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Abstract. The capabilities of CubeSats have grown significantly since the first of these small
satellites was launched in the early 2000s. These capabilities enable a wide range of mission
profiles, with CubeSats emerging as viable platforms for certain space-based astronomical
research applications. The Educational Irish Research Satellite (EIRSAT-1) is a CubeSat being
developed as part of the European Space Agency’s Fly Your Satellite! program. In addition to its
educational aims, the mission is driven by several scientific and technological goals, including
goals related to a novel gamma-ray instrument for the detection of bright transient astrophysical
sources, such as gamma-ray bursts. This work provides a detailed description of the software
development life-cycle for EIRSAT-1, addressing the design, development and testing of robust
flight software, aspects of payload interfacing, and risk mitigation. The described design-to-test-
ing approach was implemented to establish, prior to launch, that EIRSAT-1 can perform its
intended mission. Constraints and challenges typically experienced by CubeSat teams, which
can impact the likelihood of mission success, are considered throughout this work, and lessons
learned are discussed. The aim of this work is to highlight the advanced capabilities of CubeSats
while providing a useful resource for teams implementing their own flight software. © The
Authors. Published by SPIE under a Creative Commons Attribution 4.0 International License.
Distribution or reproduction of this work in whole or in part requires full attribution of the original
publication, including its DOI. [DOI: 10.1117/1.JATIS.9.1.017002]
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1 Introduction

The concept of CubeSats—nanosatellites measured in units (U) of 10 cm × 10 cm × 10 cm and
weighing ∼1.3 kg∕U1—was first proposed in the late-1990s as a teaching tool for university-
level students.2,3 More than 20 years and 1800 launches later,4 CubeSats are now considered by
many to be a disruptive space innovation.5–7 The CubeSat design specification defines a compact
satellite form factor,1 facilitating the use of commercial off-the-shelf components (COTS) and
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drastically reducing the cost of space entry compared with conventional approaches, which typ-
ically employ large, one-off spacecraft.8 The resulting accessibility of CubeSats drives their
growing popularity, with each five-year period since 2000 witnessing 24, 78, 415, and 1109
CubeSats launches, respectively.4 In parallel, and as a result of recent advances in technology
miniaturization, the capabilities of CubeSats have also grown such that their mission objectives
now span technology demonstration, communications, Earth observation, and science.7 Their
usefulness for diverse research areas in astrophysics, heliophysics, and deep space exploration
are becoming more widely understood and acknowledged.9–12

As one example, the multi-messenger era of astronomy, in which astrophysical sources are
studied through electromagnetic, gravitational wave (GW), and particle channels, was boosted
in 2017 with the first joint detection of a gamma-ray burst (GRB)13 and a GW signal from the
merger of two neutron stars.14

There are significant observational challenges to making progress beyond this first detection.
The gamma-ray sources are short-lived (tens of seconds long), and their locations are unpredict-
able. To maximize the chances of more joint GRB and GW detections, all-sky coverage of the
gamma-ray sky is required. Although this is mostly achieved by the current fleet of γ-ray sat-
ellites (e.g., INTEGRAL,15 the Neil Gehrels Swift Observatory,16 Fermi,17,18 and ASTROSAT19),
these missions are operating well beyond their intended lifetimes. For example, INTEGRAL was
launched in 2002 with a 2-5 year mission lifetime.

For the detection of bright, transient sources such as GRBs, CubeSats offer a low-cost, fast-
paced alternative to traditional large gamma-ray astronomy missions. One example is GRBAlpha
—a 1U CubeSat that was launched in March 2022 and is equipped with a miniaturized γ-ray
sensor20 to detect GRBs. GRBAlpha also aims to test the in-flight performance of technologies
for a constellation of CubeSats, known as CAMELOT.21,22 As of June 2022, GRBAlpha has
successfully detected at least five GRBs. Other examples of GRB-dedicated CubeSat missions
include VZLUSAT-2,23 BurstCube,24 and HERMES.25

To advance the use of CubeSats as viable platforms for gamma-ray astrophysics research, this
work presents details on CubeSat flight software (Sec. 2). More specifically, a detailed descrip-
tion of the design (Secs. 3 and 4) and the development and testing (Sec. 5) of flight software for
the EIRSAT-1 mission and its primary γ-ray detector payload is presented. Aspects of the soft-
ware development process dedicated to improving reliability through extensive testing methods
are discussed in Sec. 5. Finally, key lessons learned from developing flight software for a
CubeSat mission are presented in Sec. 6.

1.1 Educational Irish Research Satellite

The Educational Irish Research Satellite (EIRSAT-1), as shown in Fig. 1, is a 2U CubeSat being
developed by a student-led team at University College Dublin (UCD).26 The project, which aims
to launch EIRSAT-1 as Ireland’s first satellite, is supported by the Education Office of the
European Space Agency (ESA), under the second round of the Fly Your Satellite! (FYS!)
program.27 The main objective of the mission is to enhance the capabilities of the national higher
education sector in space science and engineering. However, the project is also motivated by a
number of technology demonstration and scientific aims,26 to be achieved with three novel pay-
loads. The ENBIO Module (EMOD) is a thermal materials experiment,28,29 Wave-Based Control
(WBC) is a software-based attitude control test-bed,30 and the Gamma-Ray Module (GMOD),
discussed in Sec. 1.2, is a miniaturized γ-ray detector.31,32

The EIRSAT-1 spacecraft consists of custom hardware that was designed in-house for the
EMOD and GMOD payloads. An antenna deployment module (ADM),33 which is responsible
for deploying the mission’s Ultra High Frequency (UHF)/Very High Frequency (VHF) antenna
elements on-orbit, was also developed in-house. The remainder of the spacecraft consists of
COTS components supplied by AAC Clyde Space, including the battery, electrical power system
(EPS), solar cells, radio transceiver, attitude determine and control system (ADCS), and onboard
computer (OBC). Two versions of the EIRSAT-1 spacecraft—an engineering qualification model
(EQM) and a near-identical flight model (FM)—are being built as part of this project to reduce
the level of risk arising from the team’s initial lack of experience with spacecraft development as
well as the complexity of the mission’s payloads/objectives.34
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1.2 Gamma-Ray Module

The primary aims of the GMOD payload are to detect GRBs, assess the on-orbit performance of
novel gamma-ray detection technology, and demonstrate the role of CubeSats in the multi-
messenger era of astrophysics.

