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Abstract. The solution of the forward equation that models the transport of light through a highly scattering tissue
material in diffuse optical tomography (DOT) using the finite element method gives flux density (Φ) at the nodal
points of the mesh. The experimentally measured flux (Umeasured) on the boundary over a finite surface area in a DOT
system has to be corrected to account for the system transfer functions (R) of various building blocks of the mea-
surement system. We present two methods to compensate for the perturbations caused by R and estimate true flux
density (Φ) from Ucal

measured. In the first approach, the measurement data with a homogeneous phantom (Uhomo
measured) is

used to calibrate the measurement system. The second scheme estimates the homogeneous phantom measurement
using only the measurement from a heterogeneous phantom, thereby eliminating the necessity of a homogeneous
phantom. This is done by statistically averaging the data (Uhetero

measured) and redistributing it to the corresponding detec-
tor positions. The experiments carried out on tissue mimicking phantom with single and multiple inhomogeneities,
human hand, and a pork tissue phantom demonstrate the robustness of the approach. © 2013 Society of Photo-Optical

Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.18.2.026023]

Keywords: flux density estimation; optical tomography; instrumentation.

Paper 12751R received Nov. 21, 2012; revised manuscript received Jan. 15, 2013; accepted for publication Jan. 31, 2013; published
online Feb. 19, 2013.

1 Introduction
Diffuse optical tomography (DOT)1–6 is one of the emerging
noninvasive functional imaging modalities.1,3 To study the
regional physiological process in highly scattering media
such as tissue, a low-energy, near infrared (NIR) light-based im-
aging technique is one of the best in terms of quantitative recov-
ery of spectroscopic optical parameters. The main goal is to
recover the spatial variation of optical properties, which can
be used to diagnose the different metabolic states of tissue. An
iterative reconstruction algorithm1–3 attempts to recover the opti-
cal properties such as absorption (μa) and reduced scattering
coefficients (μ 0

s) by repeatedly solving the forward problem
and updating μa and μ 0

s based on the difference between meas-
urement data and the forward prediction. System calibration is
an important issue in a variety of applications such as DOT im-
aging,7–14 fluorescence imaging,15 electrical impedance tomog-
raphy,16 photoacoustic tomography,17 ultrasound assisted optical
imaging, thermal imaging, and defect detection in civil engi-
neering. The reconstruction depends on experimental measure-
ments, and the iteration is continued until the experimental
measurement matches the forward prediction. In DOT, the
data calibration is often performed using a homogeneous refer-
ence phantom.8–14 Tarvainen et al.9 have discussed a calibration
strategy with homogeneous data. One way to compensate for the
measurement error is to use difference imaging, which is known
to produce images with few artifacts.8,9 However, this method
cannot be used when absolute optical properties are required
or when a reference measurement is not available. We need
to devise ways to obviate the need for a “background”

homogeneous data set for the difference imaging approach.
That said, the focus of this study is to estimate a background
image for difference imaging without taking a separate back-
ground measurement. The calibrated absolute flux density by
adequately modeling the measurement process by either analytic
or numerical methods is a must for good reconstructed images.8–
14 In DOT imaging, total flux (Umeasured) measured by a detector
over a finite area has to be calibrated to account for the system
response function (R) before it is plugged into the optimization
algorithm. The estimation of response functions that comprises
the quantum conversion efficiency (Q) of the photo multiplier
tube (PMT), coupling factor (C), laser source strength (S), fiber
loss (L), free propagation of light (Γ),4 and transfer function (H)
of the measurement system is quite tedious. Calibrating the
measurement data to account for all these aberrations is an iter-
ative method4,13 where estimating flux density (Jn) (see Ref. 4)
requires the inversion of Eq. (2) with the prior information of all
instrumental response functions.8,13 The calibration process
requires experimental homogeneous data (measurement data
with a homogeneous phantom),8,9,12,13 instrument calibration,
and various offset terms.8,9,11,13

In this context, we modified Eq. (3) of Ref. 4 by incorporat-
ing various instrumental response functions (R) and arrived at a
simple absolute flux density estimation scheme [Eqs. (1)–(6)]
(Scheme 1) that uses homogeneous measurement data
(Uhomo

measured) and a background optical parameter, which is mea-
sured by a standard method.18 We reconstructed the absolute
optical property of pork tissue phantom, human tissue, and
tissue-mimicking phantoms.

