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Abstract. We theoretically develop and experimentally validate the noise characteristics of heterodyne and/or
homodyne measurements that are widely used in frequency-domain diffusive imaging. The mean and covariance
of the modulated heterodyne output are derived by adapting the random amplification of a temporal point process.
A multinomial selection rule is applied to the result of the temporal noise analysis to additionally model the spatial
distribution of intensified photons measured by a charge-coupled device (CCD), which shows that the photon
detection efficiency of CCD pixels plays an important role in the noise property of detected photons. The approach
of using a multinomial probability law is validated from experimental results. Also, experimentally measured
characteristics of means and variances of homodyne outputs are in agreement with the developed theory. The
developed noise model can be applied to all photon amplification processes. © 2012 Society of Photo-Optical Instrumentation
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1 Introduction
When an intensity-modulated beam is used to illuminate diffu-
sive media, the modulation amplitude and phase of the beam are
attenuated and delayed, respectively, due to absorption and scat-
tering inside the medium. The amplitude attenuation is caused
by both scattering and absorption, whereas the phase delay is
mainly related to scattering. Because the typical modulation fre-
quency range in frequency-domain diffusive imaging is from
tens of megahertz up to a gigahertz,1–3 a very high bandwidth
detector is required to correctly measure modulation amplitudes
and phases. In additional to measuring the frequency-response
information, it has been shown that obtaining large datasets
using detector arrays also improves diffusive imaging perfor-
mance.4,5 It is almost impossible to achieve the high bandwidths
required in frequency-domain measurements with high-density
detector arrays such as charge-coupled device (CCD) or com-
plementary metal-oxide-semiconductor (CMOS) sensors. Het-
erodyne and/or homodyne (hetero/homodyne) methods extract
the amplitude and phase information by converting the rapidly
modulating output beam into a beat-frequency modulation mode
using gain-modulated amplifiers, such as an image intensifier
(IIN) and photo multiplier (PMT).6,7 When the gain modulation
frequency is slightly different from that of a light source, the
amplified output modulates at the frequency difference—a beat
frequency, which is a heterodyne measurement. For a homodyne
measurement, where a gain is modulated at the same frequency
as a modulation source, the output is stable in time, but its
irradiance is varied along the heterodyne output according to
relative phases between source and gain modulations. Although
time-domain measurements can also extract the frequency re-
sponse of diffusive media, hetero/homodyne measurements are

more widely used in diffusive imaging because of their relatively
low cost and simplicity.1,6

In general, measuring intensity-modulated outputs improves
the reconstruction algorithms and other algorithms designed to
estimate tissue properties, when compared to measuring just
diffused intensities (i.e., steady-state measurements).1 For exam-
ple, diffuse optical tomography (DOT), which is considered a
noninvasive and cost-effective medical imaging tool, can tomog-
raphically reconstruct images of scattering and absorption coef-
ficients up to tens of millimeters in depth.2,3 DOT systems based
on just a diffused intensity are simple and inexpensive but have
significant disadvantages including the measurement variability
caused by skin structure, hair, and surface roughness.1 Further-
more, the measured diffused intensity generally cannot recon-
struct a unique solution, and the crosstalk between absorption
and scattering coefficients cannot be effectively separated in
reconstruction processes.8,9 A frequency-domain DOT can
remedy these problems and thus improves detectability and
reconstruction performance. Frequency-domain measurements
are also required in fluorescent lifetime imaging (FLI), where
the fluorophore lifetime is used as an important indicator of
tissue characteristics.10 Since the typical fluorescent lifetimes
are a few nanoseconds and cannot be measured directly, mea-
suring attenuated amplitude and delayed phase of modulated
fluorescent photons can be used effectively to estimate the life-
time.7,11–13 Measuring the frequency-domain information in
large tissue areas using a CCD and a gain-modulated IIN can
be used to generate a spatial fluorescent lifetime map of the
tissue.14

Noise is inherent in all measurements. Even though aver-
aging multiple measurements or increasing detector exposure
time can reduce the amount of noise, these approaches are
prohibited or limited in some dynamic-imaging applications
and clinical situations.1 In medical imaging, data are acquired
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for specific purposes or tasks that include classification, such
as detection of abnormalities like a tumor, and estimation of
biological quantities, such as a fluorescent lifetime. Noise-
contaminated data is a limiting factor in an observer’s ability to
perform these classification and/or estimation tasks. The noise is
especially significant in diffusive medical imaging, such as DOT
and FLI, because of low photon counts.12–17 The performance
of noise-contaminated systems can be evaluated quantitatively
by considering figures of merit (FOMs) that are chosen to reflect
an observer’s ability to perform these medial-relevant tasks.15,18

Task-based assessment of image quality evaluates and/or opti-
mizes diffusive imaging systems by employing FOMs that
assess observer performance.18–20 Many task-based FOMs rely
on the first and second moments of output data,18,21,22 so under-
standing the noise property of output data is important and
necessary.

Because of the importance of noise analysis in diffusive
imaging, the noise characteristics of a modulation amplitude
and phase for frequency-domain diffusive imaging have been
previously investigated. Toronov et al.23 mathematically derived
variances of these quantities in frequency-domain DOT assum-
ing a quantum shot noise model on the hetero/homodyne
outputs. Conventional signal-to-noise ratios (SNRs) and a task-
based FOM known as a Hotelling observer SNR were derived
based on Toronov’s result, and an optimal modulation frequency
was explored in DOT systems of a single point source and
CCD-based phased array.16,23–25 In FLI, a FOM called F-value
is commonly used to evaluate system performance, where the
F-value is defined by first- and second-order statistics of a fluo-
rescent lifetime.12,13 Many investigators have optimized FLI
systems by maximizing the F-value or minimally required fluo-
rescent photon numbers for a meaningful F-number.12,13,26 It
is reasonable that the F-value is strongly dependent on the
noise characteristics of modulation amplitude and/or phase in
frequency-domain FLI because the fluorescent lifetime is esti-
mated from these quantities. For all previous studies including
Toronov’s result, however, Gaussian or shot noise is simply con-
sidered for the statistics of modulation amplitude and phase or
only shot noise is assumed for the hetero/homodyne outputs,9,23

which might not be valid in reality. For example, the irradiance
of hetero/homodyne outputs is usually high due to the photon
amplification process, which is enough to ignore the effect of
shot noise in a detector. Furthermore, the beat-frequency modu-
lated output might be temporally correlated, which is seriously
harmful to the assumption of quantum shot noise.