GMOD (Fig. 1) is a miniaturized γ-ray detector that was developed in-house. The payload
comprises a motherboard, with the necessary electronics to operate the payload, and a detector
assembly.31,32 This assembly consists of a 25 mm × 25 mm × 40 mm cerium bromide (CeBr3)
scintillator crystal, an array of silicon photomultipliers (SiPMs), and low-power read-out elec-
tronics, which are all contained within a compact, light-tight enclosure. For each high-energy
photon incident on the detector assembly, a time-tagged event (TTE) is produced, with an ADC
value corresponding to the photon’s energy.32 The TTEs produced by GMOD on-orbit will be
used to understand the payload’s γ-ray environment and to study high-energy events, such as
GRBs.32,35,36

GMOD is expected to detect between 11 and 14 GRBs per year (in an energy range from tens
of keV to a few MeV), at a significance greater than 10σ (and up to 32 at 5σ).31

2 CubeSat Flight Software

Flight software generally refers to the onboard software responsible for the on-orbit behavior of
the complete satellite system, performing a wide range of tasks from subsystem interfacing to
data handling and fault management. Its reliable performance is essential to mission success.
Although CubeSats are much smaller than conventional spacecraft that are typically employed
for astronomical research, the required flight software in many ways faces similar needs and
challenges to that of larger missions—flight software complexity is not proportional to the
satellite volume.37 To implement this software in a way that is consistent with the low-cost,
fast-paced CubeSat design philosophy, several platforms that assist the software development
process (also known as frameworks) have been developed. Some examples are

• NASA’s core Flight System (cFS):38 an open-source software development platform cre-
ated by NASA’s Goddard Space Flight Center. It was originally developed to facilitate

Fig. 1 FM of EIRSAT-1, showing the satellite’s constituent components.
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software development for larger missions, based on the heritage of previously successful
NASA missions, but later adapted for Small/CubeSats.39

• KubOS:40 a CubeSat-specific framework created by a Texas-based space software com-
pany in 2014. Provides tools and libraries to aid quick development projects. It is primarily
open-source; however, additional features and support can also be procured.

• GenerationOne flight software development kit (FSDK):41 a framework created by
Scottish company Bright Ascension, which is discussed in Sec. 3.3. It is also focused
on CubeSats.

These frameworks, some of which are reviewed in comparison studies by Refs. 37 and 42,
aim to reduce project costs and development times through software reusability, similar to the
approach driving the use of standardized COTS hardware. Alternative approaches to the use of
frameworks include re-use of software that was previously developed in-house, use of open-
source materials, such as code provided by the Libre Space Foundation,43 and in-house develop-
ment from scratch.

However, the lack of specialized literature on the topic has been identified as a potential
challenge for CubeSat teams when developing flight software.44 To address this deficit in knowl-
edge dissemination around flight software development for CubeSats, this paper documents the
approach adopted for EIRSAT-1, complementing the existing literature on other CubeSat
missions, including Refs. 44–47.

3 Design Drivers

There are several factors that drive a CubeSat’s flight software design and development. In the
case of EIRSAT-1, these are (i) the mission requirements (Sec. 3.1), (ii) the available resources
(Secs. 3.2 and 3.3), and (iii) the planned strategy for operating the mission (Sec. 3.4).

3.1 Requirements

Requirements concisely state some goal that “shall” be achieved. More formally, the European
Cooperation for Space Standardisation (ECSS) define a requirement as a “documented demand
to be complied with.”48 A project’s requirements are typically defined during the very early
project phase and provide the foundation for the CubeSat design, including the flight software
design. Requirements capture, at a high-level, what the satellite system must do to achieve the
mission’s objectives and the constraints within which it must perform.

Two sets of requirements are associated with EIRSAT-1.

• Mission specific requirements: created by the EIRSAT-1 team with the mission’s primary
objectives in mind. Approximately 200 of these requirements are collated in the EIRSAT-1
technical specification (EIR_TS). These requirements were developed prior to, and then
reviewed as part of, the mission’s critical design review with ESA and FYS!.

• Programmatic and technical requirements: mandatory for all missions participating in
the FYS! program. The FYS! 2 design specification (FDS) contains ∼150 requirements.
The FDS draws from a number of sources that are important for conventional spacecraft
development, as well as CubeSat development, and include the COTS, launcher and
deployer specifications, mission registration guidelines, and ESA policies.

Table 1 shows some of the requirements that must be satisfied (at least in part) by the flight
software. Prior to launch, the capability of the mission to satisfy these requirements must be
formally verified. This is primarily achieved via testing (Sec. 5.3), with the test setup, test pro-
cedures, and as-run results being extensively documented.

In addition to the strict set of requirements set out in the EIR_TS and FDS, the project also
follows the guidance of ECSS standards, which act as a coherent, single set of standards for
use in European space activities. These standards provide exhaustive lists of requirements and
recommendations encouraging best practices and are presented in several documents that are
specific to different areas of space mission development. Given the extent of the information
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provided within these documents, ECSS standards are typically tailored and used by teams in a
way that best suits their projects.44,49,50 For EIRSAT-1, this tailoring is decided on with input
from FYS!, but it is largely driven by what is feasibly achievable given the timeline and resources
available to the CubeSat project.

3.2 Computer Hardware

A spacecraft’s hardware design is largely defined during a very early project phase and typically
precedes any major software development activities. The flight software design is then driven
by the hardware architecture for which it is being developed. For EIRSAT-1, the flight software
can be categorized based on hardware, as given in the following.51

• Platform: flight-ready firmware provided with each of the COTS components by AAC
Clyde Space to operate the subsystem, implementing key functions of the subsystem and
providing an interface to these functions via I2C communication.

