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Abstract. Optical coherence elastography (OCE) maps the mechanical properties of tissue microstructure and has
potential applications in both fundamental investigations of biomechanics and clinical medicine. We report the first
analysis of contrast in OCE, including evaluation of the accuracy with which OCE images (elastograms) represent
mechanical properties and the sensitivity of OCE to mechanical contrast within a sample. Using phase-sensitive
compression OCE, we generate elastograms of tissue-mimicking phantoms with known mechanical properties and
identify limitations on contrast imposed by sample mechanics and the imaging system, including signal-processing
parameters. We also generate simulated elastograms using finite element models to perform mechanical analysis in
the absence of imaging system noise. In both experiments and simulations, we illustrate artifacts that degrade elasto-
gram accuracy, depending on sample geometry, elasticity contrast between features, and surface conditions. We
experimentally demonstrate sensitivity to features with elasticity contrast as small as 1.1∶1 and calculate, based on
our imaging system parameters, a theoretical maximum sensitivity to elasticity contrast of 1.002∶1. The results
highlight the microstrain sensitivity of compression OCE, at a spatial resolution of tens of micrometers, suggesting
its potential for the detection of minute changes in elasticity within heterogeneous tissue. © 2013 Society of Photo-Optical

Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.18.12.121508]
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1 Introduction
When tissue becomes diseased, it undergoes changes in its
constituent materials and microstructure, which translates to
changes in its mechanical properties.1 Optical coherence
elastography (OCE)2 is an emerging imaging technique that
probes mechanical contrast on a microscale. To perform OCE,
a mechanical load is applied to tissue, and optical coherence
tomography (OCT) is used to measure the resulting displace-
ments, from which variations in elasticity, or stiffness, are esti-
mated and mapped into an image known as an elastogram. OCE
probes mechanical contrast on a length scale (tens of microm-
eters) considerably smaller than that probed by other elastogra-
phy techniques, such as ultrasound (hundreds of micrometers)3

and MRI (∼1 mm).4 It also provides a depth-resolved capability,
unlike cellular-scale and nanoscale elasticity mapping tech-
niques such as atomic force microscopy5 and optical tweezers.6

As this unique length scale is relevant to the progression of
many diseases, OCE has the potential to become a valuable
tool for imaging of tissue microarchitecture, with possible appli-
cations ranging from fundamental studies of biomechanics to
numerous aspects of clinical medicine. So far, OCE has been
proposed for a number of clinical applications, such as assessing
the vulnerability of atherosclerotic plaques,7,8 guiding surgical

resection of soft tissue tumors,9 and monitoring changes in
corneal elasticity with age and progression of disease.10–12

A number of techniques have been proposed to date for
performing OCE and may be grouped according to the type
of loading used. The first reported technique is compression
OCE, in which a compressive load is applied to a sample, and
the resulting strain is estimated and mapped into a strain elasto-
gram.2,13–18 Strain provides a relative measure of elasticity under
the assumption of a uniform stress field within the sample. More
recently, shear wave and surface wave techniques have been
proposed, which measure the phase velocity of a propagating
wave generated using either vibration or impulse loading.19–22

Unlike compression OCE, such methods directly estimate sam-
ple elasticity. However, compression OCE maintains the native
lateral resolution of the OCT system, whereas shear and surface
wave techniques have considerably lower lateral resolution (0.5
to 1 mm), as they assume tissue homogeneity for the length over
which the shear wave speed is calculated. Compression elastog-
raphy is also straightforward to implement and has been exten-
sively used for clinical imaging in ultrasound elastography.23

In addition to compression and shear/surface wave OCE, tech-
niques have been proposed that use internal, localized loading
generated by a magnetic implant24 or by magnetic nanoparticles
embedded in the sample.25

A variety of methods for measuring displacement using OCT
have also been proposed, including speckle tracking,2 phase-
sensitive OCE,26 and use of the Doppler spectrum.27
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Despite the breadth of the proposed techniques and potential
clinical applications, the limitations on mechanical contrast that
can be detected in OCE elastograms remain poorly understood.
The contrast in elastograms is determined by a combination of
the true elasticity distribution within the tissue, the employed
imaging system parameters, and the assumptions made about
tissue behavior in the elastogram reconstruction process. To bet-
ter understand the ability of OCE to detect mechanical contrast
in tissue and to enable more useful interpretation of OCE elasto-
grams, some fundamental questions must be addressed:

1. How accurately do OCE elastograms represent the
elasticity distribution within a sample?

2. What is the sensitivity of OCE elastograms to varia-
tions in elasticity within a sample?

3. What factors limit elastogram accuracy and
sensitivity?

In this article, we address these questions in the context of
phase-sensitive compression OCE. We present strain elasto-
grams of tissue-mimicking phantoms with varying geometries
and a range of mechanical contrast between features and identify
limitations on elastogram contrast imposed by built-in aspects of
tissue mechanics. We focus our analysis on the detection of fea-
tures within mechanically heterogeneous samples, as this aspect
is the most relevant for assessing the ability of OCE to differ-
entiate normal versus diseased or compromised regions within
biological tissue. Thus, relative, rather than absolute, measure-
ments of elasticity are the focus of our analysis.

We employ finite element models (FEMs) in this study to
generate simulated elastograms and analyze the impact of vary-
ing mechanical parameters on contrast, independent of imaging
system noise and signal processing techniques. We also use
FEMs to test the validity of assumptions made about sample
behavior in the elastogram formation process and to analyze
how the breakdown of these assumptions impacts on elastogram
accuracy.

We, then, consider how elastogram contrast is limited by im-
aging system and signal processing parameters and quantify the
sensitivity and range of mechanical contrast achievable using
our compression OCE system. In so doing, we keep the imaging
and signal processing parameters constant throughout this study,
as our objective is to investigate the impact of varying mechani-
cal parameters, and how the fundamental mechanics combine
with the imaging system capabilities to determine contrast.

