IvT∕O; (44)

where the inertial velocity of the telescope IvT∕O is given in Eq. (12). This final inertial velocity,
given in inertial components, is the desired starshade velocity for formation flying during an
observation.

Throughout this study, we will primarily use kinematic derivatives in the inertial frame; how-
ever, kinematics relative to the rotating frame R of the Sun and Earth are still of interest for
solving other starshade dynamics problems, primarily starshade slews between observations.
Note that because of our defined canonical units the angular velocity of the rotating frame
relative to the inertial frame is IωR ¼ −RωI ¼ ½0;0; 1�TI . We can derive the rotating frame veloc-
ity necessary to begin an observation on any star (i.e., the injection velocity at the boundaries of
the slew trajectory) by first computing the velocity of the nominal starshade relative to the tele-
scope

EQ-TARGET;temp:intralink-;e045;116;577

RvD∕T ¼ IvD∕T þ RωI × rD∕T; (45)

or

EQ-TARGET;temp:intralink-;e046;116;532½RvD∕T �I ¼ s

2
4 _ϕ cos ϕ cos θ − _θ sin ϕ sin θ þ sin ϕ sin θ
_ϕ cosϕ sin θ þ _θ sin ϕ cos θ − sin ϕ cos θ

− _ϕ sin ϕ

3
5; (46)

given in inertial frame components. We can convert toR-frame components by rotating through
an angle t about the ẑ in Fig. 1. The full rotating frame velocity of the starshade relative to the
origin is

EQ-TARGET;temp:intralink-;e047;116;439

RvD∕O ¼ RvD∕T þ RvT∕O; (47)

where RvT∕O is defined in Eq. (11). These calculations ensure that the proper injection velocity is
used in the slew boundary value problem rather than assuming the starshade matches inertial
velocities with the telescope as in Refs. 13 and 21. In Sec. 6.2, we will define the optimal injec-
tion velocity assuming we allow offset motion from the desired trajectory.

4.5 Parallax Correction Acceleration for Starshade

Finally, we can derive the full, desired starshade acceleration in the inertial frame as well as the
parallax correction term for Eq. (15). First, we define the angular acceleration vector

EQ-TARGET;temp:intralink-;e048;116;296

IωB ≡I d
dt

ðIωBÞ ¼I d
dt

ðIωA þ AωBÞ ¼ θ̈â3 þ ðϕ̈â2 − _ϕ _θ â1Þ; (48)

or

EQ-TARGET;temp:intralink-;e049;116;242½I _ωB�I ¼
2
4−ϕ̈ sin θ − _ϕ _θ cos θ

ϕ̈ cos θ − _ϕ _θ sin θ
θ̈

3
5; (49)

which is equivalent to the time derivative of Eq. (40). Noting, again, that the desired starshade
position relative to the telescope is constant in the B-frame, we find that

EQ-TARGET;temp:intralink-;e050;116;161

IaD∕T ¼I d
dt

ðIvD∕TÞ ¼B d
dt

ðIvD∕TÞ þ IωB × ðIvD∕TÞ: (50)

We make the following substitutions:

EQ-TARGET;temp:intralink-;e051;116;107

IaD∕T ¼B d
dt

ðBvD∕T þ IωB × rD∕TÞ þ IωB × ðBvD∕T þ IωB × rD∕TÞ; (51)
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EQ-TARGET;temp:intralink-;e052;116;723

IaD∕T ¼ I _ωB × rD∕T þ IωB × IωB × rD∕T: (52)

We then calculate the desired starshade acceleration in the inertial frame relative to the tele-
scope, or the parallax correction acceleration:

EQ-TARGET;temp:intralink-;e053;116;687½IaD∕T �I ≈ s

2
4 ϕ̈ cos ϕ cos θ − θ̈ sin ϕ sin θ
ϕ̈ cos ϕ sin θ þ θ̈ sin ϕ cos θ

−ϕ̈ sin ϕ

3
5 (53)

after eliminating terms on the order of _θ2 and _ϕ2, since they inherently contain ϖ2 terms and
would, therefore, be negligible for stars at distances >1 pc. To get the desired starshade accel-
eration relative to the origin, we need to add the inertial telescope acceleration:

EQ-TARGET;temp:intralink-;e054;116;592

IaD∕O ¼ IaD∕T þ IaT∕O; (54)

which is given in Eq. (12). We have found, however, that for the specific range of star parallaxes
in our target list (namely, >1 pc) the relative acceleration of the starshade to the telescope in
Fig. 4 is orders of magnitude smaller than the telescope’s acceleration, which is on the order of
6 mm∕s2. These formation flying accelerations would be more notable for closer objects, such as
bodies in our solar system.

5 Keepout Angles

With our new Euler angle definitions, we define analytic formulas for the telescope keepout
angles. Keepout angles limit the telescope pointing at a particular time in its mission: any star
that is within a given angular separation from the Sun or another bright object is not observable,
as light from the foreground object would contaminate the observation, and requires the tele-
scope to wait until it is within viewing range. Upper bounds on these pointing angles are also
imposed due to incident light requirements on the solar panels as well as the danger of contami-
nation by reflected light from the starshade during observations.5 Keeping track of the dynamic
keepout regions is vital for observation scheduling and is especially important when considering
overheads and shared telescope time with other science instruments.

To define the keepout regions for some bright body in the solar system B, we assume full
knowledge of its ephemerides in the inertial frame as functions of time: ½rB∕O�I ≡ ½xB; yB; zB�TI .
We define the angle between the target star and bright body as

EQ-TARGET;temp:intralink-;e055;116;310 cos κB ¼ rB∕T · b̂3
krB∕Tk

; (55)

where rB∕T ¼ rB∕O − rT∕O, so that

EQ-TARGET;temp:intralink-;e056;116;249 cos κB ¼ ðxB − xTÞ sin ϕ cos θ þ ðyB − yTÞ sin ϕ sin θ þ ðzB − zTÞ cos ϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxB − xTÞ2 þ ðyB − yTÞ2 þ ðzB − zTÞ2

p : (56)

This expression is a function only of the ecliptic coordinates of the target star and time (if the
orbit of both the telescope and bright body are known). We reiterate the fact that we can sub-
stitute any orbit for the telescope in this formulation. Further simplifications are made in accor-
dance with the enhanced ICR3BP framework by assuming simple orbits for the Sun, Earth, and
Moon. The ephemerides of each are given in Eqs. (2), (19), and (17) and make Eq. (56) more
explicitly a function of time. Similar simplifications can be made for the other planets of the solar
system, though they are not considered here.