• Payload: firmware developed in-house for the GMOD and EMOD microprocessors (i.e.
Texas Instruments MSP 430s). The firmware for each payload implements the respective
experiment functionality and provides an interface to this functionality via I2C and serial
communication.

• OBC: Software developed in-house to run on the COTS OBC. This software is responsible
for interfacing with the spacecraft’s subsystems and controlling the behavior of the satellite
system as a whole.

The below work is primarily focused on the OBC-run software, which is referred to as the
“main” flight software. The OBC for which this software is developed is provided by AAC
Clyde Space. It is built around a MicroSemi SmartFusion2 System-on-Chip and incorporates
an ARM Cortex M3 processor. The memory bus consists of 8 MB of magnetoresistive
RAM (MRAM) storage, as well as 4 GB of flash memory, both of which are protected against
radiation effects via an error detection and correction mechanism. The OBC is equipped with
multiple onboard data buses, including I2C and serial/UART.

The AAC Clyde Space OBC was primarily chosen for EIRSAT-1 given its flight heritage as
well as the possibility of procuring all COTS components from a single supplier. As an additional
advantage, a FSDK supports software development for this OBC.

3.3 Resources

As this is Ireland’s first satellite, there was no in-house developed software with flight heritage.
To reduce risk, the Bright Ascension GenerationOne FSDK was selected for this project. This
kit allows for rapid development of flight software, in the C programming language, using a
model-based development approach known as component-based development. In this context,
a component is a reusable, standalone software module in which a certain set of functions are

Table 1 Example requirements from the EIR_TS and the FDS.

Type Requirement

EIR_TS The OBC shall collate and process raw data from the science payloads.

EIR_TS The OBC shall be able to process raw GMOD data into binned spectra and light curves.

EIR_TS The OBC shall be capable of protecting requested data, such as potential GRB data.

FDS The CubeSat shall allow for reprogramming of the onboard software during processing
on ground. . . Note: preferably the CubeSat should also allow for—through a safe and
robust procedure—software changes in orbit.

FDS The CubeSat shall have a timer, set to a minimum of 30 min, before satellite operation
or deployment of appendages such as booms, antennas, and solar panels.
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implemented. Components are then integrated to form a mission’s flight software image. The
FSDK is provided with libraries of prevalidated components—many with flight heritage—
including components that provide low-level, supplier-specific hardware interfacing through
to high-level functionality. The kit is also equipped with development and test tools, such as
those for automatic code generation.

Although this kit and kit-driven development in general were considered a good fit for
EIRSAT-1 over other development options, some of which are discussed in Sec. 2, this is not
necessarily the case for all CubeSat teams. Table 2 highlights the key advantages and potential
disadvantages of this approach, which ultimately favored the use of the Bright Ascension FSDK
for the EIRSAT-1 project.51

3.4 Concept of Operations

A system’s concept of operations (ConOps) describes the strategy for operating the system from
the point of view of the user/operator. Many aspects of a system’s ConOps must be implemented,
or at least accounted for, in the system’s software design. For example, a common ConOps
strategy used for space missions is to use operational modes, whereby the mission operator gains
an initial understanding about the state of the spacecraft based on the current mode.44,52–54 Modes
also generally dictate which of the satellite’s subsystems are active and what activities are on-
going at any point in time. The software implementation of operational modes and mode man-
agement for EIRSAT-1 is discussed in Sec. 4.

4 Main Flight Software Design

The OBC’s memory is mapped to hold more than one mission image at a time. Embedded flash
memory is used to hold a 256 KB “failsafe” image, and part of MRAM is used for two 1 MB
“primary’ images.”55 The primary image slots are intended for images compiled with all of the
components that allow EIRSAT-1 to fully achieve its mission objectives. Two images slots are
provided to facilitate on-orbit image updates without the need to overwrite the existing/active
image. In contrast, the failsafe image slot is intended to hold a simplified image, with fewer
components and only the functionality needed to keep the mission in a stable, operable state.

Table 2 Advantages (‘✓’) and potential disadvantages (‘×’) of kit-driven development.51

✓ Schedule Resources provided with a kit generally support rapid learning and
implementation. This benefits a student-led project in particular when the
time required to build knowledge and expertise can present a challenge
to project schedules.

× Flexibility To fully benefit from a kit, a software project should ideally implement many of
the services (e.g., code, frameworks, development, test tools, etc.) being
provided with the kit. This did not pose a major issue for EIRSAT-1. However,
for projects that are less flexible (e.g., with regards to the implementation
of certain functionalities), some kits may not be well suited.

✓ Risk The Bright Ascension FSDK has flown on several missions, gaining many
of the kit’s components flight heritage. On-orbit validation of the software’s
performance improves reliability and reduces risk.

× Cost (of re-use) A consequence of using a proprietary kit is that no in-house intellectual
property is developed with regards to a reusable software framework. A
license must be procured for each mission that makes use of such a kit.

✓ Cost (of resources) The predicted cost of resources that would be required to build the necessary
expertise to produce a flight-ready software image without the support of a
kit can outweigh the actual cash cost, if any, of the kit. Given the initial
lack of experience within the team, as well as the benefits offered by the
Bright Ascension FSDK, this was considered to be the case for the EIRSAT-1
project.
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At start-up, the OBC’s bootloader determines which of these images to load based on config-
urable data stored in MRAM. In the event of multiple or unsuccessful reboots (e.g., as a result of
an unstable image), the OBC defaults to operating in failsafe.

The software architecture of the primary mission image is presented in Sec. 4.1, followed by
a more detailed description of key components related to onboard operational state management
(Sec. 4.2), subsystem interfacing (Sec. 4.3), and fault protection (Sec. 4.4).

4.1 Flight Software Architecture

Figure 2 presents a block diagram of the main flight software architecture, in which software
components are grouped and placed into tiers based on their function.51

• Management tier: responsible for managing when the system’s functions are called.

• Capabilities tier: provides access to the system’s main functions.

• Hardware tier: facilitates low-level interfaces to the system hardware.