2 Compression OCE
In this section, we describe the deformation of a sample under-
going compression, highlight the assumptions made about tissue
mechanical behavior in the elastogram formation process, and
describe how elastogram accuracy may be measured. We also
define expressions for measures of elastogram quality in phase-
sensitive compression OCE, including resolution, sensitivity,
and dynamic range (DR).

2.1 Tissue Deformation in Compression Elastography

A compressive load applied to a sample is described in terms of
stress, σ ¼ F∕A, where F is the applied force and A is the cross-
sectional area over which the force is applied. The resulting bulk
deformation of the sample along the axis of compression is
quantified by strain, ε ¼ Δl∕l0, where Δl is the change in length

and l0 is the original length of the sample. The axial compres-
sion of a sample is generally accompanied by some lateral
expansion, to conserve volume. This shape change is character-
ized by Poisson’s ratio, υ, which is equal to 0.5 for a completely
incompressible material and commonly assumed to be in the
range ∼0.49 to 0.5 for most soft tissues.28

If we make the assumption that tissue deforms in a linearly
elastic manner, which has been reported to be an accurate
approximation for strains <0.1 in tissues such as breast and pros-
tate,29 stress and strain are related through a three-dimensional
(3-D) set of elastic constants. In compression elastography, the
applied load can be approximated as uniaxial, i.e., occurring
along one axis of the sample. Under the further assumption
that the sample is isotropic, i.e., its response to stress is direction
independent, the uniaxial stress and strain are related through
one elastic constant, defined as the Young’s modulus, E ¼
σ∕ε. The Young’s modulus is commonly used to characterize
the elasticity of tissues and, for soft tissues, has been reported
to range from hundreds of Pascals (Pa) for healthy liver tissue,30

to tens and hundreds of kilopascals for healthy and malignant
breast tissues,29 to a few megapascals for arterial wall tissues.31

The objective of compression OCE is to form a map of
Young’s modulus within the sample—a so-called elastogram.
The equation for Young’s modulus given above describes a
“bulk” response of a sample, but a map of Young’s modulus
requires knowledge of the “local” stresses and strains through-
out the sample. Local strain is obtained by calculating the spatial
derivative of the measured displacement, i.e., the change in
displacement per unit length of the sample. Local stress, on the
other hand, cannot be directly measured at depth within the sam-
ple. As a result, the elastogram in compression OCE is typically
a map of strain, which gives a relative measure of Young’s
modulus, under the assumption that stress is uniformly distrib-
uted throughout the sample. However, in practice, stress concen-
trations arise at feature boundaries within heterogeneous
samples32 and at the sample surface where friction is present.
Thus, strain elastograms are subject to mechanical artifacts
that limit their accuracy in representing the true elasticity dis-
tribution in a sample.

2.2 Quantification of Elastogram Accuracy

A measure of elastogram accuracy (fidelity to the true elasticity
distribution) is the contrast transfer efficiency (CTE), which was
defined by Ponnekanti et al.32 in ultrasound elastography as the
ratio of strain contrast observed between features in an elasto-
gram, Co, to true elasticity contrast of the features, Ct: CTE ¼
Co∕Ct. We employ this definition of CTE to quantify elastogram
accuracy in this article and address the first question in the intro-
duction: “How accurately do OCE elastograms represent the
elasticity distribution in a sample?”

In compression elastography, the CTE of strain elastograms
depends on the validity of the assumption of uniform distribu-
tion of stress. This assumption holds for the trivial case of
a mechanically homogeneous sample undergoing uniaxial com-
pression, which results in a uniform strain field but provides
no elasticity information without a measurement of the applied
stress. We consider here the more relevant case of a mechani-
cally heterogeneous sample, in which the aim is to differentiate
features based on mechanical contrast within an image. In
particular, we consider two heterogeneous sample geometries:
bilayer (soft on stiff) and stiff inclusions embedded in a soft
matrix. Analytical expressions for the CTE of strain elastograms
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have been derived for each of these geometries, assuming an
infinite medium of isotropic, linear elastic material undergoing
uniaxial compression, in which each material in the structure
has equal Poisson’s ratio. For a layered structure, by consider-
ing an equivalent system of springs, it can be shown that the
stress is uniformly distributed among the layers, such that
the strain contrast between layers is inversely proportional to
the Young’s modulus contrast between layers.33 In other words,
a strain elastogram of a layered geometry is expected to have
CTE ¼ 1.

Kallel et al.34 used an analytical solution to the elasticity
equations to derive expressions for the CTE of strain elasto-
grams of an inclusion geometry. They found that for the case
of an inclusion perfectly embedded (bonded to its surroundings)
in a homogeneous matrix material, the contrast between the
strain in the inclusion, εinclusion, and strain in the matrix, εmatrix,
(at large distances from the inclusion), Co ¼ εinclusion∕εmatrix,
is related to the true modulus contrast between the inclusion
and matrix, Ct ¼ Einclusion∕Ematrix, by

1

Co

¼
�

1 − 2υ

Ct þ ð1 − 2υÞ þ
2

1þ Ctð3 − 4υÞ
�
: (1)

Note that Co depends neither on the size of the inclusion nor
on its depth below the surface, but only on the modulus contrast
between the inclusion and matrix and on the Poisson’s ratio, υ,
which, as discussed above, falls in the range ∼0.49 to 0.5 for
most soft tissues. In this case, Eq. (1) may be approximated
as Co ¼ 1∕2þ Ct∕2. This indicates that for increasing elasticity
contrast between a stiff inclusion and a soft matrix, the observed
strain contrast is also expected to increase but that the CTE will
plateau at just over 0.5 for large modulus contrast.32,34 This is
illustrated and explained in detail in Sec. 4.2. Equation 1 also
applies to the case of a soft inclusion embedded in a stiff matrix;
however, we limit the analyses in the present study to consider
stiff inclusions.