Our implementation of keepout constraints is demonstrated in Fig. 5. We analytically com-
pute the angles from the telescope LOS to the Sun, Earth, and Moon as a function of time and star
coordinates. We then check to see if each of these angles fit within the upper and lower bounds
κmin and κmax found in Table 2. Stars that meet the criteria
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EQ-TARGET;temp:intralink-;e057;116;374κ⊙;min < κ⊙ðtÞ < κ⊙;max; (57)

EQ-TARGET;temp:intralink-;e058;116;340κ�;min < κ�ðtÞ < κ�;max; (58)

EQ-TARGET;temp:intralink-;e059;116;317κ☾;min < κ☾ðtÞ < κ☾;max; (59)

at a specific mission time t are shown in the unshaded regions of Fig. 5. Stars that do not meet the
criteria are within the yellow, blue, and gray regions of the Sun, Earth, and Moon keepouts,
respectively. We implement κmax for the Sun only to account for reflected light from the star-
shade. This model can be updated to include a κmax term for Earthshine. As a conservative case,
the minimum keepout constraints for all bright bodies is set by the telescope scarf angle, assumed
to be 45 deg. However, it is uncertain based on the current literature how the phase function of
the Earth and Moon would diminish light contamination on the telescope. For these reasons, we
include two separate classifications of minimum keepout angle κmin for the Earth and Moon: case
1 (C1) with an optimistic minimum keepout angle of 5 deg and case 2 (C2) with more
conservative minimum keepout constraints set by the telescope scarf angle. These time-
dependent keepout constraints will affect the timings of observations and are used in Sec. 7
to filter results.

6 Simulating Deadbanding Maneuvers

We now have a full model for the starshade dynamics relative to the desired trajectory.
Deviations from the desired trajectory are numerically integrated to study when and how often
correction maneuvers must be used to maintain lateral and axial tolerances during an observa-
tion. From the right-hand side of Eq. (15), we define a lateral disturbance acceleration:

Fig. 5 Keepout regions in ecliptic coordinates 30 days after mission start. Only targets in the
unshaded regions are observable at the time shown. Yellow, blue, and gray regions depict keep-
out zones due to the Sun, Earth, and Moon, respectively. Paths throughout the sky relative to the
telescope are shown for the three bodies.

Table 2 Solar system keepout constraints and parameters in canonical units.

Body κmin;C1 (deg) κmin;C2 (deg) κmax (deg) Mass Orbital radius ðr BÞ ω

Sun 45 45 83 0.999997 3.040433 × 10−6 1

Earth 5 45 180 3.040433 × 10−6 0.999997 1

Moon 5 45 180 3.6923866 × 10−8 2.571881 × 10−3 12.37
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EQ-TARGET;temp:intralink-;e060;116;735ΔaS ≡
�X

f S − IaT∕O
�
− IaD∕T; (60)

where the parallax correction term can be neglected. The final equations of motion are then

EQ-TARGET;temp:intralink-;e061;116;694

IaS∕D ¼ ΔaS (61)

showing that the disturbance acceleration on the starshade S drives its deviation from its desired
trajectory IaS∕D.

6.1 Parabolic Trajectory Approximations

We can make a further simplification of the relative dynamics in Eq. (61) by assuming that the
specific forces at the actual starshade location S are similar to those at the desired location D or

EQ-TARGET;temp:intralink-;e062;116;574

X
f S ≈

X
fD: (62)

Because these specific forces evolve over long timescales, noting that the period of the halo
orbit is 6 months, we can assume that the forces are constant over the relatively shorter obser-
vation times and rewrite Eq. (61) as

EQ-TARGET;temp:intralink-;e063;116;502

IaS∕D ≈ ΔaD; (63)

where

EQ-TARGET;temp:intralink-;e064;116;457ΔaD ≡
X

fD − IaT∕O (64)

and is constant throughout the simulated observation time. Of primary interest are the lateral

disturbances relative to the LOS which drive motion in the b̂1 − b̂2 plane. We define a new frame
C to better study the motion lateral to the LOS as shown in Fig. 6. The frame is centered at the
desired position of the starshadeD and rotated by a final roll angle ψ to complete the Euler angle
set relative to the inertial frame I . We define the axial and lateral components of the lateral
disturbance acceleration as

EQ-TARGET;temp:intralink-;e065;116;348aA ≡ ΔaD · b̂3; (65)

EQ-TARGET;temp:intralink-;e066;116;303aL ≡ ΔaD − aAb̂3; (66)

where the axial direction points along the telescope-target LOS and the lateral direction lies on a
plane perpendicular to the LOS. The roll angle is defined as

EQ-TARGET;temp:intralink-;e067;116;267 tan ψ ¼ aL · b̂1
−aL · b̂2

; (67)

Fig. 6 Final frame for dynamics, rotated from B-frame so that the lateral differential force points
opposite the second axis.
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such that ĉ2 ¼ −âL. In this frame, we can define the parabolic trajectories derived in Ref. 9. We
need these approximations as an initial guess for the required velocities to maintain the dead-
banding strategy. Throughout deadbanding, we still integrate the full relative equations of
motion in Eq. (61) and use the parabolic guesses from Eq. (63) as initial conditions.

We define the coordinates of the new C-frame as ½rS∕D�C ¼ ½η; σ; ζ�TC to derive the parabolic
trajectories. We scale these coordinates by the deadbanding radius Rd according to Ref. 9.