Much of the functionality provided by the two lower tier components in this architecture is
standard across different space missions. For instance, all missions require at least some data
aggregation and logging functionality as part of their onboard data handling (OBDH) software.
As another example, missions employing AAC Clyde Space subsystems must implement similar
software to interface with this hardware. To address this, the Bright Ascension FSDK is provided
with much of this functionality implemented in (near) flight-ready components. As a result, the
in-house development time required for different aspects of the flight software is well repre-
sented by the architecture in Fig. 2, with the management tier requiring the most effort.51

This is for two reasons: (i) in some instances, the management tier functions required more
mission-specific software (e.g., to implement EIRSAT-1’s ConOps approach [Sec. 3.4]) and
(ii) many of the management tier functions are critical to mission success. Therefore, for cases
in which kit-provided software was available, significant efforts were still given to developing a

Fig. 2 High-level overview of the main flight software architecture, where solid lines represent the
general flow of data/data dependencies in the system, FDIR = fault detection, isolation, and recov-
ery, OBDH = onboard data handling, and I/F = interface, with these components providing an
interface to an external subsystem (via physical connections that are given as dashed lines),
TM/TC = telemetry/telecommand and “external subsystems” refers to microprocessors on the
EPS, ADCS, battery, radio transceiver, GMOD, and EMOD subsystems. Components that are
not present in the failsafe image are identified with a triangle (▴).
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more in-depth understanding of the software, to ensure that its functionality was used and tested
correctly. This was particularly the case when modifications to the software were required. For
the capabilities tier, the in-house development time was primarily dedicated to payload software
development. The remaining efforts then, across all tiers, was focused on any mission-specific
updates required to kit-provided components and bug fixes.

Software components from the management and capabilities tiers that are essential to achiev-
ing EIRSAT-1’s objectives are now discussed in more detail.

4.2 Operational State Management

4.2.1 Configuration manager

The configuration manager component manages the persistence of data through OBC reboots.
When its functions are called by other components within the image, the configuration manager
stores a select amount of data (i.e., stores values of a set number of parameters) to the OBC’s
non-volatile MRAM. Following a reboot, the persisted data are then loaded from MRAM.

The usefulness of this functionality is best demonstrated by the mode manager component
(Sec. 4.2.3), which uses the last known u8_Mode parameter value to determine which opera-
tional mode should be loaded following a reboot. Caution must be taken with this functionality
as reboots are an important method of recovering software to a known, working state in the event
of an anomaly. The more data that are persisted by this component, the less effective a reboot is at
recovery. Therefore, only a small sub-set of parameters with persisted states that serve a func-
tional purpose (e.g., u8_Mode) are persisted within the main flight software image.

4.2.2 Separation sequence

This component is responsible for the satellite’s immediate post-launch behavior—referred to as
the “separation sequence”—and is designed to reliably enable two-way communications with
the spacecraft via a series of automatic onboard operations. In software, this component is built
as a basic finite state machine, in which the required operations occur as part of different states.
The sequence of states and their primary tasks are as follows:

1. u8_State : initialization—a number of initialization tasks are first performed. For instance,
watchdog functionality (discussed in Sec. 4.4) is enabled to ensure that the ADM firmware
is responsive throughout the sequence.

2. u8_State : post-launch wait—to satisfy a mission requirement (Sec. 3.1), a 45-min wait
period is observed before antenna deployment is attempted.

3. u8_State : −Y/+Y/−X/+X primary burn—deployment attempts are initiated via I2C com-
mands to the ADM firmware, which is responsible for EIRSAT-1’s primary antenna
release mechanism.33 This mechanism involves the ‘burning’ of resistors on the ADM
to melt lines holding the antenna in a stowed state. Through these states, the resistors
that are responsible for the release of the four antennas are burned individually, each for
a 30-second period.

4. u8_State : between burn wait—radio transmission is enabled if either element door switch
on the ADM indicates that the downlink/UHF antennas are released, or n deployment
attempts have occurred. These conditions are implemented to prevent radio transmissions
while antennas are still stowed as power radiated into the transceiver could damage the
component. However, the conditions also eventually prioritize radio transmission to favor
the likelihood of acquiring a signal (AOS) from the satellite.

A 25- or 100-min wait period is then observed. The duration is dictated by the status of
the door switches on the ADM, with a longer wait-time being implemented if all antennas
are likely deployed.

5. u8_State : secondary burn—a deployment attempt is initiated via I2C communication with
the EPS, which is responsible for EIRSAT-1’s secondary antenna release mechanism. In
this case, the EPS powers one of its power distribution modules, which burns four resistors
on the ADM at once, for a 30-second period.
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During the separation sequence, steps 3 to 5 are repeated. Deployment attempts are periodi-
cally carried out, alternating between the primary and secondary antenna release mechanisms,
and are separated by a wait period (that is not a multiple of the orbital period so that deployment
attempts occur at different ambient temperatures). This chain of functionality is represented
in Fig. 3. The sequence will be configured to initialize following the first-boot on-orbit. A
telecommand is required to terminate the sequence, following which the sequence’s u8_State:
finished state will be persisted by the configuration manager.

Given the importance of this component in achieving AOS, its reliability in the event of a
fault is essential, motivating a number of design decisions. For instance, (i) the ADM watchdog
functionality ensures the ADM firmware can reliably be commanded throughout the sequence,
ensuring the primary antenna release mechanism is operable; (ii) the separation sequence only
ceases to cycle through deployment attempts in response to a telecommand, instead of automatic
onboard logic, which might use, for example, the status of the ADM’s door switches. This
approach removes any reliance on additional functionality/hardware and reduces the risk of the
sequence ceasing early, for example prior to a successful deployment due to a faulty switch
reading; (iii) the wait time implemented between deployment attempts allows for time for battery
charging between resistor burns but also ensures an eventual deployment attempt in favorable
temperature conditions; and (iv) both the failsafe and primary images are equipped with
this component and are configured at launch to enter the sequence’s u8_State : initializa-
tion state.