The noise properties of amplified photons for the non-
modulation case have already been investigated, where incident
photons are assumed to be Poisson distributed. The photon
amplification in IINs and intensified CCDs (ICCDs) should be
considered a random process even for a constant gain, which
generally induces non-Poisson outputs for Poisson inputs.18

Bell theoretically analyzed a noise figure for IINs with a con-
stant gain,27 where the noise figure was defined as the ratio of
SNRs of input and output photons. He considered photons inci-
dent on a micro channel plate (MCP) in IINs or ICCDs as gov-
erned by Poisson statistics, and each photoelectron collision on
the wall of the MCP generates the photoelectron distribution
called Furry distribution. Moran et al.28 theoretically derived
a noise factor (NF) of ICCDs, which is defined as the square
of the noise figure. He showed that variations of a NF and
an output SNR are not linearly related to MCP gain, which
is partially observed in experiments elsewhere.17,29 Moran

adapted a Polya distribution as a single photoelectron pulse
in a MCP. Instead of photoelectron distributions in a MCP,
Apanasovich and Novikov30 analyzed the amplification process
considering electron multiplication events in a MCP as random
point processes and compared the theoretical model with
experiments. Frenkel et al.31 investigated variance and noise-
equivalent irradiance of outputs in an ICCD using the approach
of spatial point processes. Although these previous noise anal-
yses for randomly amplified photons are mathematically sound,
to the author’s knowledge, noise analysis has not been per-
formed for heterodyne/homodyne measurements where both
incident beam and amplification gain are modulating. Spring
and Clegg32 briefly touch on the SNR of homodyne outputs,
but gain modulation is simply substituted for the constant gain
in the conventional SNR expression for PMTs.

In this paper, we theoretically derive mean and covariance
properties of hetero/homodyne outputs, which are expressed
with systematic parameters of hetero/homodyne measurements,
such as dc and ac parts of incident primary modulation beams
and modulation gain. The theoretical development includes both
temporal and spatial analyses. Temporally, a hetero/homodyne
measurement process is considered random amplification of a
modulated temporal point process. Spatially, a multinomial
selection rule is applied to model the spatial distribution of
the amplified photons from MCPs to detector array pixels.
Resulting from this, it is found that hetero/homodyne outputs
are temporally uncorrelated and the variance oscillates like the
mean in some specific conditions. We suggest experimental
results of homodyne measurements that show similar charac-
teristics with what is expected from the developed theory.
Discussions for the influence of the derived noise property on
frequency-domain diffusive imaging are also presented.

2 Theory for Temporal Noise Analysis
For hetero/homodyne detection processes in diffusive imaging,
the diffused photons exiting an object (e.g., phantom) are cap-
tured by an imaging system, where the exit face is imaged onto a
cathode of an IIN through the imaging system. The incident
photons to the cathode generate photoelectrons that are injected
into the MCP of the IIN, where the voltage difference between
the cathode and the MCP determines the amount of injected
photoelectrons. A MCP is typically composed of millions of
small channels that are related to the overall resolution of an
IIN. A single photoelectron collision that occurred on the wall
of the MCP generates multiple photoelectrons, the number of
which is proportional to the voltage applied to the MCP. The
overall gain of the IIN is determined mainly by photoelectrons
generated from the cathode and the MCP voltage that are inde-
pendent of a cathode voltage. To achieve gain modulation in an
IIN, a modulated voltage is applied to a cathode to generate
modulated photoelectrons that are amplified in a MCP. The
multiplied photoelectrons from the MCP are accelerated to an
anode (phosphor) to generate intensified photons. The usual
decay time of phosphors ranges from hundreds of nanoseconds
to a few milliseconds.33 The photons discharged from the anode
are transferred to a detector array, such as a CCD or CMOS, by
an appropriate imaging system. Overall, a phantom exit face
and a CCD detector surface are object and image planes, respec-
tively, of the whole frequency-domain measurement system.
Resulting from this view, each CCD detector pixel is conjugate
to a detection area on the exit face, the size of which is
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determined by the CCD pixel size and the transverse magnifica-
tion of the whole hetero/homodyne imaging system.

It is assumed that hetero/homodyne output photons are
described by a temporal point process as

yðtÞ ¼
XN
n¼1

Xkn
k¼1

δðt − tn − ΔtnkÞ; (1)

where tn is the time that n’th primary photon (diffused
photon from a phantom) is absorbed on a cathode of the
IIN and Δtnk is the time of delay for secondary photons pro-
duced from an anode of the IIN by the n’th primary. In
Eq. (1), N and kn are numbers of primaries and secondaries,
respectively; these are all random variables. The mean and
covariance of the point process of Eq. (1) have been derived
for the case of non-modulation input and IIN gain.18,34 Refer-
ring to this known procedure, we will develop the mean
and covariance of yðtÞ for hetero/homodyne measurements.
A mean photon arrival rate from a phantom to a cathode of
the IIN is expressed as

apðtÞ ¼ cp½1þ mp cosðωpt þ ψÞ�; (2)

where ωp ¼ 2πf p and cp, mp, and ψ indicate dc photon rate,
modulation depth that is less than 1, and modulation phase,
respectively. The term f p is a modulation frequency that is
usually hundreds of megahertz in frequency-domain diffu-
sive imaging, as mentioned in the introduction. Although
cp, mp, and ψ are continuously varied across the phantom
exit face or the cathode of the IIN, it is assumed that the
amounts of variation are insignificant within the detection
area conjugate to a CCD pixel, so they can be considered
constant as in Eq. (2). If we assume that Poisson postulates
are fulfilled for the diffused photons on the detection area,
the probability density function (PDF) for the primary is18

prpriðtnjapÞ ¼
apðtnÞ
N̄ðapÞ

; (3)

where

N̄ðapÞ ¼
Z

T

0

apðtÞdt: (4)

Notice that the mean total number N̄ðapÞ also modulates
because of the modulating photon arrival rate, apðtÞ. Without
losing the generality, we assume the mean photon rate in
Eq. (2) is not random, which indicates that noise external
to the hetero/homodyne system, such as random biological
motions and respiration, will not be considered in this
theoretical development.