Similarly, the velocities in this frame are scaled by
ffiffiffiffiffiffiffiffiffiffiffi
RdaL

p
, time by

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Rd∕aL

p
, and accelerations

by aL where aL ≡ kaLk is the magnitude of the lateral disturbance acceleration.9 The second
derivatives of these new coordinates are given by

EQ-TARGET;temp:intralink-;e068;116;623

h
IaS∕D

i
C
≡

2
4 η̈
σ̈
ζ̈

3
5
C

¼
2
4 0

−1
aA∕aL

3
5
C

: (68)

Noting that the terms on the right-hand side of this equation are all constants, Flinois et al.9

developed equations for parabolic flight within the deadbanding radius. The idea behind this is
that the global optimal trajectory would be one that travels back and forth along the diameter of
the deadbanding radius. This is in the C-frame where the lateral disturbance acceleration always
points downward. Figure 7 demonstrates example trajectories within the deadbanding tolerances
in the plane lateral to the LOS. Although one can maximize the time of flight for an individual
trajectory, the ending location of the starshade centroid within the deadbanding radius is not
guaranteed to be in an optimal location for a long subsequent flight. The strategy, then, is
to move the starshade as quickly as possible toward the “well” of the deadbanding radius, point
½0;−1� in the η − σ plane in normalized units, so that it can travel as close as possible along the
vertical diameter (i.e., the longest possible flight). The necessary equations for parabolic flight
that target an endpoint at the deadbanding “well” require an intercept point tangent to the dead-
banding radius as shown in Fig. 7. This intercept point, as a function of the initial location on the
deadbanding radius ½η0; σ0�T, is

EQ-TARGET;temp:intralink-;e069;116;397½ηi; σi�T ¼
8<
:

½η0; σ0� σ0 > 0.5
1ffiffi
2

p
h
sgnðη0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ σ0

p
;

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − σ0

p i
σ0 ≤ 0.5

; (69)

Fig. 7 Example of a deadbanding simulation. Starshade starts at the nominal position D with an
exaggerated initial velocity. A thruster firing is triggered when crossing the inner threshold. The
second drift ends at the “well" of the deadbanding radius while the third drift is time optimal.
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where the sgn function returns 1 or −1 for positive and negative arguments, respectively. The

velocity components in this frame are ½IvS∕D�C ≡ ½_η; _σ; _ζ�C; the initial velocity for a parabola with
the initial location ½η0; σ0�T, intercept point at ½ηi; σi�T and endpoint ½0;−1�T are

EQ-TARGET;temp:intralink-;e070;116;696

_η0 ¼ −
sgnðη0Þffiffiffi

2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σið1 − σiÞ

p
; (70)

EQ-TARGET;temp:intralink-;e071;116;639 _σ0 ¼ −
ηi
σi

_η0 þ
ηi − η0

_η0
; (71)

with time of flight Δt ¼ η0
_η0
in scaled units. If the initial point is exactly at the bottom of the

deadbanding radius, the velocities then become

EQ-TARGET;temp:intralink-;e072;116;593 _σ0 ¼
8<
:

ð3σi − 1Þ
ffiffiffiffiffiffiffiffi
1þσi
2σi

q
σ0 < 0.5

ð1 − σiÞ
ffiffiffiffiffiffiffiffi
1þσi
2σi

q
σ0 ≥ 0.5

; (72)

with _η0 ¼ 0. These are the optimal injection velocities for maximizing drift time.

6.2 Algorithm for Starshade Deadbanding Trajectories

To integrate the equations of motion for the relative starshade dynamics, we need initial condi-
tions. Given the choice of starting locations, it is best to start the starshade on the maximal drift
trajectory. At the beginning of a deadbanding trajectory, regardless of time and target star, the
starshade must then be positioned at the well of the deadbanding radius. We can combine the
initial parabolic velocities in Eq. (72) with the desired starshade velocity in Eq. (44) as follows:

EQ-TARGET;temp:intralink-;e073;116;425

IvS∕O ¼ IvS∕D þ IvD∕O; (73)

or

EQ-TARGET;temp:intralink-;e074;116;380½IvS∕O�I ¼ ICC

� 0

_σ0
ffiffiffiffiffiffiffiffiffiffiffi
RdaL

p
0

�
þ
2
4 _XT þ _ϕ cos ϕ cos θ − _θ sin ϕ sin θ
_YT þ _ϕ cos ϕ sin θ þ _θ sin ϕ cos θ

_ZT − _ϕ sin ϕ

3
5; (74)

where ICC is the direction cosine matrix associated with rotation from the C to I frames. This
initial state (if we position the starshade at the deadbanding “well”) leads to maximum drift times
in the idealized model. We use these initial conditions to begin the deadbanding simulations. They
can also be used as slewing boundary conditions as discussed in Sec. 4.4.

We first integrate the equations of motion stated in Eq. (61) using these idealized initial con-
ditions and estimate a time of flight based on the parabolic trajectory. Note that within these
equations, unlike the ideal model in Sec. 6.1, we track the changing forces due to the offset
trajectory. Another thing to note is that the relative dynamics are framed in the inertial frame,
so the initial conditions have to be rotated from the C frame. We incorporate similar lateral
thresholds to those described in Ref. 9 although with different values: an inner threshold
Rd;inner of 0.9 m and an outer threshold Rd;outer of 0.95 m. These are implemented to allow small
overshoots of the trajectories due to the fact that the initial velocity conditions are calculated
using the ideal equations. Event functions within the initial value problem solver are triggered
when the lateral position of the starshade crosses these thresholds. Inner threshold crossings are
recorded while outer threshold crossings terminate the trajectory integration. If the outer thresh-
old is crossed in the þσ direction of the C-frame, an immediate burn is required; otherwise, the
next trajectory is resolved at the exiting of the inner threshold.

We define a burn as fully impulsive—a discrete and instantaneous change in velocity at the
crossing of a threshold. We note the position ½η1; σ1�T of the current crossing point and use the
ideal equations, again, to define an intercept point and the initial velocities ½_η1; _σ1�T required for a
parabolic flight ending at the well of the deadbanding radius. To calculate a new parabola, the
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lateral acceleration aL is recalculated at the current time. The Δv in the lateral direction is then
the difference between the new, parabolic velocities and the integrated velocities from the last
drift. To counteract axial drift along the LOS, we assume a brake-damping strategy, in which we
cancel the ζ-direction velocity at every lateral burn. This strategy is not meant to cross the entire,
much larger axial control region (�250 km) but instead to dampen the axial drift and lessen the
impact on observations.9 The total Δv for a single crossing of the lateral radius is

EQ-TARGET;temp:intralink-;e075;116;663Δvnþ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð−_ζn;cÞ2 þ ð_ηnþ1 − _ηn;cÞ2 þ ð _σnþ1 − _σn;cÞ2

q
; (75)

where ½_ηn;c; _σn;c; _ζn;c�TC are the integrated velocities of the n’th trajectory in the C-frame at the

threshold crossing and ½_ηnþ1; _σnþ1; _ζnþ1�TC are the parabolic guesses for the next trajectory toward
the “well.” We catalogue these burns, drift times, and the number of crossings over a set obser-
vation period during an individual deadbanding simulation.