The analysis of elastogram accuracy described above, first
introduced in ultrasound elastography, is independent of the spa-
tial resolution scale of the employed elastography technique and
so may be applied to compression OCE. A key difference in
OCE, however, is an increased sensitivity to surface effects (fric-
tion and coupling with the compressor) as images are generally
limited by the penetration depth of OCT to the first 1 to 2 mm in
dense tissues. Furthermore, optical interferometric detection in
OCE will translate to a higher sensitivity to deformation than
in ultrasound elastography, and the higher spatial resolution and
smaller field of view in OCE will mean that a different scale of
tissue structures is probed. We further examine some of these
issues in the discussion in Sec. 5.

Finite element modeling is used in this study for addressing
mechanical aspects of the third question proposed above: “What
factors limit the accuracy and sensitivity?” Once shown to pro-
duce results that accurately model the physical system, FEMs
enable ready variation of mechanical parameters, including sam-
ple geometry, mechanical properties, and surface friction. The
model predicts the effects of these parameters on the resulting
strain distribution in the absence of imaging system noise.
Importantly, FEMs also provide estimates of the resulting stress
distribution, allowing identification of sources of mechanical
artifacts in strain elastograms.

2.3 Strain Elastogram Performance Parameters in
Compression OCE

In addition to artifacts arising from built-in aspects of mechani-
cal behavior, elastogram contrast depends on imaging system
noise and parameters used in signal processing, particularly
in the strain estimation process. Our group recently defined
performance parameters for strain elastograms in compression
OCE, in terms of the mean and variance of the measured dis-
placement values.15 Here, we summarize those definitions for
reference in this article.

In phase-sensitive OCE, local displacement, dðzÞ, is calcu-
lated from the change in phase, ΔϕðzÞ, between A-scans or
B-scans,26 scaled by the mean wavelength of the source in
the sample, λ∕n, where n is the refractive index of the sample,
i.e., dðzÞ ¼ ΔϕðzÞλ∕4πn. The local strain, εl, is then estimated
as the gradient of displacement over a range in depth:
εl ¼ Δd∕Δz. In this equation, Δz is the strain resolution,
defined as Δz ¼ mdz, where m is the number of OCT image
pixels over which strain is estimated, and dz is the axial pixel
size.

The strain sensitivity, Sε, is defined as the standard deviation
of strain (σε) and, in phase-sensitive OCE, depends fundamen-
tally on the phase stability of the OCT system. The strain
dynamic range, DRε, is defined as the ratio of the maximum
strain to the strain sensitivity. In this article, we assume that
the maximum detectable strain is that due to a phase change
of π radians within one strain resolution (the axial distance
over which the strain is estimated). Thus, the maximum meas-
urable displacement, Δdmax, is equal to λ∕4n. Under this
assumption, the strain DR is defined as

DRε ≡
Δdmax

Δz
σε

¼ λ

4nσεΔz
: (2)

The strain sensitivity and DR, as defined above, in combi-
nation with the contrast transfer functions detailed in the pre-
vious section, will determine the ultimate sensitivity of OCE
strain elastograms to variations in elasticity within a sample.
We present an analysis of this sensitivity in Sec. 4.3.

3 Methods

3.1 Phantom Fabrication and Characterization

Tissue-mimicking phantoms with controllable structure and
mechanical properties were fabricated using a range of silicone
elastomers, namely, combinations of Elastosil® RT601,
Elastosil® P7676, and AK50 Silicone Fluid (Wacker,
Germany).35 Three types of phantoms were constructed for
this study: homogeneous, bilayer, and inclusion. All phantoms
were cylindrical with 15-mm diameter and were made ∼1 mm
thick such that OCT could readily image the entire depth of the
phantom to facilitate comparison to the FEM. Representative
OCT B-scans of each phantom type are shown in Fig. 1. All
OCT images have been scaled to physical dimensions using
a refractive index of 1.4 for the silicone materials.35 The bilayer
phantoms comprise two layers (soft and stiff) of approximately
equal thickness. The inclusion phantoms consist of a soft sili-
cone matrix containing a stiff silicone inclusion in the form of
a rectangular prism embedded 300 to 350 μm below the surface.
The inclusions were cut by hand from a bulk of cured silicone to
sizes in the range of 300 to 500 μm. This range was set by the
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achievable tolerances. (Smaller inclusions than those used here
could be fabricated using soft lithography techniques previously
used to fabricate 3-D structured phantoms.36) To ensure that
layers and inclusions were distinguishable in OCT images, tita-
nium dioxide particles were added to the uncured silicones in
concentrations of 0.8 mg∕mL for the homogeneous phantoms,
matrix materials, and top layers, and 2.5 mg∕mL for the inclu-
sions and bottom layers.

The Young’s modulus of the cured silicone was controlled by
varying the volumetric ratio of crosslinker, catalyst, and non-
crosslinking silicone fluid.35 To measure the Young’s modulus
of each silicone, stress–strain curves were obtained using stan-
dard compression tests (Instron, Norwood, Massachusetts).
The Young’s modulus was then estimated by linear regression
against the stress-strain curves, as described in further detail in
Sec. 3.3.2.

3.2 Compression OCE System and Measurements

Compression OCE measurements were performed using a
fiber-based, Fourier-domain OCT system. The light source is
a superluminescent diode with a central wavelength of 835 nm
and bandwidth of 50 nm. The measured axial resolution is
8.5 μm. The lens in the sample arm has a working distance
of 25 mm and provided a measured lateral resolution of 11 μm.
The measured sensitivity is 102 dB at an exposure time of 36 μs.
B-scans were acquired with 1000 × 2048 (x × z) pixels over
a 6 × 3 mm field of view and at a line rate of 10 kHz.