The shift-variant temporal point spread function (PSF) of the
IIN with gain modulation can be described as

pdðt; tnÞ ¼ cg

�
1þ

X∞
g¼1

mg cosðωgtn þ φgÞ
�

×
Z
∞
pIaðt; t 0nÞpImðtn; t 0nÞdt 0n

¼ cg

�
1þ

X∞
g¼1

mg cosðωgtn þ φgÞ
�
pIdðt; tnÞ; (5)

where pIaðt; t 0nÞ and pImðtn; t 0nÞ are temporal PSFs of the
anode and MCP of the IIN, respectively. The term
c0½1þ

P∞
g¼1 mg cosðωgtn þ φgÞ� in Eq. (5) indicates a

modulated photoelectron rate from the cathode for a single
primary, which is equivalent to cathode gain modulation. The
term ω1 is the same as or close to ωp in hetero/homodyne
measurements. Because the modulation voltage should be
applied to around the cutoff voltage of a cathode, the modu-
lated cathode gain is generally similar to a bottom-truncated
sinusoidal function rather than a perfect sinusoidal curve.32 It
is noted that for this case, the largest coefficient m1 in the
cathode modulation could be larger than 1 because c0 is
defined by averaging the modulated cathode gain. The per-
iodic cathode gain is expanded to Fourier cosine terms,32 as
shown in Eq. (5), where the amplitude and phase of each
term is indicated as c0mg and φg, respectively. From the
assumption that the gain is an even and periodic function,
it can be easily shown that there is no phase difference
between cosine terms (we set all φg as zeros for simplicity)
and ωg ¼ gω1, where g is an integer. The usual photocathode
response time of a cathode is picoseconds to femtoseconds,35

so the photoelectron conversion time on a cathode is ignored
in Eq. (5). The time for multiplying photoelectrons in the
MCP is also negligible compared with the photoelectron-
photon conversion time on an anode, which is usually a
few milliseconds. The random variable t for the secondary
in Eq. (5) is not independent of each other because t is cor-
related to tn. If t in Eq. (5) is replaced by Δtnk as in Eq. (1),
Δtnk can be considered statistically independent and Poisson
postulates are satisfied for secondaries produced from each
primary.18 With this replacement, the probability density
function (PDF) for secondary photons can be written from
Eq. (5) as

prΔtðΔtnkjtnÞ ¼ ½k̄nðtnÞ�−1pdðΔtnk þ tn; tnÞ; (6)

where the mean number of secondary photons produced by
a primary is

k̄nðtnÞ ¼
Z
∞
pdðt; tnÞdt

¼ c0

�
1þ

X∞
g¼1

mg cosðωgtnÞ
� Z

∞
pIdðt; tnÞdt

¼ c0

�
1þ

X∞
g¼1

mg cosðωgtnÞ
�
k̄InðtnÞ: (7)

In Eq. (7), k̄InðtnÞ indicates the mean number of amplified
photons for a single photoelectron injected into the MCP.
The time dependence in k̄InðtnÞ indicates a long-term MCP
and/or anode variation caused by, for example, thermal
instability. We are interested in the noise property of a
hetero/homodyne output that is stationary in time, thus
assuming k̄InðtnÞ ∼ k̄In. Also, photon and photoelectron losses,
such as cathode quantum efficiency and an open area ratio
of the MCP,27 could be included in c0 in Eq. (7).

Mean and covariance of Eq. (1) can be derived by statistically
averaging the time for secondary Δtnk, the number of second-
aries kn, the time for primary tn, and the number of primaries
NðapÞ. As a final step, averaging apðtÞ would be necessary if
the primary is doubly stochastic, but this is not the case as
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we assumed before. As shown in the appendix, the mean and
covariance are derived from Eqs. (2) to (7) as

hyðtÞi ¼ cpc0

Z
∞
½1þ mp cosðωptn þ ψÞ�

×
�
1þ

X∞
g¼1

mg cosðωgtn þ φgÞ
�
pIdðt; tnÞdtn; (8)

and

Kyðt; t 0Þ ¼
Z
∞
fk̄2nðtnÞ þ Var½knjtn�gapðtnÞprΔtðt; tnÞ

× prΔtðt 0; tnÞdtn; (9)

respectively, where Var½knjtn� in Eq. (9) indicates variance of
secondary photons produced by a single primary photon.
Applying trigonometric identities to the integrand in Eq. (8)
generates dc, ωp, ωg, Δωpg ¼ ωp − ωg, and other high-
frequency terms. Except the dc and Δωp1 (i.e., the integer
g ¼ 1) terms, all other modulation terms are averaged out
because the decay time of pIdðt; tnÞ in Eq. (5) is much larger
than modulation periods of these terms. Also, the typical beat
frequency for heterodyne measurements is much shorter than
2π∕Δωp1, so pIdðt; tnÞ ∼ k̄InðtnÞδðt − tnÞ for the dc and Δωp1
terms. With these descriptions, Eq. (8) is simplified to

hyðtÞi ≃ cpc0

Z
∞

�
1þ mpm1

2
cosðΔωp1tn þ ψÞ

�

× k̄InðtnÞδðt − tnÞdtn
¼ cpc0k̄In

�
1þ mpm1

2
cosðΔωp1t þ ψÞ

�
: (10)

The mean of Eq. (10) is physically reasonable and in agree-
ment with conventionally experienced hetero/homodyne out-
puts. For the case of homodyne, where Δωp1 ¼ 0, the phase
difference ψ changes to measure the trajectory of the

beat-frequency modulated output. The unit of Eq. (10) is
the same as cp, a photon rate (i.e., units of c0 and k̄In are
photonelectron/primary and secondary/photoelectron, re-
spectively), so multiplying a detector exposure time to
Eq. (10) measures the mean output photons.

