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Abstract. We demonstrate the first application of Raman spectroscopy in diagnosing nonmalignant, premalignant,
malignant, and metastatic stages of breast cancer in a three-dimensional (3-D) cell culture model that closely
mimics an in vivo environment. Comprehensive study comparing classification in two-dimensional (2-D) and
3-D cell models was performed using statistical methods composed of principal component analysis for exploratory
analysis and outlier removal, partial least squares discriminant analysis, and elastic net regularized regression for
classification. Our results show that Raman spectroscopy with an appropriate classification tool has excellent res-
olution to discriminate the four stages of breast cancer progression, with a near 100% accuracy for both 2-D and
3-D cell models. The diversity in chemical groups related to nucleic acids, proteins, and lipids, among other chem-
icals, were identified by appropriate peaks in the Raman spectra that correspond to the correct classification of the
different stages of tumorigenesis model comprising of MCF10A,MCF10AneoT, MCF10CA1h, andMCF10CA1a cell
lines. An explicit relationship between wavenumber and the stages of cancer progression was identified by the
elastic net variable selection. © 2013 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.18.11.117008]
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1 Introduction
Raman spectroscopy is an analytical technique based on inelas-
tic scattering of light, capable of providing chemical specificity
with a suitable enhancement down to a single molecule
resolution.1–5 The presence of specific chemical bond diversity
on cell surfaces relates to the diversity of cell surface compo-
sition consisting of carbohydrates, proteins, and lipids among
others.3,5,6 With the surface-enhanced Raman spectroscopy,
subcellular fingerprinting (e.g., nucleic acids and amino
acids) has been possible, enabling Raman spectroscopy as a
viable method for the classification of complex in vivo biomo-
lecular analysis and monitoring.4 Raman spectroscopy has been
shown to be accurate in differentiating nonmalignant and malig-
nant entities, such as in skin lesions,5,7 epithelial breast cancer
cells,6 gastrointestinal, colorectal, and lung cancer cells.8–11 The
focus of our study is on breast cancer using a three-dimensional
(3-D) cell culture model system that mimics an in vivo
condition.

Breast cancer is a lethal heterogeneous disease12 with diver-
sity within and between tumors and also among patients.13 The
complexity of this disease poses a challenge in cancer diagnosis,
prognosis, and in the assessment of populations that have devel-
oped a therapeutic resistance. Therefore, there is a need for
robust diagnostic and classification tools that are reproducible
and have clinical potential.12

Although Raman spectroscopy has been used for ex vivo
and in vivo classification of breast cancer,4,14–19 most of the
past work predominantly focused only on the differentiation
of nontumorigenic and tumorigenic cells, while few address
stage-based classification (from nonmalignant, premalignant,
malignant, to metastatic). Furthermore, most of the past work
using Raman spectroscopy for breast cancer classification
used two-dimensional (2-D) cell culture models, where the
extracellular matrix, a critical factor in cell phenotype regula-
tion, is unaccounted for.20 Under 2-D conditions, cells tend
to lose part of their context due to the absence of an extracellular
environment and other characteristics necessary for cell-to-cell
communication, growth, and differentiation.

The work presented here is the first to evaluate Raman spec-
troscopy as a potential tool for cancer staging using 3-D breast
cancer model with elastic net regularized regression analysis to
reveal the relationship between characteristic Raman fingerprint
and the stage of cancer. We tested our hypothesis that Raman
spectroscopy is a viable tool for breast cancer classification
using 2-D and 3-D cell culture models in conjunction with
the application of principal component analysis (PCA), partial
least squares discriminant analysis (PLS-DA), and elastic net
analysis. Our work addresses the: (1) potential of Raman spec-
troscopy to differentiate cancer cells at different stages of
tumorigenesis; (2) classification efficacy to differentiate cells
at different stages of the disease; and (3) determination of
key chemical components that account for the differences
observed in the cells at different stages of malignant transforma-
tion. Spectral analysis from elastic net is supported by statistical
methods, PCA, and PLS-DA.
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2 Materials and Methods