The sample arm comprises an imaging window fixed to a
ring-actuator set-up described previously,14,15 enabling loading
and imaging from the same side. A preload was applied to each
phantom using an upper brass plate, of larger surface area than
the phantom, to ensure uniform contact between the phantom,
the upper plate, and the imaging window (lower plate). The
amount of preload required was dependent on the magnitude of
variations in the surface topography in each phantom, which

arose due to imperfections in the manual fabrication pro-
cess of the phantoms, and typically ranged between 50 and
150 μm, as measured using OCT. The preload served to ensure
optimal transfer of the load from the ring actuator during
measurements.

The ring actuator introduced displacements of 80 to 120 nm
to the sample surface using a square wave function at 5 Hz,
synchronized to the OCT B-scan acquisition (at 10 Hz), as
described in Ref. 15. This loading frequency was chosen to
remain in the quasi-static loading regime, i.e., low enough to
avoid wave propagation in the sample. The local displacement
in the sample was measured by taking the phase difference
between consecutive B-scans, i.e., between the compressed
and uncompressed states. Displacement data were derived
from the average of 50 sets of these B-scans. Temporal averag-
ing served to reduce the variance of the measured displacement
at each point and was performed in the complex plane in order to
reduce systematic underestimation of displacement due to aver-
aging of phase differences obtained at positions with low OCT
signal-to-noise ratio (SNR).37 The phase sensitivity of the sys-
tem in a scanning configuration (calculated as the standard
deviation of the measured phase difference between sequential
B-scans of a stationary sample, over 50 pairs of B-scans) was
25 mrad at an OCT SNR of 50 dB, corresponding to a displace-
ment sensitivity of 1.2 nm. Discrepancy between the measured
sensitivity and the predicted shot noise–limited sensitivity
(3.2 mrad at 50 dB)38 is attributed to galvanometer lateral posi-
tioning error between B-scans.

The local strain in the sample was estimated from the mea-
sured displacements using a weighted-least squares (WLS) algo-
rithm and represented in a strain elastogram. In WLS strain
estimation, the measured displacement values are weighted
based on the underlying OCT SNR at each point, since the
phase variance and, therefore, the displacement measurement
accuracy, depends on the OCT signal intensity. (We demon-
strated in Ref. 15 that WLS strain estimation improves the strain
sensitivity and DR over previously reported strain estimation
techniques.) We applied Gaussian smoothing to the strain elasto-
grams, using an 18 × 7-μm window (width × height) to further
improve strain sensitivity. The axial strain resolution (axial dis-
tance over which the slope of axial displacement versus depth
is calculated) was 90 pixels, corresponding to a physical
length of 92 μm, using a group refractive index of 1.4. The
lateral strain resolution was equal to the lateral resolution of
the OCT system (11 μm).

3.3 Finite Element Model

3.3.1 Model description

FEMs of the compression OCE experiments were developed
using the simulation software Abaqus (Dassault Systèmes,
Providence, USA, version 6.10.1). To construct each model,
a geometry was defined and material properties were assigned
to deformable regions within the model. The geometry was then
divided into discrete (finite) elements, in which an approximate
solution to the governing equilibrium equations was determined,
subject to the application of a known displacement along the
boundary corresponding to the lower plate (imaging window)
in the experiments. The solution provided the displacements,
strains, and stresses on each of the finite elements.39 The spacing
of the elements (mesh size) ranged from 5 to 20 μm, with the
finer mesh in areas where large variations in stress and strain

Fig. 1 Optical coherence tomography (OCT) B-scans of (a) homo-
geneous, (b) bilayer, and (c) inclusion phantoms. Scale bar applies
to both dimensions. Dashed lines in (b) and (c) indicate feature
boundaries.
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were expected, e.g., around inclusions. The model assumed
linear elastic behavior of all materials.

An axisymmetric model was employed, in which a two-
dimensional cross-sectional geometry was defined and then
rotated about a central axis to obtain a 3-D visualization of
the sample. This model yields an effective 3-D solution without
the added computational complexity of solving the governing
equations in three dimensions. Although inclusions were shaped
as rectangular prisms in the experiments, rather than cylinders as
in the axisymmetric model, measurements were made in a plane
close to the center of the inclusions such that the measured
deformation approximated that through the center plane of
a cylinder.

3.3.2 Determination of model inputs

Inputs to the models of each experiment included:

• phantom geometry (total thickness, thickness of layers,
inclusion dimensions, depth of inclusion below sample
surface), as measured using OCT before application of
preload;

• modulus contrast between features, determined from esti-
mates of Young’s modulus from the stress-strain curve of
each silicone (further details below);

• amount of displacement introduced to the sample by
the preload, as measured using OCT;

• amount of nanometer-scale displacement introduced to
the sample surface by the actuator; and

• the friction conditions present in the experiment
(further details below).

Compression testing of the bulk silicones typically revealed
a nonlinear stress-strain relationship, as illustrated by the repre-
sentative stress-strain curve in Fig. 2. However, as a relatively
small range of strain (≤0.12) was used in OCE experiments, the
silicones were modeled as linear elastic. The Young’s modulus
of each material was estimated based on the bulk strain due
to the preload. For example, in an inclusion sample, the change
in thickness of the matrix was measured from OCT images taken
before and after preload, from which a bulk strain on the matrix

was estimated. The Young’s modulus was estimated by the lin-
ear regression from 0 to this bulk strain on the stress-strain curve
of the matrix material (See Fig. 2). Similarly, the change in an
inclusion thickness due to preload was determined and its modu-
lus approximated using the same fitting procedure on the stress-
strain curve of the inclusion material. This same procedure was
used to estimate Young’s modulus of the silicones in the bilayer
phantom. Table 1 lists the estimated Young’s modulus of each
silicone as well as the modulus contrast between features (inclu-
sion:matrix or bottom:top layer) for all phantoms used in this
study.