We define the Fano factor,18 F, for secondaries per primary as

F ¼ Var½kn�
k̄n

; (11)

which indicates the degree of random amplification of an
IIN. It is commonly accepted that F is always greater than
1 in a random amplification process because F < 1means the
secondary photons are sub-Poisson for Poisson primaries.
Higher F means the amplified output photons are more
randomly variable, so measured intensified outputs are less
reliable. Considering F of Eq. (11) makes the integrand of
Var½knjtn� in Eq. (9) the same as Eq. (10) with the multipli-
cation of F. The remaining mean square term in Eq. (9) is
further developed by substituting Eq. (7) to k̄n. Removing ωg
and higher modulation frequency terms, the integrand of
k̄2nðtnÞ results in

cpðc0k̄InÞ2
�
1þ

X∞
g¼1

X∞
g 0¼1

mgmg 0 cosðωgtnÞ cosðωg 0 tnÞ

þ 2mp cosðωptn þ ψÞ
X∞
g¼1

mg cosðωgtnÞ

þ mp cosðωptn þ ψÞ

×
X∞
g¼1

X∞
g 0¼1

mgmg 0 cosðωgtnÞ cosðωg 0 tnÞ
�
: (12)

Likewise, in the procedure for calculating the mean, only
terms containing Δωp1 ¼ ωp − ω1, where ω1 ¼ ωg � ωg�1

in Eq. (12), are survived because of the relatively long
decay time of prΔtðtÞ in Eq. (9). Therefore, the covariance
of Eq. (9) becomes

Ky ≃

8>><
>>:

cpc0k̄InF
h
1þ mpm1

2
cosðΔωp1t þ ψÞ

i

þcpðc0k̄InÞ2
�
1þ 1

2

P∞
g¼1 m

2
g þ mp

2

�
2m1 þ

P
odd g

mgmgþ1

�
cosðΔωp1t þ ψÞ

�
9>>=
>>;
δðt − t 0Þ; (13)

where prΔtðt; tnÞ ∼ δðt − tnÞ is applied to Eq. (9). Notice that
this Dirac delta function approximation is valid only if the
detector integration time ΔT for each measurement point
is much longer than the decay time of prΔtðtÞ. However,
ΔT should be much shorter than 2π∕Δωp1 of heterodyne out-
puts. Therefore, the range of ΔT validating the uncorrelation
of the covariance depends on a phosphor of the IIN and a
beat frequency of heterodyne outputs. If all mg are zero,
which means non-modulated gain in the IIN, the variance
of Eq. (13) becomes the well-known result of the Burgess
Variance theorem18,36 for Poisson inputs. For gain modula-
tion as in hetero/homodyne measurements, the covariance of
Eq. (13) modulates at the beat frequency Δωp1 like the mean
of Eq. (10), where dc (σ2DC) and ac (σ2AC) variances can be

considered separately. Notice that σ2DC in Eq. (13) is
increased by the factor of cpðc0k̄InÞ2ð1∕2Þ

P∞
g¼1 m

2
g, com-

pared with the variance for a non-modulated input
(mp ¼ 0), which is the effect of the gain modulation..
Both σ2DC and σ2AC are strongly dependent on F and c0k̄In,
which is an overall dc gain of the IIN, and mp affects
only σ2AC. Since we discuss mean and variance of output
photons, Kyðt; t 0Þ is the photon number with the multiplica-
tion of ΔT , which is unitless, as the mean.

3 Theory for Spatial Noise Analysis
The mean and covariance of Eqs. (10) and (13) are derived based
on the temporal PSF of an IIN, as shown in Eq. (5), where the
effect of spatial distribution of the PSF is omitted. The temporal
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consideration would be valid for photoelectrons from a MCP
output pore because photoelectrons incident into each MCP
input pore are Poisson and MCP channels are physically
separated from each other. As shown in Fig. 1(a), however,
secondaries from a single MCP output pore are spatially distrib-
uted to multiple CCD pixels, which should be considered for
the noise analysis of photons detected on a CCD. It is reason-
able to assume that the event of detecting one photon among
secondaries from a specific MCP output pore by a certain
CCD pixel does not affect other secondary photons from the
MCP output pore. With this assumption, the spatial distribution
of secondaries is theoretically described by a multinomial
selection rule.18

To simplify the mathematics, simplified terminologies are
used for the spatial noise analysis. If the number of total photons
detected by the α’th CCD pixel during some measurement time
T is Mα,

Mα ¼
X
i

mαi; (14)

where mαi indicates the number of photons detected on the
α’th CCD pixel from i’th MCP output pore. The summation

in Eq. (14) is for all MCP output pores contributing to Mα.
Like the temporal noise analysis, T is assumed to be much
longer than an anode decay time in the IIN. The mean hMαi
is derived as

hMαi ¼
X
i

X∞
mαi¼0

mαi PrðmαiÞ

¼
X
i

X∞
mαi¼0

X∞
Ki¼mαi

mαi PrðmαijKiÞ PrðKiÞ

¼
X
i

PαiK̄i; (15)

where Pαi is the probability that photons from i’th MCP pore
are detected on α’th CCD pixel and K̄I indicates mean total
photons from the i’th MCP pore. In the procedure of
Eq. (15), averaging is done for two random variables mαi
and Ki with a multinomial PDF PrðmαijKiÞ and PrðKiÞ
that is unknown, respectively. For convenience, these two
averages are denoted as him and hiK to calculate the co-
variance C½Mα;Mβ� ¼ hMαMβi − hMαihMβi. The second
moment of hMαMβi is