2.1 Cancer Cell Lines

The MCF10 model is a panel of isogenic human breast epithelial
cell lines, namely MCF10A (nonmalignant), MCF10AneoT
(premalignant), MCF10CA1h (malignant, but not metastatic),
and MCF10CA1a (metastatic), each at a distinct stage of cancer
progression.21 Spontaneously immortalized, nonmalignant
breast epithelial MCF10A cells were developed from a human
benign fibrocystic breast disease specimen. Introduction of the
H-Ras oncogene in MCF10A cells gave rise to the premalignant
MCF10AneoT cells which were serially passaged in immuno-
compromised mice resulting in the accumulation of tumor-pro-
moting mutations. This led to the development of human tumor
xenografts with varying degree of malignancy, ultimately giving
rise to various MCF10CA1 clones. MCF10CA1h cell line con-
sists of well-differentiated tumor cells that are malignant, but not
metastatic, whereas MCF10CA1a line consists of poorly differ-
entiated cells that are metastatic in immunocompromised
mice.21–26 These cell lines have been extensively characterized
by cytogenetic and microarray analysis and have been used to
study key signaling pathways and molecular and genetic events
in tumorigenesis.27–29 Since the cell lines in the MCF10 series
are isogenic and represent the major stages of breast cancer
progression, they were an ideal choice for this study. All the
cell lines were obtained from Barbara Ann Karmanos Cancer
Institute (Detroit, Michigan).

2.2 Cell Lines Growth Conditions

MCF10A and MCF10AneoT cells were cultured and main-
tained in Dulbecco’s modified Eagle’s medium nutrient mixture
F-12 HAM [with 15 mM 2-[4-(2-hydroxyethyl)piperazin-1-yl]
ethanesulfonic acid (HEPES), NaHCO3, pyridoxine, and L-glu-
tamine; Sigma] supplemented with 5% horse serum (Sigma),
100 ng∕mL choleratoxin (Sigma), 20 ng∕mL EGF (SAFC
Biosciences, St. Louis, Missouri), 10 μg∕mL insulin (Sigma,
St. Louis, Missouri), and 0.5 μg∕mL hydrocortisone (Sigma).
MCF10CA1h and MCF10CA1a cells were grown in
Dulbecco’s modified Eagle’s medium nutrient mixture F-12
HAM (with 15 mM HEPES, NaHCO3, pyridoxine, and L-glu-
tamine; Sigma) supplemented with 5% horse serum. All the
cells were cultured in 5% CO2 incubator at 37°C.

2.3 Sample Preparation

For 2-D culture, the cells were cultured in a 25-cm2 flask (Nunc,
Rochester, New York) to reach 80% confluency. The cells were
trypsinized and 0.5 mL of the cell suspension was added to 35-
mm tissue culture dishes (Falcon, Franklin lakes, New Jersey)
with 1.5 cm × 1.5 cm gold slides placed inside the dish.
Subsequently, 2.5 mL of culture medium was added and
the cells were cultured to reach 80% confluency. By using
this method, the cells were grown both on the surface of the
gold slide and in the tissue culture dish. The slides were sub-
sequently taken out and placed into a new tissue culture dish.
The cells on the gold slide were rinsed twice with Gibco phos-
phate-buffered saline (PBS) at 37°C (pH 7.4, Life Technologies,
Carlsbad, California) to remove the remaining culture medium
and placed in 1.3 mL PBS to prevent the cells from drying out
during measurement. The main steps involved in sample prepa-
ration are schematically illustrated in Fig. 1.

In Fig. 1, the 2-D cell culture and the two common types of 3-
D cell culture models are shown: Fig. 1(b) shows, an “embedded
model” in which a mixture of cell suspension with liquefied
Matrigel is prepared as a first step followed by the addition
of culture media after the solidification of the Matrigel. The sec-
ond method for 3-D cell culture preparation is the “on-top
model,” Fig. 1(c), where solidified Matrigel is used as a substra-
tum before adding the mixture of culture media and cell suspen-
sion. Here, the cells adhere to the surface of the Matrigel and
initiate the formation of clusters on the surface. In this work,
in order to keep the cell clusters alive during measurement, the
embedded model was adopted as the surrounding Matrigel pro-
tects the specimen from drying out due to the evaporation of the
liquid medium during measurement.