Unless otherwise stated, the coefficients of friction used were
0.1 at the phantom-glass imaging window interface and 0.5 at
the phantom-brass plate interface. These values were empiri-
cally determined to give the best quantitative matches between
the modeled and measured displacements. The difference in the
degree of friction between the upper and lower surfaces is
expected, as the imaging window is smoother than the brass
upper plate, and because silicone fluid (Wacker AK50) was
applied to lubricate the phantom-imaging window interface.
Exceptions to these conditions are specified, where relevant,
in Secs. 4.1 and 4.2. Finally, a Poisson’s ratio of 0.49 was
assumed for all silicones.40

4 Results

4.1 Comparison of Measured and Simulated
Deformation in Compression OCE

Figures 3(a)–3(c) present the structural OCT images, along with
the measured and simulated displacement maps resulting from
compression OCE experiments and FEMs, respectively, for (top
to bottom) homogeneous, bilayer, and inclusion phantoms
(Phantoms 1 to 3 in Table 1). Figure 3(d) is a comparison of
the measured and simulated displacement versus depth taken
from the positions indicated by the dashed lines in Figs. 3(b)
and 3(c). Silicone fluid was used to lubricate the upper and
lower surfaces to minimize friction, and these surfaces were

Fig. 2 Representative stress-strain curve obtained from compression
testing of the silicones used in phantom fabrication. Inset shows an
example of a linear fit (black line) used to estimate Young’s modulus.

Table 1 Bulk mechanical characterization of silicone phantom
materials.

Phantom number Feature
Young’s

modulus (kPa)
Modulus
contrast

1 Homogeneous 20 N/A

2 Bottom layer 520 37∶1
Top layer 14

3 Inclusion 837 45∶1
Matrix 19

4 Inclusion 153 10∶1
Matrix 15

5 Inclusion 100 5∶1
Matrix 20

6 Inclusion 34 2∶1
Matrix 17

7 Inclusion 20 1.1∶1
Matrix 19
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modeled as frictionless in the FEM, in order to simplify the
mechanical system in the first instance.

Qualitatively, the measured and simulated displacement
maps show good correspondence, and the displacement traces
in Fig. 3(d) verify a good quantitative match. These traces
also allow a clear interpretation of the displacement trends in
each phantom. In each case, compression was introduced
from the top of the image, resulting in maximum displacement
at the top surface and zero displacement at the opposite surface,
where the phantom was compressed against a rigid, unmoving
plate. For the homogeneous case, a linear decrease in displace-
ment with depth is observed, corresponding to a uniform local
strain throughout the phantom.

In the bilayer phantom, two slopes are observed, with greater
slope, corresponding to higher strain, in the softer top layer.
The location of the change in slope corresponds to the physical
interface between the layers. The slight discrepancy between
the experiment and simulation in the displacement at the layer
interface is likely to be due to an imperfect interface between
the two silicone layers that arose during curing.

Finally, in the inclusion phantom, large displacement gra-
dients, corresponding to higher strain, are observed in the matrix
material, surrounding a region of bulk displacement, or low
strain, in the stiff inclusion. The slight discrepancy in the dis-
placement of the inclusion seen here is likely due to a slight
discrepancy in the depth at which the inclusion was situated
in the model versus in the actual phantom.

4.2 Accuracy of Strain Elastograms in
Representing Elasticity

The agreement between measured and simulated displacement
demonstrated in the previous section confirms the validity of
the assumption of linear elastic behavior of these materials
over the range of employed strains. In this section, we compare
measured and simulated strain elastograms for varying geom-
etries, friction conditions, and modulus contrasts. We also
use FEMs to simulate the corresponding stress distributions
and, thus, aid our analysis of mechanical artifacts in elastograms
and their impact on accuracy.

4.2.1 Nonuniform stress due to friction

As described in Sec. 2.1, axial compression of a soft tissue sam-
ple is accompanied by lateral expansion (the Poisson effect).
In the ideal case of zero friction between the sample and com-
pressor, the sample is free to slip along this interface and expand
laterally under axial compression. This is the case for the phan-
toms shown in Fig. 3, as the surfaces were well lubricated to
minimize friction. When friction is present, this lateral expan-
sion is restricted. This is illustrated in the plot of displacement
versus depth, Fig. 4(a), for a homogeneous phantom in which
no lubrication was used at the surfaces. The silicone used here,
like many soft tissues, is inherently adhesive and is expected
to undergo little or no slipping at the boundary in the absence
of lubricant. In the experimental elastogram, Fig. 4(b), this
restricted motion manifests as bands of low strain at the top
and bottom surfaces, which are also seen in the simulated
elastogram, Fig. 4(c), for which a no-slip condition was defined
at the surfaces in the model.

The simulated stress, Fig. 4(d), reveals a nonuniform distri-
bution, with increasing stress toward the center of the sample.
This trend is attributed to the increasing restriction on lateral
motion of the sample with distance from the free vertical edges.

4.2.2 Nonuniform stress due to inhomogeneity

Figure 5 presents the experimental and simulated elastograms,
and simulated stress distribution of the same bilayer and inclu-
sion phantoms presented in Sec. 4.1. The experimental strain
elastograms were generated using the displacement maps in
Figs. 3(c) and 3(d).

The elastograms of the bilayer phantom, Figs. 5(a) and 5(b),
show layers of high and low strain, corresponding to the soft and
stiff layers, respectively. Importantly, the stress distribution,
Fig. 5(c), is uniform in this sample. There are no stress concen-
trations or strain artifacts apparent at the interface of the two
materials. This confirms that the observed strain contrast should
match the true modulus contrast between the layers as predicted
by the mechanical analysis presented in Sec. 2.1.