Fig. 1 (a) Simple scheme for the spatial distribution of secondary photons. Experimentallymeasured profiles [(b) 2-D and (c) 1-D] of averaged normalized
spatial covariance. In (c), circles, squares, and dots indicate exposure times of 60, 120, and 240 ms, respectively. In (d), the temporal autocovariance
measured at a single CCD pixel is indicated.
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hMαMβi ¼
X
i;j

hmαimβjim;K

¼
X
i≠j

PαiPβjhKiKjiK

þ
X
i¼j

hPαiKiδαβ − PαiPβiKi þ PαiPβiK2
i iK ; (16)

where the covariance of a multinomial PDF is applied to the
second step and δαβ is 1 only if α ¼ β, otherwise 0. Because a
multinomial selection of Poisson results in Poisson,18 photo-
electrons incident into each MCP input pore are also Poisson,
which indicates that hKiKjiK in Eq. (16) can be approxi-
mated to K̄iK̄j. Then, from Eq. (16), the covariance is

C½Mα;Mβ� ¼
X
i

½PαiK̄iδαβ þ PαiPβiðσ2Ki
− K̄iÞ�; (17)

where hK2
i iK ¼ σ2Ki

þ ðK̄iÞ2 is used in the second term of
Eq. (16) to derive Eq. (17). The variance of photons detected
on a single CCD pixel (i.e., α’th pixel) is given by α ¼ β in
Eq. (17). C½Mα;Mβ� of Eq. (17) shows that measured images
on a CCD from an IIN are spatially correlated and the cor-
relation length is mainly determined by Pαi. It is known that
the efficiency of a photon transferring from an anode to a
CCD in a typical IIN having a relay lens imaging system
is 10 ∼ 15%. Therefore, the first term in Eq. (17) cannot
be ignorable for the variance, unless σ2Ki

is much higher
than K̄i. We insist that the spatial noise property shown in
Eq. (17) is general in IINs and should be considered even
for a PMT. In a PMT, only two probabilities of detected
and lost photons are considered, so Pαi might be much higher
than that in IINs. Moran et al.28 analyzed a spatial noise prop-
erty in ICCDs by introducing a spatiotemporal PSF, but their
procedure is very complicated and their result is different
from Eq. (17). Experimental results showing the covariance
of Eq. (17) in IIN outputs are presented in the next section.

Complete noise expressions of hetero/homodyne measure-
ments are given by combining the temporal and spatial analyses.
Resulting from this, dc and ac means and variances on α’th CCD
pixel in the frequency-domain measurement are

M̄DC ¼ cp
X
i

Pαiðc0k̄InÞi;

M̄AC ¼ cpmp

2

X
i

Pαiðc0k̄Inm1Þi;

σ2DC ¼ cp

�X
i

Pαiðc0k̄InÞi

þ
X
i

P2
αi

�
c0k̄InðF − 1Þþðc0k̄InÞ2

�
1þ 1

2

X∞
g¼1

m2
g

��
i

�
;

and

σ2AC ¼ cpmp

2

�X
i

Pαiðc0k̄Inm1Þi þ
X
i

P2
αi

�
c0k̄Inm1ðF − 1Þ

þ ðc0k̄InÞ2
�
2m1 þ

X
odd g

mgmgþ1

��
i

�
; (18)

respectively. For Eq. (18), we assumed that cp and mp of
modulated output photons from a phantom slowly vary

across the phantom exit surface or the cathode of the IIN,
so these quantities are almost the same for each MCP chan-
nel contributing to the noise property of photons detected at
α’th CCD pixel. This assumption is reasonable because the
degree of diffusion (i.e., scattering) of tissues in medical
imaging is usually large. It is important that both mean
and variance modulate along cosðΔωp1t þ ψÞ with these
dc and ac means and variances in Eq. (18). Equation (18)
also shows that M̄AC and σ2AC are approximately different
from M̄DC and σ2DC, respectively, by the factor of mpm1∕2.
When the gain of the IIN increases, both F and c0k̄In are
increased, which indicates that the second terms of P2

αi in
both dc and ac variances are significant. It is expected
that although σ2DC and σ2AC are increased as increasing the
gain, the relative difference between these two variances
becomes larger because the multiplication factor mpm1∕2
in σ2AC is typically less than 1. Furthermore, Eq. (18) implies
that as the modulation gain of the IIN deviates from a perfect
sinusoidal function more and more, the noise of the hetero/
homodyne is increased more due to higher values for mgs.

4 Experiment
The CCD and the IIN used in the experiment are Point Grey
F2-08S2M and Lambert Ins. II18MD, respectively. The source
is the laser diode (LDH-M-C-650B) from PicoQuant with the
modulated diode laser driver, MDL 300. This driver is run
by external modulation signals from a Tektronix AFG3252
function generator that also generates modulation signals for
the IIN cathode. The CCD is carefully adjusted onto the
image plane of the relay lens of the IIN in Fig. 1(a) before
the main experiment. Since the experiment of measuring var-
iances usually takes a few hours, the experiment starts after
about 2 h of warming-up to thermally stabilize all instruments.
Especially, voltages directly measured from the cathode of the
IIN show that the cathode is thermally unstable at the initial run,
which might cause an unexpected long-term variation during
the measurement. The laser diode (LD) beam incident into the
IIN is almost spatially flat and speckle-free in intensity, which is
achieved by lenses and ground glasses. Also, neutral density fil-
ters are used to decrease the power of the LD to avoid damage to
the IIN cathode, because harmonic distortions of the modulated
LD beam can be minimized by keeping the LD power high.