However, in practical situations such as in a clinical applica-
tion, the homogeneous measurement data will not be available.
For such situations, a scheme (Scheme 2) is proposed to estimate
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a homogeneous data from a heterogeneous phantom measure-
ment. In such a scheme, the homogeneous data are estimated
(Uest−homo

measured ) by statistically averaging the heterogeneous measure-
ment data (Uhetero

measured) and redistributing them to the corresponding
detector positions [Eq. (7)]. The estimated homogeneous
(Uest−homo

measured ) data is used13,19 to estimate the initial background
optical parameters and the flux density [Eq. (8)]. Using this
approach, we reconstructed absolute optical property distribution
of tissue-mimicking phantoms, pork tissue, and human tissue.

2 Calibration of Measurement Data

2.1 Calibration of Heterogeneous Measurement Data
Using Homogeneous Data

The transport of light through a diffusive medium such as tissue
is modeled through the diffusion equation,2,3 given as
½−∇·κðrÞ∇þμaðrÞ�ΦðrÞ¼SðrÞ, where κðrÞ¼1∕3½μaðrÞþμ0sðrÞ�.
The forward model is solved2 over the domain (V) to estimate
the flux density (Φpredicted ¼ M½Φ�) on the surface boundary
(Ω). M : L2ðVÞ → L2ðΩÞ is the measurement operator. Due
to the spatial (r ∈ V, Ω) variation of the optical parameter
½ΔμiðrÞ�, the perturbation equation in terms of the optical param-
eter can be written in a Taylor series expansion, retaining only
the first derivative, as20

ΔMi ¼Φcal
measured−ΦpredictedðiÞ ¼F 0ðμiÞ½Δμi�

μiþ1ðrÞ¼ μiðrÞþΔμiðrÞ;
(1)

where (F 0) is the Jacobian matrix [1, 3, 20] of forward operator
F, ΔMi is the difference between the calibrated experimental
flux density (Φcal

measured) and the forward model predicted flux
density (ΦpredictedðiÞ) at the i’th iteration. Now, we will present
a few mathematical equations by which flux density will be esti-
mated from total detected flux, Umeasured.

The free space light propagation [Fig. 1(a)] from phan-
tom surface to detector4 is given as

Γðr; rdÞ ¼ ξðr; rdÞ ×
fðNA − sin θdÞ

jrd − rj2 cos θ cos θddA;

where r ¼ j~r 0 − ~rkj, [rk, r 0 ∈ V, Ω], ξðr; rdÞ is the visibility fac-
tor, cos θ ¼ ζ̂:n̂ is the cosine dependent on Lambert’s law, ζ̂ is
the power radiation direction on surface Ω, NA is the numerical
aperture of fiber, θd is the detector orientation with respect to the

line of sight, and rd is the distance between detector and surface
(Ω) (see Ref. 4). With an inhomogeneity of dia ¼ 2rincl with
ðμincla ; μ 0incl

s Þ embedded in the homogeneous phantom, the
total flux over the fiber cross-section (dA) measured by the
lock-in amplifier can be written as

k;dUhetero
measured ¼

Qk;d · Hk;d · Lk;d

π

×
Z
Ω
Ck;dðr; rdÞJk;dn ðSk; rÞΓk;dðr; rdÞdΩ; (2)

where ðμa; μ 0
sÞ ¼ ðμ0a; μ 00

s Þ ∪ ðμincla ; μ 0incl
s Þ and Jk;dn ðSk; rÞ, is the

outgoing normal flux density at the surface (dΩ) of the phantom
for a particular source position k (Sk, k ¼ 1: : : N ¼ 12) and
detector position d (Dd, d ¼ −m: : : m). For a medium with a
homogeneous distribution of μ0a, μ 00

s over the domain, the out-
going normal flux density at the surface is Jk;dn;0ðSk; rÞ and the
total flux measured by the lock-in amplifier can be written as

k;dUhomo
measured ¼

Qk;d · Hk;d · Lk;d

π

×
Z
Ω
Ck;dðr; rdÞJk;dn;0ðSk; rÞΓk;dðr; rdÞdΩ: (3)