Fig. 3 Comparison of measured and simulated displacement maps in (top to bottom): homogeneous; bilayer; and inclusion phantoms. (a) OCT image;
(b) experimentally measured displacement map; (c) simulated displacement map; and (d) displacement versus depth for the lateral positions indicated
by the blue and black dashed lines in (b) and (c), respectively.
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In the elastograms of the inclusion phantom, Figs. 5(d) and
5(e), the stiff inclusion is clearly distinguishable as a region of
very low strain, and higher strain is observed in the soft matrix.
However, the strain in the matrix is not uniform throughout the
elastogram even though this is a mechanically uniform material.
This is due to variations in stress due to the presence of the stiff
inclusion as seen in the simulated stress map in Fig. 5(f). Higher
stresses above and below the inclusion manifest as regions of
higher strain in the elastogram. In addition, at the vertical
edges of the inclusion, a region of high stress is observed, adja-
cent to a region of lower stress in the matrix material. This can
be attributed to a stress-shielding effect, in which the two mate-
rials at this location experience similar loads transferred from
the material above, but the deformation of the matrix is restricted
by that of the stiff inclusion. As the stress at this interface is not
effectively distributed to the matrix, the inclusion experiences
higher stress. This manifests in the elastograms as regions of
low strain in the matrix adjacent to the sides of the inclusion.

As made apparent in Figs. 5(d) and 5(e), strain artifacts
degrade the fidelity of the elastogram to the true distribution
of modulus. The severity of these artifacts, however, depends
on the modulus contrast between the inclusion and matrix.
This is demonstrated in Fig. 6, where the modeled stress and
strain are shown for Phantoms 3 to 7 listed in Table 1, from
highest to lowest modulus contrast (top to bottom). Note that
the color scale for the stress maps was adjusted in each case,
depending on the preload strain applied to the sample, to facili-
tate comparison of stress distribution due solely to changes in
modulus contrast. The inclusion sizes in each set of images
in Fig. 6 correspond to those used in the actual experiments
(in the range of 300 to 500 μm in height and width); however,
recall that the resulting strain contrast is independent of the
inclusion size [Eq. (1)]. This sequence of images illustrates that
although the stress concentrations and strain artifacts decrease

Fig. 4 Effect of friction on strain and stress distribution in a homo-
geneous sample. (a) Measured (blue) and simulated (black) displace-
ment versus depth along the central vertical axis of the sample,
(b) measured strain elastogram, (c) simulated strain elastogram, and
(d) simulated stress map for a homogeneous sample with friction
present at both surfaces.

Fig. 5 Measured strain elastogram, simulated strain elastogram, and simulated stress map, respectively, for (a)–(c) a bi-layer sample with modulus
contrast 37∶1 and (d)–(f) an inclusion sample with modulus contrast 45∶1.
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with decreasing modulus contrast, the contrast between inclu-
sion and background in the elastogram also diminishes. In
the following sections, we consider the limits on this contrast
imposed by both mechanical and imaging parameters.

4.2.3 Contrast transfer efficiency

Figure 7 compares, using Eq. (1), the true modulus contrast, Ct,
and predicted strain contrast, Co, to the strain contrast observed
between the inclusion and matrix in the OCE experiments.
The curve for the predicted strain contrast was generated
for a Poisson’s ratio of 0.49. The average strains in the elasto-
grams were calculated for regions both within the inclusion and
in the matrix at least 500 μm away from the inclusion. Fifty
strain pixels were used to calculate the average and standard
deviation of strain in each feature, all at the same depth in the
sample to minimize the effects of decreasing OCT SNR with
depth on the standard deviation of strain. Error bars reflect the
standard deviation of contrast between the inclusion and matrix.
The contrast values are plotted as amplitude ratios on a log-
arithmic scale, CoðdBÞ ¼ 20 logðεinclusion∕εmatrixÞ, following

Fig. 6 Simulated strain elastograms and stress maps for varying degrees of contrast between inclusion and matrix. Modulus contrasts (inclusion:matrix):
(a) 45∶1, (b) 10∶1, (c) 5∶1, (d) 2∶1, (e) 1.1∶1.

Fig. 7 True modulus contrast, Ct (black dashed line), predicted
strain contrast, Co (blue solid line) from Eq. (1), and experimental
strain contrast versus true modulus contrast for a stiff inclusion in
a soft matrix. All contrasts are plotted on a 20 log scale.
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the convention used in ultrasound elastography studies of
contrast.32,34,41,42

Note that for modulus contrasts>10∶1 (20 dB), the observed
contrast maintains an approximately constant offset of ∼6 dB
from the true modulus contrast. In other words, the CTE reaches
a maximum of just over 0.5 for modulus contrasts of 10∶1 and
greater. This can be explained by considering the interaction of
the inclusion and matrix under compression. A stiff inclusion
resists deformation, and because it is mechanically coupled
to the surrounding matrix, this causes a perturbation to the stress
and strain in the matrix. This manifests as stress and strain con-
centrations, as illustrated in Figs. 5 and 6. Increasing inclusion
modulus increases these perturbations on the matrix, also illus-
trated in Fig. 6. Above a certain contrast, the inclusion can be
regarded as a rigid body, i.e., it undergoes very little strain; thus,
the perturbations it causes to the matrix remain fixed regardless
of increases in modulus contrast.32 Low contrast inclusions,
which more easily deform with the matrix under compression
and cause little perturbation on the matrix strain, will result
in strain elastograms that more accurately represent the true
mechanical contrast. This reiterates that a fundamental limita-
tion on strain elastogram accuracy, previously described in
Refs. 32 and 34, also applies to OCE.

4.3 Sensitivity of Strain Elastograms to Variations in
Elasticity

The CTE limits the accuracy of mechanical contrast in strain
elastograms, but to determine the smallest detectable mechani-
cal contrast, i.e., the elastogram sensitivity, we must consider the
limitations of the employed imaging system and strain estima-
tion process. Using the definitions for elastogram performance
parameters presented in Sec. 2.2, we can estimate the strain
sensitivity (Sε) and DR for the measurements performed in
this article. These values are summarized in Table 2. Note that
these values are specific to the phase stability (25 mrad) and
wavelength (835 nm) of the employed OCT system, the axial
strain resolution (92 μm), and the strain estimation technique
(WLS with Gaussian smoothing).