7 Global Trends and Simulation Results

Deadbanding simulations are now conducted for a target list of stars in the manner described in
Sec. 6.2. The full results are intended to capture formation flying costs as a function of the
ecliptic coordinates of the target, time, and the halo orbit phasing parameter. Metrics are first
developed to describe the different costs associated with starshade formation flying. Resulting
heatmaps of these metrics are then shown as a function of the parameters previously described.
We then discuss how the lateral component of the disturbance acceleration on the starshade
drives these cost metrics. Separate deadbanding simulations are also run without any axial con-
trol to demonstrate how shorter observations could be conducted while still meeting axial dis-
tance tolerances. Finally, we discuss the effect of varying the halo orbit phasing parameter on the
formation flying costs.

7.1 Station-Keeping Metrics for Observation Scheduling

We conducted station-keeping simulations for a grid of stars distributed uniformly in ecliptic
longitude and latitude. Ecliptic longitudes were chosen in steps of 10 deg; ecliptic latitudes were
chosen in steps of 10 deg from−80 deg to 80 deg. Each simulation was allotted a set observation
duration or simulated observation time tobs, during which we calculated deadbanding trajectories
using the algorithm in Sec. 6.2. Integration times for observations can range from <1 h to multi-
ple weeks.17 A 6-h tobs was, therefore, selected to represent short integration times. To capture the
longer integration times, we conducted deadbanding simulations for every star at different days
throughout a 1-year mission. We catalogued a number of different metrics from these simulations
and present the results of these simulations in Fig. 8. Other starshade parameters are presented in
Table 3.

All metrics are presented as functions of the target star ecliptic coordinates (represented as
individual heat maps) at specific times in the mission. First, we catalogued the number of thresh-
old crossings N which corresponded to the required number of thruster firings throughout tobs.
We then define the operator hiobs to symbolize the average value over a simulated observation.
For a given metric M and individual Mi calculated during each trajectory j between burns, the
average of the metric is calculated using the operator as

EQ-TARGET;temp:intralink-;e076;116;178hMiobs ¼
1

N

XN
j

Mj: (76)

The first two metrics we present in Fig. 8 are hΔviobs in the top row followed by the ζmax in
the second row. These are the average Δv used during the burn (both in the axial and lateral
directions) and the final axial distance from D along the LOS, respectively. Next, we catalogued
the number of threshold crossings N followed by the average drift time between thruster firings
hΔtDiobs. The above metrics are independent of the type of chemical propulsion and thrusters
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assumed for station-keeping, they only vary with mass and area (due to SRP) of the starshade.
For the last two metrics, we used parameters shown in Table 3 based on the HabEx starshade
design.10,11 We define the fuel mass used during a single trajectory j as

EQ-TARGET;temp:intralink-;e077;116;96Δmj ¼ m0

�
1 − e−

Δvj
g0Isp

�
; (77)

Fig. 8 Maps of different station-keeping metrics, averaged over a simulation time of 6 h at three
different mission times. The averaged metrics include total Δv , axial drift distance, number of
thruster firings, drift times, fuel mass used per day, and the portion of the simulation time spent
firing thrusters.

Table 3 Starshade deadbanding simulation parameters.

Parameter Value

Rd 1 m

Rd;inner 0.9 m

Rd;outer 0.95 m

m0 10,930 kg

RS 36 m

s 76,600 km

Isp 308 s

FT 2 × 22 N

tobs 6 h

SI 1 pc
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from Tsiolkovsky’s ideal rocket equation where Isp is the specific impulse of the thruster, m0 is
the initial spacecraft wet mass, and g0 is a constant for the acceleration due to gravity.

33 We create
a metric for the fuel usage per observation time, given as

EQ-TARGET;temp:intralink-;e078;116;699h _miobs ¼
1

tobs

XN
j

Δmj; (78)

where N is the number of thruster firings and tobs is the observation time. We can also estimate
the thruster firing time during each lateral correction using the equation for specific impulse

EQ-TARGET;temp:intralink-;e079;116;623FT ¼ g0Isp _m; (79)

where _m is the mass flow rate and FT is the maximum thrust of the engine in a single direction.
We assume the thruster value in Table 3 which is a sixth of the maximum thrust listed in Ref. 11.
If we assume the mass flow rate to be a constant for these short bursts, we can rewrite the
equation as

EQ-TARGET;temp:intralink-;e080;116;544ΔtT;j ¼
g0IspΔmj

FT
(80)

to estimate the duration of each thruster firing j. We then define a new metric

EQ-TARGET;temp:intralink-;e081;116;488hfpiobs ¼
1

tobs

XN
j

ΔtT;j; (81)

which represents the fraction of time fp (relative to the simulation time), in which the thruster is
firing and therefore interrupting an observation.

The resulting formation flying costs are shown in Fig. 8, with colorbars chosen so that lighter
colors represent lower costs (or more favorable conditions). We compared our results to those in
Ref. 9, namely the worst case drift times at the worst possible gravity gradient. They estimated a
worst case drift time for HabEx, with our same starshade separation distance, of ∼12 min using
a different telescope quasi-halo orbits. Our worst case drift htDiobs was ∼10 min. Our results,
therefore, match those in Ref. 9 with a 16% error despite the different halo orbit sizes and per-
turbation models. We also used a less strict Rd value of 0.9 m rather than 0.7 m. Our largest
lateral disturbance acceleration is on the order of 38 μm∕s2 compared to their 31.2 μm∕s2 due to
our larger halo orbit.