Fig. 3 Separation sequence states and operational modes.
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4.2.3 Mode manager

The mode manager component is responsible for determining and setting the operational mode
of EIRSAT-1. Modes allow operators to rapidly assess the operational state of the spacecraft and
determine which subsystems are active and what, if any, autonomous activities have recently
occurred. The mode manager is implemented in software as a finite state machine that sets
up a defined configuration while transitioning between states via mode-specific exit and entry
functions. The modes implemented in EIRSAT-1’s mode manager are given in the following:

• u8_Mode : separation sequence—this mode is entered following the first-boot on-orbit,
while the persisted mode parameter remains the u8_Mode : separation sequence. Its key
purpose is to power on/enable any subsystems/functions needed for the separation
sequence. The spacecraft continues to operate in this mode, with the separation sequence
on-going, until a telecommand is received instructing a mode change, at which point the
mode is exited and the separation sequence is put into its u8_State : finished state.

• u8_Mode : commissioning—this mode is primarily intended for use during the post-launch
and early operations phase following exit from u8_Mode : separation sequence. For this
reason, to ensure that repeated antenna deployment attempts have ceased, the separation
sequence is again placed into its u8_State : finished state on entry to this mode (this action
is solely implemented for added redundancy as it is also carried out on exit from u8_Mode :
separation sequence). Fault detection, isolation and recovery (FDIR) functionality
(Sec. 4.4) is also enabled on entry to this mode to allow for automatic safe mode tran-
sitions, or “triggers.”

• u8_Mode : nominal—the software implementation of this mode is similar to that of com-
missioning mode; however, u8_Mode : nominal indicates that nominal mission operations
(i.e., running of the GMOD and EMOD payloads) are on-going.

• u8_Mode : WBC—WBC is one of EIRSAT-1’s three primary experiments (Sec. 1.1), the
aim of which is to test the performance of a novel attitude control algorithm, implemented
in the main flight software, with COTS ADCS hardware. The software implementation of
u8_Mode : WBC is similar to that of commissioning and nominal mode. However, on
entry to this mode, control of the spacecraft’s attitude is transferred from the COTS
ADCS controller to the custom WBC algorithm. On exit from u8_Mode : WBC, attitude
control reverts back to the COTS ADCS. Implementing this functionality within a mode
allows FDIR mechanisms to be implemented on entry to/exit from the mode (Sec. 4.4).
From a ConOps perspective, this approach also provides clarity to operators when the
WBC experiment is active.

• u8_Mode : safe—safe mode’s primary purpose is to act as a recovery mode to which the
mode manager automatically defaults in response to anomalous behavior or following a
reboot in which the previously persisted mode ≠ u8_Mode : separation sequence.
Therefore, on entry to this mode, the mode manager places the satellite into a “stable”
state in which non-critical subsystems/functions are deactivated. For instance, the
GMOD and EMOD payloads are powered off, and the ADCS is set to operate in standby
mode. As Fig. 3 shows, safe mode is accessible from all modes, excluding u8_Mode :
separation sequence. This exclusion is made to ensure that the separation sequence pro-
ceeds in full post launch.

Unlike the separation sequence, in which state changes are almost entirely autonomous,
mode transitions are invoked via both autonomous and commanded operations in the mode man-
ager component and do not follow a set sequence. The different modes defined for EIRSAT-1
and the operations that invoke mode transitions are shown in Fig. 3.

4.3 Subsystem Interfacing

The Bright Ascension FSDK comes with software components for interfacing with some sup-
plier-specific COTS hardware, including AAC Clyde Space subsystems. Therefore, kit-provided
components were implemented in the main flight software’s capabilities tier to interface with the
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EPS, ADCS, transceiver, and battery, with only minor updates made, e.g., to implement bug
fixes. In contrast, software components for the custom payloads were developed entirely
in-house.

Section 4.3.1 provides an overview of the GMOD software component, which provides an
interface to the payload and performs key tasks associated with the payload’s scientific objec-
tives. Further details about the GMOD firmware with which this component interfaces are
provided in Refs. 32, 35, and 36.

4.3.1 GMOD

GMOD (Sec. 1.2) is the primary scientific payload, with a scientific goal of detecting GRBs. Key
requirements driving the design of the software components are given in Table 1. To satisfy these
requirements, the GMOD software component is designed with the following functionality.

Data handling and storage. When configured to run its primary experiment, the GMOD
payload collates 256-byte ‘pages’ of TTE data, which are stored to its flash memory.32 The
expected rate at which data will be produced on-orbit ranges from ∼2 to 30 pages/second, which
correspond to the γ-ray background (i.e., a ∼50 Hz TTE rate) and a 20σ GRB, respectively. A
parameter in the payload firmware, that is settable via I2C communication, controls whether
GMOD periodically sends, or “streams,” data from GMOD’s flash memory to the OBC.
The fastest period at which this can occur is also controlled by a configurable parameter
(0.2 s is configured by default, which allows the page streaming rate to keep pace with potential
page production rates). This streaming approach was chosen over an implementation in which
the OBC requested pages one at a time via I2C commands to reduce the computational resources
required to transfer science data to the OBC.

Although I2C communication is adopted for all commanded operations of GMOD, the pages
of TTE data are transferred to the OBC via serial, with each payload having access to an in-
dependent port. This implementation was chosen to minimize traffic on the payloads’ I2C bus,
which is shared by both EMOD and GMOD. As pages are received, GMOD’s main flight soft-
ware component first assesses the validity of the data (e.g., by comparing a checksum transferred
with the data to a calculated checksum) before parsing the data into individual TTEs, each with a
4-byte coarse timestamp, 4-byte fine timestamp, and 12-bit ADC value.32 These TTEs are then
passed to a number of different functions within the component, as described below and sum-
marized in Fig. 4.

Finally, this software component collates the TTE data received into 16-page “sectors,”
before storing the data to the OBC’s flash memory for later downlink to the ground station.
Approximately 1.25 GiB of memory was allocated for this purpose; this is sufficient for holding
∼35 − 40 days worth of data.