Figure 1(b) is the averaged variance-normalized spatial cov-
ariance calculated from images for non-modulated incident
beams to the IIN with a non-modulated gain. The averaging
is done with 49 variance-normalized spatial covariance matrices,
where each of them is normalized by its own variance. The
exposure time T is 60 ms, and 2000 images are captured to
calculate the spatial covariance. The transverse magnification
of the relay lens in the IIN is 0.5 and the CCD pixel size is
7.4 × 7.4 μm2, so the pixel size on the anode surface in
Fig. 1(b) is equivalent to ∼14.8 × 14.8 μm2. As shown in
Fig. 1(b), the data are spatially correlated, which is caused
by the secondary photon distribution from MCP output pores
to CCD pixels. Figure 1(c) shows 1-D profiles of calculated
spatial covariance matrices for different MCP voltages. The
exposure time T is adjusted for different MCP voltages so that
measured means are almost the same, where Exp60 ms in the
legend indicates 60 ms CCD exposure time and highest MCP
voltage. As the MCP voltage gets higher (i.e., the IIN gain is
higher), the variance becomes larger than the mean for a single
MCP output pore, so the contribution of the second term of
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Eq. (17) to the variance for a CCD pixel is also increased. This is
the reason that the width of variance-normalized correlation
functions is decreased with decreasing MCP voltage, as
shown in Fig. 1(c). It is noticed that the correlation length
is almost the same for all three MCP voltages, which
indicates that Pαi in Eq. (17) is almost independent of a MCP
voltage. We observed that even modulating the cathode voltage
does not have a large affect on these correlation functions.
Figure 1(d) is a variance-normalized temporal auto covariance
from data measured at a single CCD pixel for T ¼ 60 ms. Since
60 ms of T is much longer than the decay time of the phosphor
(1 ms to drop 1% of the peak output for P43 in II18MD), data
are temporally uncorrelated as expected. The experimental
results in Fig. 1 show that the approach of a multinomial
PDF for the spatial distribution of secondaries is reasonable
and that its effect can be independently considered from the
temporal point process analysis.

A homodyne method is used to experimentally measure σ2DC
and σ2AC of Eq. (18), because it is more appropriate for measur-
ing multiple images than a heterodyne method. Applying a high
modulation frequency to the cathode in the IIN for a long time
could permanently damage the cathode, so the modulation fre-
quency for this experiment is set to 100 kHz. Although 100 kHz
is several hundred times lower than a typical modulation

frequency used in frequency-domain diffusive imaging, the
noise characteristics shown in Eq. (18) can still be observed.
Also, 4 × 4 CCD pixels are considered a single macro pixel,
which increases the reliability of measuring variances without
dramatically increasing the number of images, hence reducing
the overall measurement time. As the first step, a homodyne pro-
file is measured with 64 phase steps for 2π of the phase differ-
ence (ψ) between modulation signals applied to the IIN and LD.
Homodyne profiles measured at three observer points (ObPs) of
a macro pixel are shown in Fig. 2(a), indicating that these pro-
files are slightly different for different macro pixels. The max-
imum detector output (bin) is 212 ¼ 4096. Each measurement
point in these homodyne profiles is produced by averaging
50 homodyne images. Next, the averaged homodyne profile
is calculated from 100 homodyne profiles measured at different
macro pixels within an arbitrarily chosen local detector area.
From this averaged homodyne profile, three ψ’s corresponding
to maximum, dc, and minimum irradiances of the homodyne
profile are sought. After these ψ’s are found, 1000 images
are measured for each ψ to calculate means (M̄min, M̄DC,
M̄max) and variances (σ2min, σ

2
DC, σ

2
max) for all 100 macro pixels

within the arbitrarily chosen local detector area. Finally, M̄AC

and σ2AC are calculated from 1∕2ðM̄max − M̄minÞ and
1∕2ðσ2max − σ2minÞ, respectively. Macro pixels satisfying the ac

Fig. 2 (a) Examples of measured homodyne profile. (b) Means and (c) variances of measured dc and ac. Labels on right y-axes in (b) and (c) indicate
ratios of M̄AC∕M̄DC and σ2AC1∕σ

2
AC2, respectively. (d) Variedmp changes not dc variance, but ac variance of homodyne outputs. The x-axes for (b) and (c)

indicate relative MCP voltages.

Journal of Biomedical Optics 015002-7 January 2012 • Vol. 17(1)

Kang and Kupinski: Noise characteristics of heterodyne/homodyne frequency-domain measurements



mean ratio of M̄max − M̄DC and M̄DC − M̄min is almost 1 are
selected for investigating noise characteristics of Eq. (18), the
number of which is ∼30 out of 100. Macro pixels showing
ac mean ratios not close to 1 indicate that their homodyne pro-
files deviate much from the averaged homodyne profile.

Figure 2(b) shows measured M̄DC, M̄AC and their ratios to
different MCP voltages that are indicated as numbers in the
x-axis. T for these different MCP voltages are set to 60, 120,
240, and 480 ms. The MCP voltages for these T’s are chosen
to make all measured M̄DC the same, where 1 MCP voltage in
Fig. 2 corresponds to T ¼ 60 ms. The primary photon number
Tcp increases as T is increased, but it can be considered that
primary photons are still Poisson for even T ¼ 480 ms due
to a very small output photon rate incident into the IIN.
If mp and m1 are assumed almost constant within each measure-
ment macro pixel, M̄AC∕M̄DC ∼ mpm1∕2 from Eq. (18). Since
the separately measured mp in this experimental setup is
∼0.6, and M̄AC∕M̄DC ∼ 0.415 in Fig. 2(b), which indicates
that m1 of the cathode modulation is ∼1.37. We observed
that measured values of M̄AC∕M̄DC are around 0.39 ∼ 0.42
for all conducted experiments as long as applied modulation
voltages to the cathode of IIN and LD remain the same. The
different values of M̄AC∕M̄DC indicate that the characteristics
of gain modulation are slightly different, macro pixel by pixel.
Measured σ2DC, σ

2
AC and σ2AC1∕σ2AC2 to different MCP voltages

are shown in Fig. 2(c), where σ2AC1 ¼ σ2max − σ2DC and
σ2AC2 ¼ σ2DC − σ2min. The value σ2AC1∕σ2AC2 ∼ 1 indicates the
validity of the experiment. Figure 2(c) shows that both σ2DC
and σ2AC increase as the MCP voltage increases, although
M̄DC and M̄AC are constant as in Fig. 2(b). This means that
F and k̄In in Eq. (18) dramatically increase as the MCP voltage
(i.e., gain of the IIN) increases. From the other view, it is
observed that the decreasing rates of both σ2DC and σ2AC are smal-
ler for a lower MCP voltage, which indicates the mean terms
contributing to variances in Eq. (18) are more dominant. It is
also observed in Fig. 2(c) that the absolute difference between
σ2DC and σ2AC is increased as the MCP voltage increases, which is
caused by mpm1∕2 ∼ 0.415 in σ2AC of Eq. (18). Since the devel-
oped theory in Eq. (18) shows that mp affects not σ2DC but σ2AC,
we measure the variation of variances with different peak-to-
peak voltages (Vpp) of the modulation signal applied to LD,
which changes mp. As shown in Fig. 2(d), σ2DC’s are almost
invariant to Vpp, but σ2AC’s are proportionally changed to Vpp.
As shown in Fig. 2, experimental results show good agreement
with the developed theory of Eq. (18).