With the lateral and axial control schemes described in Sec. 6.2, we see large variances of
costs depending on the ecliptic coordinates of the intended target as well as the mission time.
Mass used per day could vary up to 18 kg per day if a star is observed at the wrong time of year.
The drift time per burn htDiobs averages between 10 min and 2.5 h. Although the fraction of
observation time spent firing a thruster (and interrupting the observation) varies from a fraction
of a percent to about 1.5%, there can be more than 30 interruptions per 6-h observation time.
Observation scheduling, therefore, must take these time-varying costs to avoid conducting an
observation of a particular star when the starshade is in an unfavorable, or high cost,
configuration.

7.2 Contribution Due to Lateral Disturbance Acceleration

The maximum axial distances in the second row of Fig. 8 show that our axial control law mit-
igates axial drifts very effectively. Recall that the axial positioning tolerance for the starshade is
250 km in either direction. The resulting 1 km variance in axial distance indicates that perhaps a
less conservative control law should be employed in the future to relax fuel costs. We conducted
separate deadbanding simulations without axial control—eliminating the axial Δv burn that was
previously conducted at every lateral crossing of the starshade—to isolate the lateral control
strategy and its effectiveness. This helps us simulate the costs of shorter observations, as these
could successfully perform formation flying without a single axial maneuver and still remain
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within the axial tolerances. The results are shown in Fig. 9 using the same metrics as in Fig. 8.
There are notable differences from the previous simulations in fuel costs. The hΔviobs values in
the first row are now only in the lateral direction and are reduced by almost an order of magni-
tude. The fuel mass used per day and hfPiobs are both also reduced when only conducting lateral
burns. The maximum axial drift during the simulated 6-h observation, at most, is 15 km. With a
simple extrapolation, we can estimate that the starshade will reach the axial tolerance of 250 km
in about 4 days during the worst case conditions.

The metrics in both Figs. 8 and 9 all exhibit similar patterns or regions of extrema. The
hΔviobs plot was seemingly inverted when switching to a lateral-only control law. The resultant
heatmap now matches the same pattern of extrema seen in the N, hΔtDiobs, h _miobs, and hfPiobs
heatmaps. Switching to a lateral-only control law did not significantly change the pattern of
extrema nor the magnitudes of the N and hΔtDiobs metrics. These cursory observations suggest
that the pattern of extrema is driven by a common cause. We determine that cause to be the
relevant component of the disturbance acceleration. The lateral component of the disturbance
acceleration aL, for instance, drives the N and hΔtDiobs metrics. The axial component aA drives
ζmax. The fuel costs have both an axial and lateral component; each ensures adherence to axial
and lateral tolerances independently.

There are three distinct regions of extrema in the metric heatmaps: two poles and a banded
region arcing over the ecliptic coordinates. Target stars within these regions are in favorable
configurations for observation generally because of fewer interruptions and lower fuel costs.
This pole-banded stucture is explained by several factors depicted in Fig. 10. In the first column,
we plot the lateral component of the disturbance acceleration aL on the starshade desired position
as a function of the target star ecliptic coordinates and the time throughout the mission. The
location of the favorable metric regions in Fig. 8 match the regions of smaller lateral acceler-
ations in Fig. 10. Small lateral accelerations allow the starshade to drift longer between the lateral
tolerances, decrease the number of threshold crossings and reduce the amount of fuel needed for
lateral corrections. The timing of the maximum aL coincides with the telescope being at its

Fig. 9 Maps of different station-keeping metrics, averaged over a simulation time of 6 h at three
different mission times. No axial burns are conducted here, so the starshade is free to drift in the
axial direction.
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southern-most point—as well as the closest point to the Sun, Earth, and Moon—of its halo orbit,
where gravitational forces are strongest.

We also note that the pole-banded structure of the metric maps and lateral differential accel-
erations all evolve over time. The formation flying geometry combines with the direction of the
gravitational forces to produce this effect. The location of the pole regions, for example, is very
near the location of the Sun, Earth, and Moon in the sky relative to the starshade. The Sun, Earth,
and Moon locations are indirectly shown in the second and third columns of Fig. 10. Here we
reproduce the first column with an added filter based, respectively, on cases 1 and 2 keepout
regions discussed in Sec. 5. When the starshade is aligned with stars at the minimum poles, the
differential acceleration ΔaD mostly aligns in the axial direction along the LOS due to the direc-
tion of gravitational forces as shown in Fig. 11(a). Lateral disturbances are, therefore, reduced.
Because axial disturbances are increased, the starshade drifts further in the axial direction with-
out any added control as shown in the second row of Fig. 9. Though the two poles align in the
direction of

P
fD, which is dominated by gravitational forces of the Sun and Earth, the lateral

differential acceleration is still nonzero due to the direction of IaT∕O shown in Fig. 11(a). The
opposite pole is created when the telescope views a star opposite, or anti-parallel to, the LOS in
Fig. 11(a):

P
fD is still aligned with the LOS but in the opposite direction. The banded structure

is caused by similar reasons: in those regions, the specific forces on the starshade align nearly
antiparallel with the telescope acceleration vector in the lateral direction to the LOS. This results
in a small lateral component of the disturbance acceleration as shown in Fig. 11(b). We also note
that, from Fig. 10, the magnitude of the lateral disturbance acceleration is periodic and shares the
periodicity of the halo orbit—about 180 days.

(a) (b) (c)

Fig. 10 Lateral component of the lateral disturbance acceleration on the desired starshade posi-
tion as a function of stellar location and time in column (a). Columns (b) and (c) show lateral force
with combined keepout regions for cases 1 and 2, respectively. Different mission times are shown
in each row.
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7.3 Scheduling Observations to Optimize Drift Time

The geometry and time evolution of this configuration drives the lateral disturbance acceleration
on the starshade and directly drives many metrics shown in Figs. 8 and 9. We can simulate and
tabulate these metrics as functions of target star coordinates and mission time to predict the
location of favorable observation in the future and plan missions more effectively. We show
the effects of optimal scheduling in Table 4 for a few target stars. We ran deadbanding simu-
lations for each star with the same parameters in Table 3 used to generate the results in Figs. 8
and 9. Simulations were conducted at different times throughout a year, taken in intervals of 10
days. Metrics associated with fuel cost—hΔviobs, h _miobs, and hfPiobs—are split into lateral and
axial components L and A, denoted by subscripts. We filtered the results using telescope keepout
constraints, applying both case 1 and case 2 keepout scenarios. Stars showing only one column
had the same results regardless of keepout conditions. We then found the optimal time topt for
scheduling an observation by choosing the date with the highest average drift time htDiobs. We
also found the least optimal date regarding htDiobs and recorded the difference between the two in
Table 4. The percent change from using the optimal over worst date is also recorded.