The reported strain DR of 56 dB is based on a theoretical
maximum displacement corresponding to a phase change of
π radians within one strain resolution (in this case, 1600 με
over 92 μm). However, the actual maximum displacement used
in the experiments corresponded to a phase change of π radians
over the entire depth of the phantom (∼1 mm) to avoid the need
for any phase unwrapping. This decreases the actual strain DR
for these measurements to ∼36 dB and points to the potential
improvement to be gained in the strain DR through implemen-
tation of robust phase unwrapping algorithms.

Sε was calculated as the standard deviation of 500 strain pixel
values over a 50 × 600 μm region in an elastogram of a homo-
geneous phantom, and at a depth with an average OCT SNR of
20 dB. Sε degrades with decreasing OCT SNR. For example,

in the same phantom, Sε of 3.7 and 5.6 με was calculated
at depths of average OCT SNR of 12 and 8 dB, respectively.
Sε also depends on the strain axial resolution and is expected
to improve with a tradeoff of lower resolution.15

Sε limits the minimum detectable contrast in strain elasto-
grams, i.e., to distinguish two features in a strain elastogram,
the difference in strain between two features must be greater
than Sε. Figure 8 illustrates this problem of feature detectability.
In Figs. 8(a)–8(c), experimental elastograms of inclusion phan-
toms with decreasing modulus contrast are shown, along with
plots, Fig. 8(d), of the simulated (solid lines) and experimental
(dotted lines) strain values through the locations indicated by
the dashed lines in the elastograms. This plot illustrates the
degradation of strain contrast due to noise in the experimental
versus simulated strain. Still, the inclusions are readily detect-
able in each elastogram, including the inclusion with small
modulus contrast of 1.1∶1, Fig. 8(c). The measured strains in
the inclusion and matrix for this phantom were 90 and 120 με,
respectively, a difference sufficiently greater than the strain
sensitivity to make the inclusion readily detectable.

The strain sensitivity, in combination with the CTE of a par-
ticular geometry, ultimately determines the sensitivity to varia-
tions in elasticity. For layered samples, as well as for inclusion
samples with low modulus contrast between the inclusion and
matrix, such as that in Fig. 8(c), the strain contrast closely
approximates modulus contrast (CTE close to 1). It follows
that the strain sensitivity is approximately equal to the modulus

Table 2 Estimated elastogram performance parameters (dB calculated
using 20 log).

εmax 1600 με (−56 dB)

εmin (Sε) 2.4 με (−112 dB)

DRε 667 (56 dB)

Fig. 8 Impact of strain sensitivity on detectable contrast. Experimental
strain elastograms for modulus contrasts (a) 45∶1, (b) 5∶1, and (c) 1.1∶1.
(d) Plots of experimental (dotted lines) and simulated (solid lines)
strain in the samples at depths specified by the dashed lines in the
elastograms.
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sensitivity in these cases. Considering our best-case scenario,
with Sε of 2.4 με and maximum strain of 1600 με, a modulus
contrast of εmax∕ðεmax − SεÞ, corresponding to ∼1.002∶1, could
theoretically be detected in a strain elastogram. In the phantoms
shown in Fig. 8, where the matrix material has Young’s modulus
∼18 kPa, this would translate to the ability to detect a change
in elasticity as small as 36 Pa.

5 Discussion
The measurements and simulations presented here aid in the
understanding of mechanical contrast by illustrating the limita-
tions imposed by sample mechanics and the image formation
process. In the field of ultrasound elastography, several studies
have investigated the combined impact of mechanics and imag-
ing on the resulting contrast in strain elastograms.32–34 However,
there are some key differences in the limits on contrast at the
scale of OCE.

First, a consideration specific to OCE highlighted in this
work is the importance of mechanical conditions at the sample
surface, as elastograms in OCE are limited to the first 1 to 2 mm
of tissue. In compression OCE, in particular, friction decreases
the amount of axial strain, hence, increasing the apparent stiff-
ness of the material. It also introduces surface artifacts in strain
elastograms, such as those in Figs. 4(b) and 4(c), which could
potentially be misinterpreted as regions of higher Young’s
modulus in what is actually a mechanically homogeneous sam-
ple. For a thick sample, this band of low strain could potentially
dominate the entire OCE field of view. Even in noncontact OCE
techniques where such friction is absent, such as those that use
laser pulse22 or air puff excitation,9 an uneven sample surface,
such as that expected to manifest in tissue, can induce complex
motion and is expected to cause simple models of mechanical
behavior to break down. The importance of such surface effects
represents an added challenge in advancing OCE techniques
toward practical clinical use.

Second, the displacement sensitivity of OCT, especially
using phase-sensitive detection, results in a very high sensitivity
to changes in tissue elasticity. Although the DR of strain for
compression OCE found in this article is similar to that reported
for compression elastography using ultrasound,42 the micro-
strain sensitivity of OCE should enable detection of more subtle
increments in tissue elasticity, as illustrated in Sec. 4.3.2.
Together with the high spatial resolution of OCE, this suggests
the potential to differentiate tissues within an elastogram that
may not be distinguishable with the sensitivity of ultrasound
and magnetic resonance (MR) elastography. This has important
implications for providing mechanical contrast between, for
example, healthy, premalignant, and malignant tissues of the
breast, which have been reported to exhibit elasticity values in
the narrow range of 0.2 to 2 kPa, as measured by atomic force
microscopy.43

The capacity to detect the mechanical heterogeneity in tissue
will also vary depending on the spatial scale being probed. The
scale of tissue probed by ultrasound and MR elastography is
closer to that probed by manual palpation but with the important
advantage of being able to probe deep within the body. On the
other hand, OCE should be able to resolve mechanical hetero-
geneity on a finer length scale but within a smaller field of view.
An indication of the impact of spatial resolution on detectable
mechanical contrast is seen in the elastograms of the inclusion
phantom in Figs. 5(d) and 5(e). The lower axial strain resolution
(92 μm) employed in the experiment, compared to the element

spacing used in the FEM (10 μm), tends to blur the true edges of
the inclusion in the experimental elastogram. This also accounts
for the absence of very localized variations in strain in the
experiment versus the simulation, e.g., small points of high
strain visible at the corners of the inclusion in the simulation
are not resolved in the experiment. A study of the impact of
spatial resolution on mechanical contrast is beyond the scope
of this current work, but such an investigation would provide
additional insight into the unique tissue contrast OCE can offer.