For 3-D cell culture, 2 × 105 cellswere resuspended in 10 μL
of growth medium and added to 150 μL Matrigel basement
membrane matrix (BD Biosciences, San Jose, California) on
ice. The mixture of cells and Matrigel was evenly layered in
a 24-well tissue culture treated plate (BD Falcon, Franklin
lakes, California) and incubated in a 5% CO2 incubator at
37°C for 30 min. After 30 min, 1.5 mL of prewarmed growth
medium was gently layered from the side of the well onto the
matrix/cell mixture. The cells were maintained in the 3-D cul-
ture at 37°C with 5% CO2 for 5 days with the medium replaced
every 2–3 days. The cells were allowed to form 3-D spheroids
and then imaged using the Ziess AxioObserver microscope with
Axiovision software.

Fig. 1 Schematic of a two-dimensional (2-D) and three-dimensional (3-D) cell culture systems: (a) 2-D; (b and c) 3-D culture models (top) and 3-D cell
sample preparation (bottom). 3-D cell lines were first cultured in a 24-well plate in an embedded model, washed, and a piece of gel was then taken,
placed onto the gold slide for Raman measurement that followed.
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The cells were analyzed after 5 days in the 3-D culture. The
culture medium was removed and the cells were washed twice
with PBS to remove the remaining culture medium; PBS in the
well was subsequently removed and a section of the Matrigel
with 3-D cell spheroids was removed with a spatula. The
Matrigel was placed on the gold slide for the spectral analysis,
and the remaining Matrigel was kept in the incubator for further
measurements.

2.4 Data Collection by Raman Spectrometer

The Senterra Confocal Raman Spectrometer (Bruker Optics
Inc., Billerica, Massachusetts), fitted with a 50× objective
was used. The 50 μm pinhole was activated to remove stray
light from the out-of-focus plane. Cells grown in 2-D and
3-D cultures are shown in Figs. 2(a) and 2(b), respectively. A
633 nm He-Ne laser with 20 mW power was used for excitation
and an integration time of 45 s was used for Raman spectra
acquisition. During measurement, the cells attached to the
gold slide displayed a spindle form, thus no tissue damage
was observed under the laser conditions used. This can be

explained by the fact that cells gradually display a round
shape instead of the spindle shape when dying. The schematic
of the optical layout is illustrated in Fig. 2(c).30–34

For both 2-D and 3-D cell samples, three independent
biological replicates were performed. In the 2-D cell cultures,
10 cells were measured in each cell, five measurements were
made by choosing different spots (one is at the center) to ensure
that all components of the cell were probed. For the 3-D cell
sample, since the cells formed clusters, called spheroids, the
samples were studied as spheroids rather than as single cells.
In each biological replicate, four spheroids were chosen for
analysis and 15 different spots were chosen across the spheroid
(one center point and four spots surrounding this spot and 10
spots at the exterior) for measurement in each sample. The
data collection and analysis for both 2-D and 3-D cultures
are noted below.

2.5 Data Pretreatment

Data analysis was done using R software. The raw spectra
were first processed to accommodate the 500−1800 cm−1

Fig. 2 Schematic of sampling for 2-D and 3-D culture systems: (a) five spots were chosen for data collection in each 2-D cell, (b) 15 spots distributed
throughout the spheroid were chosen in the 3-D spheroid, and (c) schematic of the optical layout of the Senterra Confocal Raman spectrometer: the
laser is directed through a neutral density filter to excite the sample through the objective and the scattered photons are collected by the same objective.
A pinhole is used to detect photons from the plane of focus.
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range of the Raman shift which contains most of the biologi-
cal fingerprints.17–19 The spectra were baseline corrected by
fitting polynomials using the R software to remove the effects
of fluorescence and allow for the acquisition of spectra with
band edges up to the theoretical baseline to visualize minor
peaks. The spectra obtained were normalized to ensure that
the area under the curve was unity, for further evaluation.