5 Discussion and Conclusion
A noise factor, NF, is commonly used for the study of noise
properties in photon amplifiers, such as ICCDs or IINs.28

Although the noise factor NF is defined for the case of
non-modulation gain in photon amplifiers, it is worth making
a relationship between NF and F for applying NF to Eq. (18),
which is

NF ≡
SNR2

i

SNR2
o
¼ miσ

2
o

m2
o

¼ F

c0k̄In
; (19)

where the subscripts i and o indicate input and output, and mi
and mo are means of primary and secondary photons, respec-
tively. It is assumed that the primary photons are Poisson in
the second step and mic0k̄In ¼ mo is applied to the third step

of Eq. (19). Substituting Eq. (19) to Eq. (18) can express σ2DC
and σ2AC, including NF. For example, σ2DC becomes

σ2DC ≃ cp

�X
i

Pαiðc0k̄InÞi

þ
X
i

P2
αiðc0k̄InÞ2i

�
NF þ 1þ 1

2

X∞
g¼1

m2
g

�
i

�
; (20)

where 1∕c0k̄In in the second term of Eq. (20) is ignored
assuming c0k̄In ≫ 1. It is reported that a NF for MCP outputs
in an ICCD is inversely proportional to the MCP voltage.28

From the experimental results in Fig. 2 and Eq. (20), it can be
conjectured that ðc0k̄InÞ½NF þ 1þ 1

2

P∞
g¼1 m

2
g� is dramati-

cally increased as the MCP voltage increases even though
a NF is decreased. A similar phenomenon is experimentally
observed in other study, where c0k̄InNF is increased as a
MCP voltage increases although NF is decreased.28 As
another issue, characterizing the noise property of photon
amplifiers by measuring a NF as a function of gain should
be done carefully. As shown in Eq. (20), the NF for MCP
output photons might be significantly different from the
NF for amplifiers’ outputs depending on the amount of
Pαi when c0k̄In is low.

The noise model of hetero/homodyne outputs is theoretically
derived considering random amplification and multinomial
selection. The noise characteristics determined from the devel-
oped theory are experimentally verified. Although this noise
model is developed for hetero/homodyne measurements in
this paper, it can be used for the case of non-modulation
input beam and gain. Furthermore, it is reasonable to assume
that the primary photons for most amplification processes are
described by Poisson point process, as assumed in this paper.
Therefore, the model in this paper can be applied to most
photon-amplification processes including PMTs and Avalanche
photodiodes (APDs) with or without gain modulation.

Some valuable properties are obtained from the developed
noise model. The output is temporally uncorrelated, like shot
noise, only if detector integration time for sampling is much
longer than the decay time of phosphors in imaging intensifiers.
For heterodyne measurements, the exposure time should be
much less than the period of beat-frequency heterodyne output.
Therefore, the heterodyne output is temporally uncorrelated for
the specific range of the detector integration time. The amount
of variance oscillates like the heterodyne and/or homodyne
mean, so dc and ac variances can be considered separately.
The dc variance indicates that the noise of the frequency-domain
measurement output is amplified by the random amplification
and gain modulation compared with the case of non-modulation
gain. As the gain modulation deviates more from a perfect sinu-
soidal function, both dc and ac variances are increased. Another
interesting point is that when both the gain of the image inten-
sifier and the probability of detecting amplified photons from
the image intensifier on a detector pixel are low, the variance
approaches the mean—that is, the output photons are close to
Poisson.

Hetero/homodyne measurements are widely used in fre-
quency-domain diffusive imaging, so understanding the noise
property of the frequency-domain outputs is beneficial in many
ways. For example, it has recently been reported that estimated
means of modulation amplitude and phase from noisy hetero/
homodyne outputs are biased when the number of output
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photons is small.37 By adapting the expressions of mean and
covariance developed in this paper, we have practically clarified
the relationship between the bias and primary photon number.
Furthermore, the developed noise model would be useful to
precisely estimate modulation amplitude and phase using a
maximum likelihood estimation method. As another example,
the noise model in this paper could consolidate figures of
merit for evaluating diffusive imaging performance, which is
effective at optimizing frequency-domain diffusive imaging
systems and helpful in developing new modalities of them.
Finally, the performance of reconstruction algorithms can be
enhanced with the appropriate noise model, so the theoretical
results in this paper can be adapted to improve the quality of
reconstructed images from frequency-domain tomographic
diffusive imaging.

Appendix:
For the mean of Eq. (1), averaging for Δtnk is

hyðtÞifΔtnkg ¼
XN
n¼1

Xkn
k¼1

Z
∞
δðt − tn − ΔtnkÞ½k̄nðtnÞ�−1

× pdðΔtnk þ tn; tnÞΔtnk

¼
XN
n¼1

Xkn
k¼1

½k̄nðtnÞ�−1pdðt; tnÞ

¼
XN
n¼1

kn½k̄nðtnÞ�−1pdðt; tnÞ; (21)

where the marginal probability for all Δtn 0k 0 except n 0 ¼ n
and k 0 ¼ k for any particular n and k are conducted on
the first line []. The last step in Eq. (21) is done by that
½k̄nðtnÞ�−1 is independent of k. The averaging for the second-
ary kn simply replaces kn in Eq. (21) to k̄nðtnÞ, so

hyðtÞifΔtnkg;fkng ¼
XN
n¼1

pdðt; tnÞ: (22)

From Eq. (3), the averaging for secondary time tn produces

hyðtÞifΔtnkg;fkng;ftng ¼
XN
n¼1

½NðapÞ�−1
Z
∞
pdðt; tnÞapðtnÞdtn:

(23)

With the similar concept of independence conducted from
Eqs. (21) to (22), further averaging Eq. (23) with N becomes

hyðtÞifΔtnkg;fkng;ftng;fNg ¼
Z
∞
pdðt; tnÞapðtnÞdtn: (24)

Substituting Eqs. (2) and (5) to Eq. (24) finalizes the calcu-
lation for the mean, as shown in Eq. (8).