A limitation of the present study was the simplification of
the response of nonlinear materials to a linear elastic model of
behavior. However, we took account of the nonlinearity of the
materials by estimating their effective Young’s moduli based
on bulk strain due to preload. Input of this effective Young’s
modulus into a linear elastic FEM gave similar results to input
of the stress-strain curve into a nonlinear FEM. Thus, we
chose to use only linear elastic models to simplify the mechanical
analysis in this study. Furthermore, all linear fits to the stress-
strain curves to estimate modulus had an error ≤95 Pa, which
is on the order of our modulus sensitivity for these materials,
so this error had negligible impact on the final comparison of
elastogram contrast to “true” contrast. However, there was some
uncertainty in the estimation of bulk strain of each phantom, as
we assumed that the bulk strain measured in the imaging plane
(B-scans) was representative of the bulk strain of the matrix and
inclusions out of the plane. The asymmetry of the inclusions
(∼50 μm tolerance was achievable in cutting each face of the
inclusion) could have resulted in a discrepancy between the actual
effective modulus of each silicone and the calculated “true”
modulus. This explanation most likely accounts for discrepancies
between the observed strain contrast in elastograms and the strain
contrast predicted by the CTE in Fig. 7.

Unlike the silicones used here, it has been found that many
tissues more closely follow linear behavior at such low strains.29

In applications of OCE where high strains (>0.1) may be diffi-
cult to avoid, such as in arterial tissues, models for elastogram
reconstruction that incorporate tissue nonlinearity have been
proposed.44

The qualitative nature of strain elastograms was demonstrated
in several cases in this article through the presence of geometry-
and contrast-dependent strain artifacts. The CTE was used to
quantify the impact of these artifacts on elastogram accuracy.
For the particular geometry of an inclusion in a matrix, it is fea-
sible that, for a given value of Poisson’s ratio, a correction factor
could be applied, based on Eq. (1), to quantify the true modulus
contrast from a strain elastogram. However, while it provides a
suitable first approximation of an inhomogeneous tissue structure
for the purposes of this study, this simplistic inclusion geometry
and the contrast transfer function derived for it are not expected
to accurately represent the much more complex microstructure
found in tissue. Thus, in tissue, we can expect a degradation
of the CTE with higher modulus contrast between adjacent tis-
sues, i.e., with a higher degree of stress nonuniformity.

Quantitative estimation of modulus distribution using com-
pression OCE will require implementation of more advanced
methods, such as approaching elastogram reconstruction as
an inverse problem. Avenues toward quantitative OCE using
inverse methods have been proposed, including a model-
based approach, in which an analytical or numerical model
(such as FEM) is used to iteratively reconstruct a quantitative
modulus image.7,44,45 More recent studies have moved toward
quantification of modulus by implementing transient loading
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techniques in which modulus may be extracted directly from the
velocity of shear waves or surface waves in the sample.10,19–21

However, these techniques come at a loss of resolution, as they
assume tissue homogeneity for the length over which the shear
wave speed is calculated. This assumption may not be suitable
for imaging organs with heterogeneous, complex structures,
such as the breast.

Despite currently providing only relative measurements,
compression OCE is expected to remain an attractive technique
for clinical translation, as it is relatively straightforward and
practical to implement and provides higher spatial resolution
than other OCE techniques. Furthermore, the relative mechani-
cal contrast in strain elastograms may often be sufficient for
detecting variations due to changes in tissue pathology, espe-
cially for clinical applications focused on detecting the bounda-
ries of diseased tissue, where both diseased and healthy tissue
lie within the imaging field of view.

The analysis presented here provides a framework for
evaluation of the sensitivity and accuracy of contrast in other
OCE techniques. Finite element modeling is expected to be
an essential tool for testing the validity of assumptions made
about sample behavior in various OCE techniques and for
analyzing how variables such as geometry, surface conditions,
loading rate, and detection schemes impact on contrast.

6 Conclusion
We have performed an evaluation of mechanical contrast in
strain elastograms produced using phase-sensitive compression
OCE, highlighting the limitations imposed by mechanical defor-
mation and by imaging system noise and signal processing
parameters. We have illustrated these limitations by presenting
experimental and simulated elastograms of tissue-mimicking
phantoms with a range of mechanical properties. Based on
our analysis, we summarize the following answers to the ques-
tions proposed in the introduction as they apply to compres-
sion OCE:

1. How accurately do OCE elastograms represent the
elasticity distribution within a sample?

• Layered structures and structures with low elasticity
contrast tend toward uniform stress and high accu-
racy (CTE ∼ 1).

• Structures with high elasticity contrast and/or
surface friction have nonuniform stress and lower
accuracy (CTE < 1).

• For an inclusion geometry, CTE plateaus at 0.5 for
elasticity contrast >10∶1.

2. What is the sensitivity of OCE elastograms to varia-
tions in elasticity within a sample?

• For our imaging and strain estimation parameters,
we were able to measure an elasticity contrast of
1.1∶1 and predicted a maximum sensitivity to elas-
ticity contrast of 1.002∶1.

3. What factors limit elastogram accuracy and
sensitivity?

• Mechanical factors: geometry, friction, elasticity
contrast between features.

• Imaging factors: displacement sensitivity, resolution,
strain estimation parameters.

Despite mechanical artifacts limiting compression OCE to
providing relative measurements of elasticity, the microstrain
sensitivity demonstrated here, together with its high spatial res-
olution, has not previously been attainable by other methods.
Access to this new regime for tissue mechanical measurements
suggests that phase-sensitive compression OCE is a very prom-
ising technique for providing novel and clinically meaningful
tissue contrast.
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