Scaling the experimentally measured heterogeneous data
(k;dUhetero

measured) by Φpredictedð0Þ∕k;dUhom o
measured where (k;dUhomo

measured) is
the experimentally measured homogeneous data for source k
and detector d position, the calibrated experimental hetero-
geneous flux (Φcal hetero

measured) can be written for the k’th source
and the d’th detector as

k;dΦcal hetero
measured ¼

k;dUhetero
measured

k;dUhomo
measured

× k;dΦpredictedð0ÞðrÞ

¼
Qk;d ·Hk;d·Lk;d

π

R
Ω Ck;dSkJ

k;d
n ðrÞΓk;ddΩ

Qk;d·Hk;d ·Lk;d

π

R
Ω Ck;dSkJ

k;d
n;0ðrÞΓk;ddΩ

×Φpredictedð0ÞðrÞ; (4)

where we used the property Jn ∝ Sk (when other parameters are
fixed) [Fig. 1(b) and 1(c)]. With known background optical
parameters ðμ0a; μ 00

s Þ, the simulated homogeneous flux den-
sity (at iteration i ¼ 0) at the surface can be written as
Φpredictedð0ÞðrÞ ¼ Jk;dn;0. We make an assumption that when
(dA ≪ Ω), the system transfer function does not vary over

Fig. 1 (a) Experimental model; (b) simulated domain and data collection model; (c) source strength versus flux density at detector Dd¼3. The source
intensity is given over a single boundary element, and detection has taken place at the boundary node.
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the cross-section of the fiber bundle (either with or without inho-
mogeneity) and the calibrated flux density then can be written as

k;dΦcal
measured ¼

Qk;d·Hk;d·Lk;d

π
Qk;d·Hk;d·Lk;d

π

×
Ck;dSkΓk;dΩJk;dn ðrÞ
Ck;dSkΓk;dΩJk;d0 ðrÞ × Jk;dn;0ðrÞ.

(5)

The calibrated experimental heterogeneous flux density for
the k’th source and the d’th detector is reduced to

k;dΦcal hetero
measured ¼ Jk;dn : (6)

2.2 Estimation of Homogeneous Data from a
Heterogeneous Phantom Measurement

Breast tissue is considered conical, with cross-sections approxi-
mated by circles. We show that the calibrated heterogeneous
flux density at the surface of the phantom (dia ¼ 2R 0) can be
deduced even when prior experimental homogeneous data is not
available. The homogeneous data can be estimated (k;dUest−homo

measured )
from experimental heterogeneous data (k;dUhetero

measured) by sta-
tistically averaging the heterogeneous data for all source locations
kð∀ kÞ to a particular detector position (d ¼ m) and redistributing
them to the corresponding detector positions. The detector D0 is
at the diametrically opposite side of source Sk [Fig. 1(b)]. There
are detectors D2, D4, D6 and D−2, D−4, D−6 in equally spaced
positions on either side of D0 for gathering output data. The dif-
fuse photons that reach the detector depend on the distance
between the source and detector, the absorption and scattering
coefficients of the background, and those of the inhomogeneities.
For a homogeneous circular phantom, the flux density at par-
ticular detector location [e.g., at d ¼ D3 in Fig. 1(b)] will be
same for a similar source-detector path (e.g., at d ¼ −D3)
due to geometrical symmetry. There are seven detectors (placed
at d ¼ −3 to 3) for each source placement. Due to circular sym-
metry, the first set of detector data (for k ¼ 1, d ¼ −3 to 3)
repeats for all source locations. This scheme is extended for esti-
mating the homogeneous data by statistically averaging hetero-
geneous measurement (which compensates for the absorbed
photon). The estimated homogeneous data can be written as

k;dUest−homo
measured ¼ 1

ðN − fÞ
X
∀ k

Qk;d · Hk;d · Lk;d

π

×
Z
Ω
Ck;dSkJ

k;d
n;0ðrÞΓk;ddΩ; (7)

where f is the photon compensation factor, which has a value
between 0 to (N − 1) and increases with effective perturb-
ation (EP) due to inhomogeneity. The EP is defined as
EP ¼ P

iπr
incl
i

2 · ½ðμincla;i ; μ
0incl
s;i Þ�∕½πR 02 ⋅ ðμ0a; μ 00

s Þ�. By trial and
error, we have found that f varies linearly with EP. The value
of f is estimated by summing over the diffuse light that reaches
the detector. For each source location, we make d detector mea-
surements, and we can safely assume that at least one of these d
measurements is unaffected19 by inhomogeneity [see Fig. 1(a)].
With less inhomogeneity, the probability of such a measurement
increases. This unaffected data (equivalent to a homogeneous
phantom) is the maximum [In;0 ¼ maxð∀ k;dUhetero

measuredÞ] value
among all source locations for a particular detector position
(say, d ¼ m). Based on the Beer-Lambert absorption law, the
intensity variation can be written as In ¼ In;0 exp½−rinclðμincla þ