2.6 Statistical Analysis

The statistical analysis of this study was conducted in three steps.
First, PCAwas applied to assess data variability and to detect out-
liers. These outliers were removed from the data set and conse-
quently not included in the subsequent statistical techniques. In
sequence, PLS-DA, a well-established classification technique
was applied to the data to actually classify the samples based
on their cell lines. Beyond the development of classification mod-
els, in a third step, an interpretation of the main differences
between cells in different stages of cancer was attempted by
elastic net,35 providing an interesting visualization of specific
compounds associated with this progression. Elastic net is a
version of penalized least squares that combines both Ridge
and Lasso regressions. In this technique, the wavenumbers that
reveal an explicit relationship with the different stages of tumor
progression are selected with their respective coefficient estimates
that represent the extent of contribution of each of these wave-
numbers to the correct classification of each cell line.

2.6.1 Exploratory analysis and outlier removal

PCA is an exploratory multivariate analysis technique that proj-
ects the data matrix to a lower-dimensional space spanned by the
loading vectors. The loading vectors corresponding to the k larg-
est eigenvalues are retained to optimally capture the variance of
the data and to minimize the effect of random noise.36 The good-
ness-of-fit between the data and the model can be calculated
using the residual matrix and Q statistics that measure the dis-
tance of a sample from the new space of the PCA model.36

Hotelling’s T2 statistics indicates how far the estimated sample
by the PCAmodel is from the multivariate mean of the data, thus
these statistics provide an indication of variability within the
normal subspace.37 The combination of Q and T2 tests is
used to detect the remaining abnormal observations. Given
the level of significance for the Q and T2 statistics, measure-
ments with Q or T2 values over the threshold are classified
as outliers.37 After the elimination of the outlier spectra from
the model, the procedure was continually repeated until no
outliers could be identified. The software MATLAB (The
MathWorks, Co., Natick, Massachusetts) and the computational
package PLS_Toolbox (Eigenvector Research, Inc., Wenatchee,
Washington) were employed. All data were mean centered prior
to PCA.

2.6.2 Classification of cells in different stages of cancer

PLS-DA is a parametric and linear model and one of the most
applied techniques for the classification of spectral data.
The basics of PLS-DA consist of the application of a partial
least squares regression model with variables which are indi-
cators of groups. The second step of PLS-DA is to classify
observations from the results of PLS regression on the indi-
cator variables.38 MATLAB (The MathWorks, Co., Natick,
Massachusetts) and the computational package PLS_Toolbox

(Eigenvector Research, Inc.) were employed for PLS-DA analy-
sis. In both 2-D and 3-D models, spectral data were divided into
calibration (75%) and validation (25%) data sets. Cross-valida-
tion (comprising of leave-one-out analysis) was applied to esti-
mate the performance of the models and to choose the optimal
number of latent variables. The predictability of the resulting
models was evaluated based on the classification error for the
validation set. Sensitivity is defined as the proportion of true
positives that were classified as positive, and specificity repre-
sents the proportion of true negatives that were classified as neg-
ative. The later parameters were calculated as follows:

Sensitivity ¼ true positives

true positivesþ false negatives
;

Specificity ¼ true negatives

true negativesþ false positives
:

2.6.3 Variable selection

Elastic net35 was applied using the glmnet package of the R soft-
ware that fits generalized linear models via penalized maximum