The improvements due to optimal scheduling vary per star coordinates, but overall each star
experiences an increase in drift time and decrease in number of thruster firings. The northern,
mid-latitude stars experience the greatest improvements with HD 219143 seeing an average 30
more min of drift time and 26 fewer interruptions per observation. Stars spaced closely in ecliptic
longitude also experience optimal observation configurations on similar dates, as evidenced by
51 Eri, and GJ 179. Although the lateral components of the fuel metrics decreased with the
optimal drift time date, the fuel usage in the axial direction increased. Favorable drift times are
caused by small lateral accelerations which inversely lead to large axial accelerations. For short
target observations—those on the order of tobs ¼ 6 h—the starshade would not exceed the axial
distance tolerance and we can essentially ignore the axial fuel costs to simulate a lateral-only
control law. For longer target observations, those that may take days, we can use these axial costs
as a upper bound and plan less conservative axial control laws in the future. The fuel savings
associated with lateral corrections, however, could result in up to 11 kg fewer spent per day.
These simulations, metrics, and optimizations can be conducted for any target list to create opti-
mal schedules for direct imaging missions that save fuel and increase the chances of successful
exoplanet characterizations. Though we define the optimal observation date for each star based
on drift times, one can develop more intricate cost functions that incorporate all metrics.

(b)(a)

Fig. 11 Two formation flying scenarios that lead to minimum lateral disturbance acceleration, or
aL. The apparent Sun, Earth, and Moon locations in the sky are labeled. (a) The disturbance accel-
eration aligns mostly in the axial direction of the LOS resulting in pole minima and (b) the two
components of the disturbance acceleration mostly cancel out in the lateral direction resulting
in banded minima. Diagrams are meant to show exaggerated configurations.
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7.4 Phasing the Halo Orbit

We consider one more parameter for the formation flying geometry: the phasing of the halo orbit
discussed in Sec. 2.3. This phasing parameter allows us to alter the telescope-starshade geometry
at mission start and its evolution throughout the mission. As demonstrated in Sec. 7.1, the time
evolution of the starshade-star configuration determines the locations of minimum lateral dis-
turbance acceleration. The halo phasing, therefore, allows us to control which—and when—stars
are in favorable observation configurations. This approach is especially powerful in dealing with
keepout constraints highlighted in Sec. 5. The time-dependent keepout regions filter out target
coordinates at different mission times based on the relative positioning of the Sun, Earth, and
Moon. Changing the halo phasing alters these relative positions so that certain stars are obscured
at different times. We calculate the movement of keepout regions over a 1-year span and plot the
portion of time each target is visible to the telescope in Fig. 12 for fixed halo phases and the two
keepout conditions for Earth and Moon constraints. Stars at the highest latitudes are constantly
obscured by the maximum keepout angle of the Sun. Stars at middle latitudes are visible for
longer because they fit inside the keepout constraint annulus shown in Fig. 5. Central latitude
visibility varies due to the motion and relative configuration of the Sun, Earth, and Moon for the
case 2 keepout scenario; observation percentage is nearly constant for the Earth and Moon in
case 1. Case 2, therefore, prevents more stars from being observed throughout the mission. We
can control the amount of visibility of central and middle latitude targets in case 2 by varying the
halo orbit phasing. Given high-priority targets, perhaps with known exoplanets or high com-
pleteness values, results from Fig. 12 can be used to determine favorable mission phasings for
optimal mission design.

We also use the halo orbit phasing to optimize the lateral disturbance acceleration on the
starshade and combine it with the keepout results. We calculated the maximum lateral disturb-
ance acceleration felt by the starshade when observing a grid of target stars in ecliptic coordinates
throughout a year of mission time, applying the keepout filters when necessary. Figure 13 shows

(a) (b)

Fig. 12 Portion of time (over a 1-year span) during which individual target stars are out of keepout
regions and therefore visible to the telescope. Case 1 (a) and case 2 (b) keepout conditions are
applied, with stricter Earth and Moon minimum angles in the latter. Plotted with different halo phas-
ing angles in each row.
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these results as we vary the halo orbit phasing. We also show the starting locations of the tele-
scope corresponding to each of the halo orbit phasings (shown in the R-frame).

For a fixed halo orbit phase, we see larger lateral disturbance accelerations for higher latitude
stars over the mission. For mid-latitude stars, regions of low lateral acceleration occur at specific
longitudes. The halo orbit phasing dictates the longitudinal location of these minima and could
provide reduction in lateral forcing by a factor of up to 8.8. These minima coincide with regions
of longer visibility according to Fig. 12, which reinforces the importance of aligning the halo
orbit phasing with high-priority targets.

7.5 Scheduling Observations with Halo Orbit Phasing

We conducted a set of simulations to illustrate the use of these halo orbit phasings. In the pre-
vious section, we showed how the halo orbit phasings affect lateral disturbance accelerations on
the starshade during observations. Here we conducted station-keeping simulations for a select
number of stars and tabulated the resultant costs in Table 5. For each star, we ran deadbanding
simulations on a coarse grid of different halo orbit phasings ΔtP (from 0 to 180 days in steps of
10 days) and a 1-year mission life span (with a step size of 5 days) for each phasing. We also
applied keepout constraints on the results based on the two keepout cases as we did in Sec. 7.1.
We found the optimal combination of halo orbit phasing ΔtP and mission time t leading to
maximum average drift times hΔtDiobs. We also found the worst case combination of ΔtP and
t for drift times. Table 5 shows the difference between metrics at those time combinations as well
as the percent change from choosing the optimal over the worst case scenario. The results are
more emphatic than those in Table 4: average drift times can be increased by more than 1 h in
some cases. Number of thruster firings can also be reduced by 31 instances over the 6-h tobs. In
general, axial fuel usage was high while lateral fuel usage was low for the optimal scenarios
versus the worst case scenarios.