μ 00
s Þ�. The line perturbation is rinclðμincla þ μ 00

s Þ. Accuracy
improves as the number of source locations increases. With
compensation factor f defined as f ¼ P

12
k;d¼m logðIn;0∕

k;dUhetero
measuredÞ, the calibrated heterogeneous flux density data

can be obtained in a similar way using Eqs. (4) and (7) and
is given by

k;dΦcal hetero
measured ¼ Jk;dn ðrÞ: (8)

We also have estimated the value of f based on EP by the
trial-and-error approach for a phantom with a single inhomoge-
neity, as well as multiple embedded inhomogeneities. Tables 1
and 2 present the corresponding f values and the errors for
various inhomogeneities.

3 Simulation Results
A simulated phantom with a diameter of 80 mm (2R 0) with
background μ0a ¼ .005 mm−1, μ 00

s ¼ 0.83 mm−1 [similar to the
phantom in Fig. 2(a)] is used for generating20 the simulated
homogeneous flux density Φhomo

sim . We discretized the simulated
phantom domain into 4032 elements and 2089 nodes and the
finite element method (FEM) solution of light diffusion is
obtained all over the domain.2 Seven detector measurements
at boundary nodes are taken (flux density) for each of the source
locations [as shown in Fig. 1(b)]. An inhomogeneity (an object)

Table 1 f c Factor estimation using the trial and error strategy.

Trial and error method

Inclusions 1 2 3 0

EP (%) 3.15 6.30 9.46 0

f c 1.18 2.27 3.28 0

Error (ē) 0.0018 0.0022 0.0017 1.4E − 5

Table 2 f c Factor estimation using the EP strategy.

EP method

Inclusions 1 2 3 0

EP (%) 3.15 6.30 9.46 0

f c 1.21 2.43 3.10 0

Error (ē) 0.0035 0.0150 0.0210 4.70E − 4

Fig. 2 (a) The tissue-mimicking phantom; (b) the pork tissue phantom.
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with a diameter of 8.2 mm (full width at half maximum) having
μincla ¼ .015 mm−1 and the same value of μ 0

s as background is
introduced at (19.2,0) to generate a simulated heterogeneous
flux density (Φhetero

sim ) [Fig. 3(a)].
The homogeneous flux density is estimated (Φest−homo

sim )
[Fig. 3(b)] from simulated heterogeneous flux density (Φhetero

sim )
by the proposed method [Eq. (7)]. The perturbation or mismatch
(ΔM) of the flux density with inclusion is shown in Fig. 3(c) and
3(d), when the perturbation/mismatch of fluence is measured
with respect to true homogeneous flux density (ΔMt ¼ Φhetero

sim −
Φhomo

sim ) and with estimated homogeneous flux density ΔMest ¼
Φhetero

sim −Φest−homo
sim , respectively. The deviation of absolute mis-

match (ΔM) is shown in Fig. 4, when we use the estimated
homogeneous data. The mean error between the simulated
homogeneous data and estimated homogeneous data
ē ¼ P

84
i¼1 jðΦhetero

sim −Φest−homo
sim Þ∕Φhomo

sim j∕84 is found to be
ē ≃ 0.004, which validates the homogeneous data estimation
algorithm [Eq. (7)]. We have also placed multiple inhomogene-
ities (2) at (19.2,0) and (0,19.2), (3) at (19.2,0), (−19.2, 0) and
(0, 19.2) and estimatedΦest−homo

sim fromΦhetero
sim . The error is found

to be low. The observations are tabulated for both trial and error,
and effective perturbation (EP) strategies in Tables 1 and 2,
respectively. The recovered absorption coefficients are obtained
as 62%, 58%, and 61% of the original contrast, respectively. We
have observed noisy images as the number of inclusions
increases.