Using calibration data obtained prior to launch, TTE ADC values will be converted to physi-
cal energy units on the ground following downlink of the data. GMOD’s time is synced with that
of the OBC during the experiment setup and will be maintained using the output of the OBC’s
pulse per second pin. TTE timestamps will be converted to UTC on the ground from the onboard
time (OBT) frame, using OBT and GPS time data that is periodically logged to onboard storage
as well as transmitted as part of a beacon. Because GMOD’s main flight software component
uses OBT and raw ADC values in its operation, these TTE conversions do not need to be imple-
mented onboard the spacecraft.

Light curve and spectrum generation. The mission will make use of one primary
ground station, located at UCD (53.3065°N, 6.2255°W), allowing for ∼30 min of communi-
cation time with the spacecraft per day. As a result, when prolonged nominal operations are
achieved, GMOD will likely produce more TTE data than is feasible to downlink. For this rea-
son, in addition to logging sectors of “raw” TTE data for downlinking, GMOD’s main flight
software component also packs the TTE data into more compressed data products, namely light
curves and spectra (Fig. 5).

Two buffers are defined in the software to build these light curves and spectra. The light
curve buffer is 2000 bytes in size to provide 1000 uint16 time bins, and the spectrum buffer is
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480-bytes, with 240 uint16 ADC/energy bins. As page data are received and parsed into indi-
vidual TTEs, this component adds to these buffers, separating events into bins based on their
timestamp and ADC/energy. By default, the GMOD component generates 20-min light curves
and spectra; however, the time bin widths and integration times used to generate these products
are configurable with millisecond and second resolution, respectively.

When the buffers are “full” (i.e., when the last time bin of the light curve is reached, and the
spectrum integration time has elapsed), frame data are appended to the buffers with information
on the generated data products before the data are logged to the OBC’s flash memory for later
downlink.32 Following logging, a new light curve and spectrum are started.

To manage constraints on two-way communication time with the spacecraft, these light
curves and spectra will regularly take downlink preference over the sectors of raw TTE data.
However, in some cases, the TTE data will be assigned higher priority. Examples of such cases
include (i) during commissioning, when the less compressed data type will be more useful for
assessing the payload’s health and performance; (ii) when performing a more detailed analysis
on EIRSAT-1’s γ-ray environment; (iii) if anomalous results/features are observed in the data;
and (iv) when a GRB is detected (discussed below).

Fig. 4 Data acquisition/parsing process implemented in GMOD’s main flight software component.
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GRB triggering. An additional capability of the GMOD main flight software component is
triggering, in which the software can identify and act on high signal-to-noise (S/N) ratios within
the TTE data. To achieve this, the parsed page data are also added to a separate “triggering” light
curve buffer, measuring up to 8192 uint16 time bins. Unlike the light curves discussed above,
which are built, logged, and restarted every n minutes, the triggering light curve is implemented
as a circular buffer, which is continuously updated with newer data at the expense of the oldest
data in the buffer.

The time bins comprising this light curve are divided into three segments, referred to as the
“background window,” the “signal window” and the “signal window offset,” which separates the
background and signal segments by a configurable number of bins. As event data are added to
the triggering light curve, the sum of events in these segments is calculated and passed to a
triggering algorithm

EQ-TARGET;temp:intralink-;e001;116;285u32_Sig ¼ ðN × SignalÞ − Background
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðN2 × SignalÞ þ Background

p (1)

where u32_Sig is the calculated significance of the signal within the signal window, Signal ¼ Σ
(TTEs in the signal window bins), Background ¼ Σ (TTEs in the background window bins), and
N ¼ Background window size

Signal window size
(i.e., a scaling factor given the ratio of the background window size, in

terms of bins, compared with the signal window).
If a high S/N ratio is detected in the signal window through this algorithm (i.e., if u32_Sig >

u32_SigThreshold, where u32_SigThreshold is configurable), the component marks that a trig-
ger has occurred. The data acquisition process then continues as normal for a configurable time
period to allow the OBC to acquire some post-trigger data before the following tasks are
performed:

• m sectors of TTE data, that were logged to the OBC’s flash memory as part of the normal
data acquisition process, are copied (or ‘protected’) to a separate location in flash memory.
This memory is dedicated to potential GRB data and can store data associated with up to
40 triggers at a time. The aim is to isolate high priority data for downlinking and protect
it against the possibility of being overwritten by less significant, background TTE data.

Fig. 5 Data compression carried out by the GMOD main flight software component, showing an
example 20-min light curve (a) and spectrum (b) produced by the component from raw/paged TTE
data.
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Configurable parameters in the software specify the time period around the trigger and the
number of sectors (i.e. m) to be protected.

• As m sectors of TTE data are read in by the component (i.e., as they are copied from one
location in flash memory to another), a lightweight light curve and spectrum are generated.
Information about the trigger (e.g., the peak S/N ratio recorded, its duration, and where the
protected TTE data are located in flash memory), as well as the light curve and spectrum,
are logged to the OBC’s flash memory to enable rapid downlinking and analyses. In con-
trast to the non-triggered light curves and spectra (Fig. 5), the start and end times of the
triggered light curve and spectrum are centered around the high S/N event.

• To rapidly communicate the trigger to the astronomical community (e.g., through the
Gamma-ray Coordination Network56), the light curve and spectrum are also transmitted
by the spacecraft as part of a periodic telemetry beacon that is automatically transmitted
every 1.5 min. This allows key information about the detection to be disseminated rapidly.
It also provides advanced notice to the mission control team, so preparations can be made
to prioritize downlinking of GRB data during the next available communication windows.
In particular, the m sectors of TTE data “protected” in the OBC’s flash memory will be
downlinked such that a more comprehensive analysis of the GRB can be conducted on the
ground.

More information about the planned on-orbit operation of GMOD is provided in Ref. 57.

4.4 Fault Protection

The Bright Ascension FSDK is equipped with a number of features and components intended to
help implement autonomous FDIR methods, including:55

• Events: data products produced to indicate the occurrence of a significant event on board.