Fig. 3 Mean Raman spectra of (a) 2-D and (b) 3-D cell cultures of
benign,MCF10A (black), premalignant, MCF10AneoT (dark gray), malig-
nant, MCF10CA1h (medium gray), and metastatic MCF10CA1h (light
gray). Standard deviation is provided.
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likelihood. Samples were randomly separated into training
(75%) and validation (25%) data sets. The regularization param-
eter lambda causes coefficient shrinkage, minimizing the
residual sum of squares. In order to obtain the lambda value
that gives a minimum cross-validated error, leave-one-out
cross-validation was performed. In sequence, multinomial logis-
tic models were fitted with the training data set at α values rang-
ing from 0 to 1, in steps of 0.25. The parameter α controls the
mixing between Ridge and Lasso regressions. Ridge regression
(α ¼ 0) imposes an L2-penalty to the model resulting in a coef-
ficient shrinkage, while Lasso regression (α ¼ 1) imposes an
L1-penalty which expects many predictors to be close to zero
and a small subset to be nonzero, providing automatic variable
selection.39 Elastic net (0 < α < 1) provides both coefficient
shrinkage and variable selection. The developed models were
used to predict the degree of classification as well as validation
using the validation data set. The α-value that provided the
higher predictability based on the lowest classification errors
was considered as the best-fit model. The discriminant wave-
numbers from the best-fit model and their respective coefficient
estimates were then extracted.

3 Results

3.1 Raman Spectra

Figure 3 shows the average Raman spectra from a total of
150 spectra for the 2-D [Fig. 3(a)] and 180 spectra for
the 3-D [Fig. 3(b)] cell culture model in the range

500 − 1800 cm−1. Each spectrum was previously baseline cor-
rected and normalized as described in Sec. 2. Standard deviation
information is also provided.

Despite the similarities between the 2-D and the 3-D spectra,
especially in the region 800–1150, 1200–1350, and 1400−
1700 cm−1, differences could be noted in the spectral window
500 − 700 cm−1, and peaks in the 2-D cell culture samples
merged into a broad shoulder in the 3-D cell systems.

Spectra from the metastatic (MCF10CA1a) cell lines had a
higher intensity than other cell lines in the region 850−
1150 cm−1. This trend was observed in both the 2-D and 3-D
cell culture samples, although it is more evident in the 2-D cells.
In the 3-D system, it is evident that premalignant samples show
higher intensity than other cell lines in the 1451 and 1650 cm−1

peaks, and nonmalignant samples show a higher intensity than
malignant and metastatic at the 1650 cm−1 peak. An opposite
trend was observed in nonmalignant and premalignant at
the 1620 cm−1 shoulder, where the 2-D samples exhibited inten-
sity in the following order; nonmalignant > premalignant >
malignant > metastatic, while in the 3-D system the premalig-
nant samples show higher intensity than nonmalignant. How-
ever, based only on the visual observation of the spectra, it is
not possible to arrive at major conclusions, especially when con-
sidering the standard deviation between each cell line. In the
2-D model the minimum–maximum values of the standard
deviation in the nonmalignant, premalignant, malignant, and
metastatic cell lines were 0.06–1.22, 0.05–1.04, 0.07–0.57,
and 0.05–0.57, respectively; in the 3-D models, these values

Fig. 4 Three-dimensional cell culture model better discriminates the four stages of breast cancer; PC scores scatter plots: (a), (c), PC1 versus PC2 of 2-D
(a) and 3-D (c) cell models, (b), (d), PC1versus PC2 versus PC3 of (b) 2-D, and (d) 3-D models.

Journal of Biomedical Optics 117008-5 November 2013 • Vol. 18(11)

Damayanti et al.: Differentiation of cancer cells in two-dimensional and three-dimensional breast cancer. . .



were 0.03–0.21, 0.02–0.24, 0.02–0.18, and 0.02–0.31, respec-
tively. A discussion on the main differences between the spectra
of each cell line will be conducted in the next sections supported
by statistical analysis.

3.2 Exploratory Analysis and Outlier Removal
by PCA

Using PCA, the original high-dimensional spectral data set con-
taining chemical and biological characteristics of the cancer cell
lines was projected to a low-dimensional space where the first
principal components (PCs) explained most of the variance
between the samples. Samples with Q or T2 statistical values
over the threshold were classified as outliers and removed
from the data set. The procedure was repeated until no outliers
were identified. For the 2-D cell culture models, 19 observations
from the original data set containing 110 observations were
identified as outliers. On the other hand, two from the original
48 observations from the data set of the 3-D cell culture models
were identified as outliers and removed from the data set.