4 Experimental System and Phantom Preparation
A frequency domain noncontact DOT imaging system is
designed and fabricated (Figs. 5 and 6) for conducting the
experiment. A single-laser light source is used to irradiate the
phantom, and a single detector moves around the phantom
for collecting the exiting photon from the tissue boundary.20,21,22

The light source is an intensity-modulated laser diode
(HL7851G, Thorlabs, Newton, New Jersey), at a wavelength
of 830 nm, of average power 4.3 mW, whose modulation fre-
quency is 100 MHz. The diode is driven by a 50-mA DC current
mixed with a 20 mA radio-frequency (rf) current on a Thorlabs
TCLDM9 laser mount. The rf signal is from an ultrastable func-
tion generator (Tektronix AFG 3102, Tektronix, Beaverton,
Oregon). In order to have a stable wavelength output, the
laser diode is cooled by a Thorlabs TCM1000T cooler. The out-
put from the laser diode is split using a 10:1 beam-splitter. The
less-intense beam is fed to an avalanche photo-diode (APD) to

Fig. 3 (a) Simulated heterogeneous (blue line) and homogeneous (red
line) flux densities, (b) simulated heterogeneous (blue line) and esti-
mated homogeneous (red line) flux densities from the heterogeneous
flux density [Eq. (8)], (c) the perturbation in data due to inclusion when
the perturbation is measured with respect to the true homogeneous
flux density, (d) the perturbation in data due to inclusion when the
perturbation is measured with respect to the estimated homogeneous
flux density.

Fig. 4 The deviation of absolute mismatch (ΔM) when the perturbation/
mismatch is obtained using estimated homogeneous flux density.
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generate a 100-MHz reference signal, and it is used as an input
to the mixer (Fig. 5). The second input to the mixer is a 100.001-
MHz rf signal from same function generator. The 1-KHz beat
signal from the mixer output is used as a reference signal for
the lock-in amplifier. The intense part of the light from the
beam-splitter is coupled to a 3-mm diameter multimode fiber
to illuminate the phantom and the exiting light at the phantom
boundary is collected by a fiber bundle with a 5-mm diameter,
which subsequently transmits the light to a detector, an IR-
sensitive PMT from Hamamatsu (Shizuoka, Japan), which is
gain-modulated at 100.001 MHz for our application. The
dynode of the PMT is driven by a 100.001-MHz sinusoidal
signal (second channel of Tektronix AFG 3102). The heterdyne
signal of 1 KHz from the detector is fed to a lock-in amplifier,
which also receives the reference signal from the APD. This
facilitates the measurement of the exiting photon signal from
the PMT. We have collected a set of 84 amplitude measurements
(12 equally spaced source positions spanning the phantom sur-
face multiplied by 7 detector measurements per source location).

The phantom is an artificial tissue-mimicking object whose
background optical properties are similar to those of a tissue.
They are fabricated23 to mimic the absorption and scattering
properties of the tissue. The cylindrical phantom is made of
Araldite and a hardener whose scattering and absorption proper-
ties are tailored by mixing titanium dioxide powder and India

ink, respectively. Here, 400 g of resign (C-51 Araldite resign,
Atul Polymer, India) and India ink (0.25 ml 2%) are mixed thor-
oughly together with 1.3 g titanium dioxide until all the gas is
released. Initially, 20 g of hardener (50% of total volume) is
added to the mixture and mixed well, especially at the bottom.
After proper mixing, the rest of the hardener is added to the main
content and mixed thoroughly for 1 h until it gets hot and starts
cooling down. Once the phantom is hardened enough, it is
machined to cylindrical shape.

5 Experimental Results and Discussion
An NIR laser light modulated by a 100-MHz sinusoidal signal is
used to estimate the background optical parameter by measuring
the diffuse reflected photon at several locations away from the
source.18,20 The measured background absorption and scattering
coefficient of an experimental tissue-mimicking phantom are
found to be μa ¼ 0.005 mm−1 and μ 0

s ¼ 0.83 mm−1 for the
phantom shown in Fig. 2(a). Absorption and scattering

Fig. 7 (a) Two embedded inhomogeneities of 12 mm and 10 mm in
diameter in a phantom of 60.6 mm diameter, 70.5 mm height.
(b) Reconstructed image from calibrated data using measured hetero-
geneous data (using method 2). (c) The contrast variation along the
cross-sectional line through the inhomogeneities (blue line) in the
phantom. The line plot (purple dotted line) through the center of
inhomogeneities of the reconstructed image shown in (b).

Fig. 8 Experimental calibrated heterogeneous flux density (blue line)
when calibration is performed using experimentally detected homo-
geneous data [see Eqs. (3)–(6)]. The simulated homogeneous flux
density is also shown (red line).

Fig. 6 The frequency domain experimental setup for DOT data
measurements.