• Monitors: periodically poll and compare parameter values with user-defined upper and
lower limits, raising an event if either limit is exceeded.

• Event actions: automatically trigger some defined functionality in response to a specific
onboard event.

• Periodicactions: periodically trigger some defined functionality.

Table 3 provides examples of the integration of these autonomous FDIR features into the
main flight software to reduce the risk of mission loss.

Fault tree analyses were performed to (i) better understand the spacecraft’s expected on-orbit
behavior in the event of a fault; (ii) determine how the flight software could be improved to
ensure a robust system; and (iii) assess the mission’s ability to recover, at least to a “safe” state,
using the FDIR functions.

5 Development and Testing

Development and testing of the main flight software largely proceeded in parallel from the out-
set. Introducing software test and verification activities from an early stage in the development
process has several advantages, including (i) improved understanding of the expected perfor-
mance of the software as part of the full satellite system through hardware-in-the-loop (HIL)
testing; (ii) rapid identification of bugs and design issues; and (iii) building confidence in the
flight software before proceeding to more formal test and requirement verification campaigns.

5.1 Setup and Tools

5.1.1 Development environment

The Eclipse58 integrated development environment for C/C++ developers was chosen to imple-
ment the flight software. This choice was driven by the availability of Eclipse plug-ins, which
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provide automatic-code generation capabilities, with the Bright Ascension FSDK. This tooling
also generates “spacecraft databases,” which list all of the accessible parameters and functions
provided by the flight software. These databases can then be used with mission control software
to interface with the spacecraft.

5.1.2 Version control

Git59 and GitHub60 are used to track day-to-day software development activities. Git releases
mark more significant milestones in the development process. Software releases are made prior
to the project’s formal test and requirement verification campaigns, with a given software version
being used throughout the campaign. A software configuration file is separately maintained in
Google sheets to capture, at a high-level, any updates made to the software components between
releases. Google sheets were adopted for this purpose over other, more conventional methods
(e.g., a GitHub wiki or more detailed Git release notes) primarily as the Bright Ascension FSDK
auto-generates documentation that includes a csv file listing an image’s constituent components.
The presentation of EIRSAT-1’s main flight software as a simplified list of components has
been particularly useful for communicating summaries of software updates to ESA/FYS!.
Furthermore, Google sheets are easily shared (with limited access/permissions) to facilitate
reviews by external ESA experts. In the absence of further software updates following testing,
the released software will be used for flight.

5.1.3 Continuous integration

Using a Docker image with the necessary build tools, CircleCI61 was integrated with GitHub to
automatically build the flight software and perform basic checks each time a commit is made to
the Git repository. If the build succeeds and checks are passed, merging of Git branches into the

Table 3 Examples of FDIR functionality implemented in EIRSAT-1’s main flight software,
where TC = telecommand, S/C = spacecraft, and n denotes parameters that are configurable
via TC.

Name Description Enabled

ADM alive check A PeriodicAction polls the ADM firmware for its
firmware version. If no response is received
following n consecutive attempts to poll the
parameter, the microcontroller hosting the
firmware is power-cycled.

While u8_Mode = separation
sequence.

Safe mode entry
triggering

A monitor periodically polls and checks the
battery voltage and gyro rate parameters against
predefined upper/lower limits. If a limit is
exceeded, an event is raised, which then triggers
a transition to safe mode via an EventAction.

While u8_Mode =
commissioning, nominal,
and WBC.

WBC mode exit
triggering

A monitor periodically polls and checks the gyro
rate parameters against predefined upper/lower
limits. If a limit is exceeded, an event is raised,
which then triggers a transition to commissioning
mode via an EventAction.

While u8_Mode = WBC.

No TC watchdog A PeriodicAction checks the number of TCs
(NTC ) received by the S/C and resets a timer if
NTC has increased since the last check.
However, if NTC does not increase and the timer
reaches n days, a full S/C power-cycle is
invoked.

Throughout the mission.

EPS watchdog A PeriodicAction commands the EPS to reset a
watchdog timer (managed by the EPS firmware),
preventing a watchdog (implemented in the
firmware) from power-cycling the S/C.

Throughout the mission.
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main development branch is “unlocked.” This process alerts developers to issues with their code
and protects the main development branch. For EIRSAT-1, these checks include standard com-
piler checks and unit tests (discussed in Sec. 5.3). However, more rigorous checks, for instance,
using static code analysis tools, can also be implemented. The flight software images built as part
of this process are used for HIL test activities to ensure that images programmed onto the OBC
are generated using a consistent build environment.

5.1.4 Testing

The following setups and tools are used for testing throughout the software development
process.

• A unit testing framework (Sec. 5.3) is provided with the Bright Ascension FSDK.

• Software developed within the FSDK can be built for a variety of platforms, including
Linux. As a result, platform-independent functionality (i.e., functionality that does not
require an AAC Clyde Space hardware interface) was tested locally on developers’ desk-
tops, reducing the demand on the CubeSat hardware.

• HIL setups are available for testing when the necessary hardware is not otherwise in use.
HIL testing primarily makes use of a FlatSat configuration, in which the subsystems of the
satellite are assembled on a single large motherboard or series of motherboards laid out
horizontally.62 From a software development perspective, a key benefit of the FlatSat is
that elements of the hardware/software can be tested individually. For debugging purposes,
the tabletop configuration also ensures that components are easily accessible throughout
testing.

During HIL tests, software images are programmed onto the OBC via a JTAG pro-
grammer, and communication with the OBC is primarily achieved via a serial link to
an external desktop (rather than a radio link via the spacecraft’s transceiver/antenna).
Debug output by the software image (over a serial port on the OBC) is a key functionality
during test activities.

HIL tests are also carried out on the fully assembled satellite “stack,” as shown in Fig. 1.
In this case, the connections to the OBC are achieved via an umbilical cable that connects
to an external port on the spacecraft.

Where required, mission control software provided by Bright Ascension, along with a space-
craft database, is used to facilitate TM/TC communication with the flight software.