The resulting scatter plots obtained by PCA analysis are
shown in Fig. 4. For the 2-D cell culture, the first two PCs
clearly separated metastatic cells from the other cell lines

[Fig. 4(a)]. The inclusion of the third PC provides a 3-D scatter
plot that also discriminates malignant, but nonmetastatic from
the rest of the group, as shown in Fig. 4(b). Thus, based on
the variance of the spectral data from the 2-D cell culture,
the two stages of cancer could be separated into two clusters
while nonmalignant and premalignant were clustered together.
In the case of the 3-D cell culture, the first two PCs displayed
four clusters of the cell lines, although some overlap was
observed [Figs. 4(c) and 4(d)].

3.3 Classification Based on PLS-DA

Results from our exploratory analysis indicate that Raman spec-
tra can provide sufficient information to develop classification
models for different stages of cancer cells. Thus, PLS-DA was
further applied to the spectral data with the purpose of obtaining
classification models for assigning samples to categories. Based
on leave-one-out cross-validation, five and six latent variables
were chosen and employed in the development of the 2-D
and 3-D cell culture models. Table 1 summarizes the classifica-
tion results obtained. Accurate classification was obtained for
both the 2-D and 3D cell culture models with the accuracy
up to 100% for malignant and premalignant in both models.

Table 1 Summary of PLS-DA prediction results of the model developed for classification of cancer cell lines.

MCF10A MCF10AneoT MCF10CA1a MCF10CA1h

Two-dimensional

Sensitivity (Cal) 1 0.941 1 1

Specificity (Cal) 1 1 1 1

Sensitivity (CV) 1 0.941 1 1

Specificity (CV) 1 1 1 1

Sensitivity (Val) 0.6 1 1 1

Specificity (Val) 1 0.895 1 0.938

Class. Err (Cal) 0 0.029 0 0

Class. Err (CV) 0 0.029 0 0

Class. Err (Val) 0.2 0.053 0 0.031

Three-dimensional

Sensitivity (Cal) 1 1 1 1

Specificity (Cal) 1 1 1 1

Sensitivity (CV) 1 0.889 1 1

Specificity (CV) 0.923 1 0.963 0.923

Sensitivity (Val) 1 1 1 1

Specificity (Val) 0.889 1 1 1

Class. Err (Cal) 0 0 0 0

Class. Err (CV) 0.038 0.055 0.018 0.038

Class. Err (Val) 0.056 0 0 0
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The sensitivity in the validation set for nonmalignant cells is
lower in 2D models compare to the sensitivity of nonmalignant
cells in 3D models. The overall classification error for the 3-D
model is considered to be lower than the 2-D model, especially
for the classification of nonmalignant cells.

Due to the fact that relatively small number of samples was
used in the development of the 3-D model, a lower number of
latent variables would be preferred in order to guarantee the sta-
bility and robustness of the model. However, the number of
latent variables employed reflects the complexity of the samples
being analyzed, and a reduction in this number leads to an

accuracy decay. Nevertheless, Table 2 shows the classification
results for the 2-D and 3-D models constructed with one to three
latent variables, respectively. Satisfactory results were obtained
with only three latent variables for both the 2-D and 3-D models.

3.4 Variable Selection by Elastic Net

Elastic net was applied in this study for visualization of the
discriminating wavenumbers and to know what extent these
wavenumbers contributed to the correct classification of
each cell line. Multinomial logistic models were developed

Table 2 PLS-DA prediction results of the models developed for the classification of 2-D and 3-D cancer cell lines (number of latent variables are
included).