With the same simulation results used in Table 5, we also studied how the selection of an
optimal halo phasing affects the metrics over an entire mission. We define the operator h it to
denote the average value of a metric throughout the mission life span. For a given metric M and
average values hMkiobs for each specific mission time k, we calculate the double-averaged metric
using the given operator as

(a) (b)

Fig. 13 (a) Halo orbit in the Sun–Earth rotating frame with four different phasing times for the
telescope. (b) Maximum lateral force on starshade over a 1-year mission lifetime as a function
of target star ecliptic coordinates. Includes keepout changes over the mission, both case 1 (a) and
2 (b) scenarios. Halo orbit phasing time varies per row.
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EQ-TARGET;temp:intralink-;e082;116;735hhMiobsit ¼
1

K

XK
k¼0

hMkiobs; (82)

where K is the number of mission times specified. We take the resulting average drift times
hΔtDiobs over the mission time t to find hhΔtDiobsit. We then define the optimal halo orbit phas-
ing ΔtP;opt as the corresponding halo orbit phasing that maximizes hhΔtDiobsit. With this def-
inition, we attempt to find a phasing that globally optimizes all possible observations of the star.
We also calculate the least optimal halo orbit phasing and recorded the differences in Table 6. We
see similar trends to those shown through scheduling optimization in Sec. 7.1: choosing the
optimal halo orbit phasing position at the start of the mission improves almost every metric
over the mission lifespan. We see larger improvements again for mid-latitude stars, though the
difference is less pronounced than for the scheduling optimization. Average drift times can be
increased by up to 21 min in the case of 47 UMa with 14 fewer interruptions through this strat-
egy. As with the scheduling optimization, this strategy can be performed for any target list of
stars. It is important to note that the selection of a specific halo orbit phasing, though it may
optimize observation conditions for some targets, may create unfavorable conditions for other
targets. Mission planners should then determine a halo orbit phasing at mission start that will
produce the most favorable observations throughout an entire mission for high-priority targets.

8 Conclusions

In this paper, we presented a comprehensive analytical model for starshade formation flying as a
function of known quantities. This model provides a clear framework for the fundamental geo-
metric constraints of the telescope-starshade configuration A clear derivation of differential
forces also helped bridge the gap between the starshade orbit geometry and JPL S5 work on
station-keeping. Running simulations with publicly available Python packages, though at some-
what lower fidelity, helps bring station-keeping results to full end-to-end mission simulators like
EXOSIMS. We present a number of metrics that, after generating them offline and storing them
in interpolate-able look-up tables, can be used for both target selection and future scheduling of
observations within these mission simulations for the first time. Finally, we highlight the impor-
tance of halo orbit phasing for optimizing observation scheduling. When selecting target stars
known to harbor exoplanets, it is vital to allot as much time as possible for detection and spectral
characterization. Our methods maximize the amount of time these targets are visible to the tele-
scope and in fuel-conserving geometries, ensuring high-quality observations. These configura-
tions are pivotal for mission design of observations with starshades. Integration times may also
take multiple weeks to fully characterize the exoplanet; fuel costs can easily accumulate over
these long observations. For these reasons, it is important to know formation flying costs before-
hand. We can simulate costs to fuel usage and observation interruptions with EXOSIMS and use
them to predict optimal times for target observation. We can also vary halo orbit phasings so that
high-priority stars are visible for a bigger fraction of the mission due to keepout constraints. If we
can ensure minimal fuel usage—with as much uninterrupted observation time as possible over a
mission lifetime—we can increase the number of observations that can be performed as well as
our chances of successful exoplanet detections and characterizations.

Acknowledgments

This work was supported by NASA JPL SURP grant RSA No. 1618976. We would also like
to thank Thibault Flinois for helpful guidance regarding the JPL S5 Team’s deadbanding
strategies.

References

1. D. J. DeMarais and M. R. Walter, “Astrobiology: exploring the origins, evolution, and
distribution of life in the universe,” Annu. Rev. Ecol. Evol. Syst. 30, 397–420 (1999).

Soto, Savransky, and Morgan: Analytical model for starshade formation flying with applications. . .

J. Astron. Telesc. Instrum. Syst. 021209-30 Apr–Jun 2021 • Vol. 7(2)

https://doi.org/10.1146/annurev.ecolsys.30.1.397


2. T. D. Robinson et al., “Earth as an extrasolar planet: Earth model validation using epoxi
Earth observations,” Astrobiology 11(5), 398–408 (2011).

3. M. C. Noecker, “Alignment of a terrestrial planet finder starshade at 20-100 megameters,”
Proc. SPIE 6693, 669306 (2007).

4. S. Seager et al., “The Exo-S probe class starshade mission,” Proc. SPIE 9605, 96050W
(2015).

5. S. B. Shaklan et al., “Error budgets for the Exoplanet Starshade (Exo-S) probe-class mission
study,” Proc. SPIE 9605, 96050Z (2015).

6. L. M. Palacios, A. Harness, and N. J. Kasdin, “Hardware demonstration of starshade
formation flying sensing and control algorithms,” Proc. SPIE 11117, 111170N (2019).

7. M. Bottom et al., “Starshade formation flying. I: Optical sensing,” J. Astron. Telesc.
Instrum. Syst. 6(1), 015003 (2020).

8. Y. Kim et al., “Optical demonstration of a starshade at flight Fresnel numbers,” Proc. SPIE
10400, 104001A (2017).

9. T. L. B. Flinois et al., “Starshade formation flying. II: Formation control,” J. Astron. Telesc.
Instrum. Syst. 6, 029001 (2020).

10. G. M. Kuan et al., “Overview of the 4m baseline architecture concept of the habitable exo-
planet imaging mission (HabEx) study,” Proc. SPIE 10698, 106980Q (2018).

11. B. S. Gaudi et al., “The habitable exoplanet observatory (HabEx) mission concept study
final report,” arXiv:2001.06683 (2020).

12. D. Sirbu et al., “Stationkeeping for an occulter-based exoplanetary imaging mission,” in
Guidance and Control 2010—Adv. Astron. Sci., 33rd Annu. AAS Rocky Mount.
Guidance and Control Conf., pp. 129–148 (2010).