The covariance can be calculated with the similar averaging
procedure from Eqs. (21)–(26), but it should be considered in

three separate cases. The autocorrelation of the point process
of Eq. (1) is expressed as

Ryðt; t 0Þ

¼
�XN

n¼1

Xkn
k¼1

XN
n 0¼1

Xkn 0
k¼1

δðt − tn − ΔtnkÞδðt 0 − tn 0 − Δtn 0k 0 Þ
�
:

(25)

Case 1: n ¼ n 0, k ¼ k 0
The averaging over Δtnk for the autocorrelation with the

condition of case 1 is

hyðtÞyðt 0Þið1ÞfΔtnkg ¼
XN
n¼1

Xkn
k¼1

½k̄nðtnÞ�−1pdðt; tnÞδðt − t 0Þ; (26)

where a marginal probability law for Δtnk is similarly
applied, as in Eq. (21). The superscript (1) indicates that
averaging is performed for case 1. Further averaging
Eq. (26) for kn, tn, and N produces

Rð1Þ
y ðt; t 0Þ ¼

Z
∞
pdðt; tnÞapðtnÞdtnδðt − t 0Þ: (27)

Substituting Eqs. (2) and (5) to Eq. (27) derives

Rð1Þ
y ðt; t 0Þ ¼ cpc0

Z
∞
½1þ mp cosðωptn þ ψÞ�

×
�
1þ

X∞
g¼1

mg cosðωgtn þ ϕsÞ
�

× pIdðt; tnÞdtnδðt − t 0Þ: (28)

Similar with the procedure from Eqs. (8)–(10), only the dc
and Δωp1 terms survive in Eq. (28). Therefore,

Rð1Þ
y ðt; t 0Þ ¼ cpc0k̄In

�
1þ mp

2
cosðΔωp1t þ ψ − ϕ1Þ

X∞
g¼1

mg

�

× δðt − t 0Þ; (29)

where it is assumed that pIdðt; tnÞ ≈ k̄InðtnÞδðt − tnÞ.
Case 2: n ¼ n 0, k ≠ k 0.
Considering a marginal probability law, averaging Eq. (25)

over Δtnk produces

hyðtÞyðt 0Þið2ÞfΔtnkg¼
XN
n¼1

Xkn
k¼1

Xkn
k 0¼1

Z
∞

Z
∞
pΔtðΔtnk;Δtnk 0 Þ

× δðt−tn−ΔtnkÞδðt 0−tn−Δtnk 0ÞdΔtnkdΔtnk 0

¼
XN
n¼1

Xkn
k¼1

Xkn
k 0¼1

½k̄nðtnÞ�−2pdðt; tnÞpdðt 0; tnÞ

¼
XN
n¼1

ðk2n − knÞ½k̄nðtnÞ�−2pdðt; tnÞpdðt 0; tnÞ;

(30)

where the second line is given by that Δtnk and Δtn 0k 0 are
independent of each other. The k2n − kn indicates the number
of terms on the summations of k and k 0 for k ≠ k 0, which can
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be switched to Var½knjtn� þ k̄2nðtnÞ − k̄nðtnÞ through the pro-
cedure of averaging Eq. (30) over kn. Further averaging
hyðtÞyðt 0Þið2Þ for tn and N becomes

Rð2Þ
g ðt; t 0Þ ¼

Z
∞
½Var½knjtn� þ k̄2nðtnÞ − k̄nðtnÞ�½k̄nðtnÞ�−2

× apðtnÞpdðt; tnÞpdðt 0; tnÞdtn: (31)

If the integration for the term k̄nðtnÞ in ½Var½knjtn� þ k̄2nðtnÞ −
k̄nðtnÞ� is considered with the substitutions of Eqs. (2), (5),
and (7),

Z
∞
½k̄nðtnÞ�−1pdðt; tnÞpdðt 0; tnÞapðtnÞdtn

¼ cpc0

Z
∞
½k̄InðtnÞ�−1pIdðt; tnÞpIdðt 0; tnÞ½1þ mp

× cosðωptn þ ψÞ�
�
1þ

X∞
g¼1

mg cosðωgtn þ ϕgÞ
�
dtn

≈ cpc0

Z
∞
k̄InðtnÞδðt − tnÞδðt 0 − tnÞ

×
�
1þ mp

2
cosðΔωp1t þ ψ − ϕ1Þ

X∞
g¼1

mg

�
dtn

≈ cpc0k̄In

�
1þ mp

2
cosðΔωp1t þ ψ − ϕ1Þ

X∞
g¼1

mg

�
δðt − tÞ:

(32)

The last line of Eq. (32) is equivalent to Eq. (29), so these are
canceled out for the autocorrelation considering both case 1 and
case 2. The autocorrelation is

Rð1Þþð2Þ
y ðt; t 0Þ ¼

Z
∞
½Var½knjtn�

þ k̄2nðtnÞ�apðtnÞprΔtðt; tnÞprΔtðt 0; tnÞdtn;
(33)

where Eq. (6) is used for pd in Eq. (31).
Case 3: n ≠ n 0, k ≠ k 0.
Calculating the autocorrelation under this condition is so

straightforward that the detailed mathematical procedure is
not shown. Basically, after considering that there are N2 − N
terms for the summations for n and n 0, two point processes
gðtÞ and gðt 0Þ can be independently calculated. Resulting
from this consideration is the multiplication of two means of
Eq. (24). Because the covariance Kyðt; t 0Þ ¼ Ryðt; t 0Þ−
hyðtÞihyðt 0Þi, the result Ryðt; t 0Þ of for case 3 is canceled out
with hyðtÞihyðt 0Þi in Kyðt; t 0Þ. Therefore, Kyðt; t 0Þ is the same
as Eq. (31), which is the same as Eq. (9).
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