5.2 Life Cycle

The main flight software was produced following an iterative and incremental development proc-
ess. The timeline over which this development took place is strongly tied to the mission’s two-
model philosophy. More specifically, a flight-worthy version of the software was “frozen” prior
to the EQM test and requirement verification campaign. By aiming to freeze a (near) flight-ready
version of the software for EQM testing, the main flight software is extensively tested twice,
through both the EQM and FM test campaigns, providing confidence in the software design and
implementation. The risk of project delays arising from software development is also reduced by
this parallel development approach.

5.3 Tests

Testing of the main flight software was undertaken throughout the development process.

5.3.1 Unit testing

In unit testing, individual units, corresponding to an individual software component, of source
code are tested. Unit testing allows the behavior of blocks or units of code to be verified prior to
further development or other test activities. It also provides testing for code that otherwise might
not be readily assessed. A component’s run-time environment is mimicked, and its functions are
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then called, with inputs where required. The resulting output, or behavior, of the functions is then
compared with the expected output. Unit testing is implemented using a framework provided
with the Bright Ascension FSDK that makes use of the CMock and Unity63,64 testing tools.

A further benefit of unit testing relates to code changes, in which previously implemented
tests can be run after a change to inspect if the performance of the component was impacted and
whether the impact was as expected. For EIRSAT-1, this functionality is implemented using
CirceCI (Sec. 5.1.3), in which unit tests are automatically compiled and run and the results are
checked each time a commit is made to the Git repository in which the software was developed.
When a compile or unit test fails, CircleCI automatically emails the software developer to alert
them to this failure, so it can be resolved before the code is merged into the main software
development branch.

For kit-provided components (many with flight heritage), in which unit tests were also pro-
vided, test coverage ranges between ∼10 and 100% and averages ∼70%. Due to resource con-
straints, unit test development has focused on in-house developed components that are critical to
EIRSAT-1’s on-orbit performance and safety, particularly the mode manager and separation
sequence components. Using the gcov test coverage program to assess the quality/completeness
of the tests, 76 – 96% coverage was achieved for these components. Lower coverage metrics are
currently achieved for less critical in-house developed components, including those that imple-
ment the GMOD, EMOD, and WBC experiments. Testing of these components through, for
example, HIL testing is described in Sec. 5.3.2.

5.3.2 Integration and HIL testing

During integration tests, software components are brought together to form a software image.
This image is then run on either the developer’s desktop or on the OBC to test the functionality of
the integrated components.

Integration testing also commonly includes other spacecraft hardware to allow for HIL test-
ing. As many of the main flight software components interact with, and use data from, the space-
craft’s hardware, HIL tests provide the most representative environment to test the software’s
performance.

In addition to HIL tests performed during the software development process, the main flight
software was also tested with the spacecraft’s hardware as part of test campaigns during which
the mission’s requirements were formally verified.34 Although these tests were primarily focused
on the mission’s performance as a whole, their success required the reliable performance of the
main flight software. The following tests were included.

• Functional testing: in which key functions of the satellite’s subsystems are tested.65

• Mission testing: in which the performance of the complete satellite system, as configured
for flight, is tested as part of a mission simulation.66,67

• Environmental testing: in which the satellite is subject to representative spaceflight
conditions, including vibration and thermal vacuum testing, with functional checks prior
to, during, and after the tests.68

6 Lessons Learned

EIRSAT-1’s main flight software was developed with an overarching aim of maximizing the
likelihood of mission success given the project’s highly constrained resources and initial lack
of expertise. The success of the approaches taken was demonstrated through a test campaign
with an EQM of the spacecraft, in which the flight software largely performed as intended.69

Further confidence in the software’s performance will be achieved via the FM test campaign.
Key lessons learned from the experience to date are given in the following.

1. Early and continuous unit testing: the benefits of unit testing are discussed in Sec. 5.3.
Although unit testing requires time and resources to implement, which typically poses a
challenge to CubeSat teams, it should not be overlooked as it is a highly effective tool for
improving software reliability.
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2. Early HIL testing: many of the more significant software bugs and issues were iden-
tified during HIL testing. In some cases, these bugs/issues took months of effort to over-
come. Had these been identified at a later stage, the project’s schedule may have been
impacted.

3. Development options: the EIRSAT-1 team chose an FSDK to overcome a number of
challenges associated with the project (e.g., student-led with limited resources, no in-
house experience from previous missions, and multiple novel and complex payloads).51

Using the FSDK allowed for more focus on the development of software for the mission’s
payloads. Not all teams may face the same challenges, and many software development
options are available and should be assessed early in a project to ensure that the correct
approach is implemented from the outset.37,42,51

4. Wider knowledge about the flight software behavior within the team: given the re-
source constraints typically experienced by CubeSat projects, only a small sub-set of
team members generally work on the flight software. However, in many cases,
EIRSAT-1’s flight software team benefited from the wider team’s input to the software
design, development, and testing. For example, meetings with the wider team were held
to discuss, at a high-level, the design of the separation sequence to ensure that the design
of this software component was robust against any foreseeable failure scenarios. In many
circumstances (e.g., during testing) the team must be knowledgeable about operating and
interfacing with the software/spacecraft via telecommands. For this reason, efforts
should be made wherever possible to incorporate the wider team in the software develop-
ment process.

7 Conclusions

For certain applications, CubeSats offer an alternate and more accessible route to space in
comparison with conventional satellites, which typically require highly specialized facilities
and are more costly to develop. Advances in miniaturized technologies have allowed the capa-
bilities of CubeSats to grow, widening the scope of this small satellite platform well beyond
education to encompass Earth observation, communications, astrophysics, and heliophysics.
To further advance the use of CubeSats as capable and reliable platforms for scientific research,
this work presents key details on the design, development, and testing of robust flight software
for the EIRSAT-1 mission. The reliable performance of the software methods implemented was
demonstrated through a comprehensive test campaign with an EQM of the EIRSAT-1 space-
craft. An FM test campaign is the next step in the verification of the flight software for the
mission.
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