13. G. Soto et al., “Parameterizing the search space of starshade fuel costs for optimal obser-
vation schedules,” J. Guidance, Control Dyn. 42, 2671–2676 (2019).

14. T. Flinois et al., S5: Starshade Technology to TRL5 Milestone 4 Final Report: Lateral
Formation Sensing and Control, Jet Propulsion Laboratory Publications (2018).

15. P. Virtanen et al., “SciPy 1.0: Fundamental algorithms for scientific computing in Python,”
Nat. Methods 17, 261–272 (2020).

16. D. Savransky and D. Garrett, “WFIRST-AFTA coronagraph science yield modeling with
EXOSIMS,” J. Astron. Telesc. Instrum. Syst. 2, 011006 (2016).

17. R. M. Morgan et al., “Standard exoplanet yield evaluation for the LUVOIR and HabEx
concept studies,” Proc. SPIE 11117, 1111701 (2019).

18. R. A. Brown, “Single-visit photometric and obscurational completeness,” Astrophys. J. 624,
1010–1024 (2005).

19. D. Garrett and D. Savransky, “Analytical formulation of the single-visit completeness joint
probability density function,” Astrophys. J. 828, 20 (2016).

20. D. Savransky, N. J. Kasdin, and E. Cady, “Analyzing the designs of planet-finding
missions,” Publ. Astron. Soc. Pac. 122(890), 401–419 (2010).

21. E. Kolemen and N. J. Kasdin, “Optimization of an occulter-based extrasolar-planet-imaging
mission,” J. Guidance Control Dyn. 35(1), 172–185 (2012).

22. W. S. Koon et al., Dynamical Systems, the Three-Body Problem and Space Mission Design,
1.2 ed., Marsden Books (2011).

23. Astropy Collaboration et al., “The Astropy Project: building an open-science project and
status of the v2.0 Core Package,” Astron. J. 156, 123 (2018).

24. J. D. Giorgini et al., “JPL’s on-line solar system data service,” in AAS/Div. Planet. Sci.
Meeting , Vol. 28, Abstracts No. 28 (1996).

25. R. W. Farquhar, “The utilization of halo orbits in advanced lunar operations,” NASA Tech.
Note 1, 1–101, NASA TN D-6365 (1971).

26. K. C. Howell, “Three-dimensional, periodic, ‘halo’ orbits,” Celest. Mech. 32, 53–71 (1984).
27. K. Howell and H. Pernicka, “Numerical determination of Lissajous trajectories in the

restricted three-body problem,” Celest. Mech. 41, 107–124 (1988).
28. D. C. Folta and C. Webster, “Transfer trajectory options for servicing Sun-Earth-Moon libra-

tion point missions,” in Proc. 29th AAS/AIAA Space Flight Mech. Meeting (2019).
29. C. McInnes, Solar Sailing: Technology, Dynamics and Mission Applications, Springer-

Praxis Books (1999).

Soto, Savransky, and Morgan: Analytical model for starshade formation flying with applications. . .

J. Astron. Telesc. Instrum. Syst. 021209-31 Apr–Jun 2021 • Vol. 7(2)

https://doi.org/10.1089/ast.2011.0642
https://doi.org/10.1117/12.736053
https://doi.org/10.1117/12.2190378
https://doi.org/10.1117/12.2190384
https://doi.org/10.1117/12.2528437
https://doi.org/10.1117/1.JATIS.6.1.015003
https://doi.org/10.1117/1.JATIS.6.1.015003
https://doi.org/10.1117/12.2273287
https://doi.org/10.1117/1.JATIS.6.2.029001
https://doi.org/10.1117/1.JATIS.6.2.029001
https://doi.org/10.1117/12.2314241
https://doi.org/10.2514/1.G003747
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1117/1.JATIS.2.1.011006
https://doi.org/10.1117/12.2530668
https://doi.org/10.1086/429124
https://doi.org/10.3847/0004-637X/828/1/20
https://doi.org/10.1086/652181
https://doi.org/10.2514/1.53479
https://doi.org/10.3847/1538-3881/aabc4f
https://doi.org/10.1007/BF01358403
https://doi.org/10.1007/BF01238756


30. B. Dachwald et al., “Parametric model and optimal control of solar sails with optical
degradation,” J. Guidance Control Dyn. 29(5), 1170–1178 (2006).

31. T. Glassman et al., “Creating optimal observing schedules for a starshade planet-finding
mission,” in IEEE Aerosp. Conf. Proc. (2011).

32. D. Sirbu, C. Vad Karsten, and N. J. Kasdin, “Dynamical performance for sciencemode
stationkeeping with an external occulter,” Proc. SPIE 7731, 773152 (2010).

33. M. J. L. Turner, Rocket and Spacecraft Propulsion: Principles, Practice and New
Developments, 3rd ed., Springer-Praxis Books (2009).

Gabriel J. Soto received his PhD in aerospace engineering from Cornell University in December
2020. His research has focused on fuel cost heuristics, formation flying, and trajectory design of
spacecraft—notably starshades—in astrophysics and exoplanet direct imaging missions. He is
now a postdoctoral research associate at the University of Wisconsin-Madison studying the
optimization of integrated nuclear and renewable energy system design and operation.

Dmitry Savransky is an assistant professor at Sibley School of Mechanical and Aerospace
Engineering of Cornell University, where he runs the Space Imaging and Optical Systems
Laboratory. His research focuses on the application of estimation and computer vision tech-
niques to control and autonomously operate advanced optical systems and on the design and
optimization of astrophysics-focused space missions.

Rhonda Morgan received her BS degree in electrical engineering from Caltech and her MS and
PhD degrees in optical sciences from the University of Arizona. She is a senior optical engineer
at the Jet Propulsion Laboratory of California Institute of Technology. Her interests include
exoplanets, high-contrast imaging, and advanced technologies for space telescopes. She is the
HabEx technologist and lead of the Exoplanet Program Office Yield Standards Team.

Soto, Savransky, and Morgan: Analytical model for starshade formation flying with applications. . .

J. Astron. Telesc. Instrum. Syst. 021209-32 Apr–Jun 2021 • Vol. 7(2)

https://doi.org/10.2514/1.20313
https://doi.org/10.1117/12.856361