LV Cell Line
Sens.
(Cal)

Specif.
(Cal)

Sens.
(CV)

Specif.
(CV)

Sens.
(Val)

Specif.
(Val)

Class.
Err
(Cal)

Class.
Err
(CV)

Class.
Err
(Val)

Two-dimensional

1

MCF10A 0.727 0.491 0.727 0.491 0.8000 0.667 0.391 0.391 0.267

MCF10AneoT 0.706 0.078 0.647 0.098 0.000 0.211 0.608 0.627 0.895

MCF10CA1a 0.15 0.396 0.15 0.396 0.000 0.500 0.727 0.727 0.750

MCF10CA1h 0.9 0.292 0.85 0.292 1.000 0.563 0.404 0.429 0.219

2

MCF10A 0.818 0.474 0.818 0.474 1.000 0.611 0.354 0.354 0.194

MCF10AneoT 0.353 0.725 0.471 0.549 0.000 0.632 0.461 0.490 0.684

MCF10CA1a 1 0.854 1 0.854 1.000 0.750 0.073 0.073 0.125

MCF10CA1h 0.85 0.688 0.85 0.688 0.857 0.688 0.231 0.231 0.228

3

MCF10A 0.818 0.702 0.818 0.702 0.000 0.722 0.240 0.240 0.639

MCF10AneoT 0.941 0.784 0.824 0.784 1.000 0.947 0.137 0.196 0.026

MCF10CA1a 0.95 1 0.95 0.958 1.000 1.000 0.025 0.046 0.000

MCF10CA1h 0.8 0.792 0.75 0.708 0.714 0.688 0.204 0.271 0.299

Three-dimensional

1

MCF10A 0.111 0.654 0.333 0.654 0 0.556 0.618 0.506 0.722

MCF10AneoT 0.889 0.769 0.889 0.769 1 0.75 0.171 0.171 0.125

MCF10CA1a 0.375 0.593 0.5 0.667 0.667 0.625 0.516 0.417 0.354

MCF10CA1h 0.222 0.231 0.222 0.231 0 0 0.774 0.774 1.000

2

MCF10A 0.889 0.462 0.889 0.423 1 0.333 0.325 0.344 0.333

MCF10AneoT 0.889 0.923 0.889 0.923 1 1 0.094 0.094 0.000

MCF10CA1a 0.625 0.556 0.625 0.556 1 0.625 0.410 0.410 0.188

MCF10CA1h 0.889 0.769 0.778 0.769 1 0.75 0.171 0.226 0.125

3

MCF10A 0.889 0.385 0.889 0.385 1 0.444 0.363 0.363 0.278

MCF10AneoT 0.889 0.923 0.889 0.846 1 1 0.094 0.132 0.000

MCF10CA1a 1 1 1 0.963 1 1 0.000 0.019 0.000

MCF10CA1h 0.889 0.846 0.889 0.808 1 1 0.132 0.152 0.000
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by varying the parameter α. Perfect statistical classification was
achieved for an α value of 0.5 in both the 2-D and 3-D systems.
The coefficient estimates from the developed models were then
extracted.33

As demonstrated in Fig. 5, each stage of breast cancer was
identified by specific coefficient estimates in both the 2-D and
3-D models; overall, 3-D cells exhibited fewer coefficients for
each stage. Premalignant cells were identified by the prominent
positive peak at 1228 − 1234 cm−1 and a negative peak at
1774 cm−1 in both 2-D and 3-D, but only in the 3-D model
a prominent positive peak appeared at 612 − 614 cm−1. High
negative coefficients for nonmalignant cells were observed at
1365 cm−1 in the 3-D model. Premalignant, malignant, and
metastatic stages were identified by different coefficient esti-
mates in the 2-D and 3-D cell cultures, although the premalig-
nant state yielded a negative peak at 604 − 612 cm−1. A
prominent negative peak for the premalignant cell line was
observed at 1651 cm−1 in the 2-D model. Malignant cells
were identified by a strong positive peak at 688 cm−1 in the
2-D model and strong negative peaks at 555 and 889 cm−1

in the 3-D and 2-D models, respectively. Higher peaks associ-
ated with the metastatic cell line were mostly observed in the
3-D model, with a strong positive peak at 1349 − 1358 cm−1

and negative peaks in the following regions: 732, 1006,
1236–1240, and 1578 cm−1.

We examined each of the nonzero coefficient estimates
and, based on the existing work, tentative assignment of these
coefficients to chemical compounds were made that relate to
specific regions in the Raman spectrum (Table 3).

4 Discussion

4.1 Raman Spectroscopy for Breast Cancer
Classification

Based on our results (Fig. 4 and Table 1), the methods and
analysis procedures used for classifying 3-D models using
PCA and PLS-DA has a similar trend as the 2-D classification,
providing evidence that the methods developed are robust.38

Based on PLS-DA, excellent results were achieved in the clas-
sification of metastatic and malignant cells (specificity 100%,
sensitivity 100%); however, lower sensitivity was observed
when classifying nonmalignant cells in the 2-D model compared
to that of the 3-D system. Low sensitivity (60%) and high speci-
ficity (100%) for nonmalignant cells indicate the possibility of
nonmalignant cells to be classified as premalignant cells in the
2-D model; however, malignant and metastatic stages would not
be classified as nonmalignant. Higher sensitivity was achieved
for nonmalignant cells in the 3-D model, which suggests that the
change in the extracellular matrix environment and interaction

Fig. 5 Elastic net coefficient estimates for α ¼ 0.5 for (a) 2-D and (b) 3-D cell culture models. A peak indicates that the correct classification of spectra is
associated with the corresponding spectral region. A positive peak indicates higher intensity than other cell lines; a negative peak indicates lower
intensity.
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plays a key role in the development of premalignancy in breast
cancer.40 Malignant stages are accurately classified in both the
2-D and 3-D models; suggesting that the malignant character-
istic is preserved in both the 2-D and 3-D cell culture models.

4.2 Variable Selection by Elastic Net

Although PLS-DA alone can provide satisfactory classification,
this technique cannot reveal sparse variables that contribute to
the classification of each cell line, since each of the latent var-
iables used in the development of the PLS-DA models is a linear
combination of several original variables, representing a prob-
lem in terms of variable selection. Elastic net was used in this
study to solve the aforementioned problem, making the data
more succinct and simpler, and providing a good interpretation
of the model.41 More importantly, elastic net reveals the relation-
ship between breast cancer stages and discriminating wavenum-
bers that give the most contribution to the correct classification
of each cell line. This knowledge will be useful in understand-
ing the underlying biomolecular processes in the breast cancer
tumorigenesis. Based on our results, extracellular matrix plays
an important role in the genesis of malignancy. Prominent coef-
ficients indicate that nonmalignant cells exhibit a high content of
polysaccharide and the lowest aromatic amino acid content
(Table 3),42,43–51 which is in agreement with the previous report
which implicates lipid genesis in neoplastic transformation52,50

and characteristic aromatic amino acid content during malig-
nancy development.53,51 High lipid and nucleic acid content
are characteristics of metastatic cells, while high aromatic con-
tent and lower polysaccharide composition are characteristic of
malignant cells.42–53 These results suggest that lipid, poly-
saccharide, and aromatic amino acid constituents can serve as
potential biomarkers in monitoring tumor progression.

5 Conclusion
Our study presents the first application of Raman spectroscopy
to classify 3-D breast cancer cell culture models and to discrimi-
nate between the nonmalignant, premalignant, malignant, and
metastatic stages of breast cancer. The 3-D model is unique
because it accounts for the extracellular matrix and is a better
representative of an in vivo environment than the 2-D cell cul-
tures. Hence, our work presents an important step in translation.
Analysis of Raman spectra using elastic net indicates that
the tools developed can accurately discriminate the premalig-
nant from nonmalignant with the specificity and sensitivity
nearing 100%. We also show that Raman spectroscopy can dif-
ferentiate the two forms of malignant cancer; metastatic, and
nonmetastatic. Evaluation of the spectra indicates that the poly-
saccharide, lipid, nucleic acid, aromatic amino acid, and extrac-
ellular matrix components are involved in the staging of breast
cancer. Our methods suggest that the incorporation of Raman
spectroscopy and statistical techniques, such as PLS-DA and
elastic net, makes the classification of cells within the tissues
possible with a high degree of accuracy.
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