Fig. 5 Schematic model for a frequency domain DOT imaging system.
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coefficients of the phantom shown in Fig. 7(a) is found to be
μa ¼ 0.002 mm−1 and μ 0

s ¼ 1.21 mm−1, respectively. A small
cylinder is drilled in the homogeneous phantom and is filled
with 10% intralipid solution and India ink24 to provide the
inhomogeneous regions.

The frequency domain experimental setup is shown in Fig. 6.
Experiments have been carried out for both regularly and irregu-
larly shaped phantoms [Fig. 2(a) and 2(b)]. A cylindrical tissue-
mimicking phantom (78 mm diameter, μa ¼ 0.005 mm−1,
μ 0
s ¼ 0.83 mm−1) [Fig. 2(b)] and an irregular cylindrical

(dia ≈ 60 mm) pork flesh [Fig. 2(b)] (as a biological phantom)
have been used. For the pork tissue phantom, because of the
irregularity, the distance (rd) from the detector to the sample
surface varies from 1 mm ≤ to ≤5 mm. A 10-mm diameter
inhomogeneity (μincla ≃ 0.03 mm−1, made of ink, water, and
intralipid)24 is introduced to a tissue-mimicking phantom
[Fig. 2(a)] and approximately 10 mm of fat is introduced
inside the pork tissue (see Ref. 25 and Table 2) (μa ¼
0.006 mm−1, μ 0

s ¼ 0.67 mm−1).
We experimentally measured the exiting light amplitude

for homogeneous (Uhomo
measured) and heterogeneous (Uhetero

measured)
phantoms by moving the detector over a constant radius. The
theoretical flux density for homogeneous phantom and the
experimental calibrated flux density [Eq. (5)] using detected
experimental homogeneous data for regular phantom are shown
in Fig. 8. Using Eq. (7), we estimated experimental homo-
geneous data (Uest−homo

measured ) from detected heterogeneous data
(Uhetero

measured), and our findings are shown in Fig. 9(a). The cali-
brated flux densities [for phantom Fig. 2(a)], obtained by
Eqs. (4) and (7), are shown in Fig. 9(b). The perturbation of
the flux density due to inclusion is shown in Fig. 9(c), when
the perturbation (ΔMt) is measured with respect to simulated
homogeneous flux density and the calibration is carried out
using an experimental homogeneous measurement. The pertur-
bation of the flux density due to inclusion is shown in Fig. 9(d),
when the perturbation (ΔMest) is measured with respect to simu-
lated homogeneous flux density, and the calibration is carried
out using estimated homogeneous measurement with Eq. (7).
The deviation of absolute mismatch (ΔM) is shown in
Fig. 10, when we use the estimated homogeneous measurement.

The reconstructed image of a regular tissue-mimicking phan-
tom when calibration is carried out with detected experimental
homogeneous total flux and estimated total flux is shown in
Fig. 11(a) and 11(b), respectively. The cross-section line plot

Fig. 9 (a) Experimentally detected heterogeneous data (k;dUhomo
measured)

(blue line) and estimated experimental homogeneous data (k;dUest−homo
measured )

(red line) using Eq. (7). (b) Experimental calibrated heterogeneous flux
density (blue line) using Eqs. (7) and (8) and simulated homogeneous
flux density (red line). (c) Calibration is carried out using experimental
homogeneous measurement. (d) Calibration is carried out using an
estimated experimental homogeneous measurement.

Fig. 10 The deviation of absolute mismatch when the perturbation/
mismatch is obtained using an estimated homogeneous measurement.

Journal of Biomedical Optics 026023-6 February 2013 • Vol. 18(2)

Biswas, Rajan, and Vasu: Flux density calibration in diffuse. . .



through the inhomogeneity for both cases is shown in Fig. 11(c).
The mean square error (MSE) with iteration is presented for both
methods in Fig. 11(d). The results match very closely. The
reconstructed image of the pork phantom, when calibration is
carried out with experimental homogeneous total flux and esti-
mated homogeneous flux, are shown in Fig. 12(a) and 12(b),
respectively. The cross-section line plot through the inhomoge-
neity for both cases is shown in Fig. 12(c). Figure 12(d) shows

the variation of the MSE with iteration. The reconstructed
results with the estimated homogeneous data is bit noisy.
This noise may be introduced during estimation due to more
inhomogeneity in the background, as already analyzed and
tabulated. For an irregular phantom, the small variation of geo-
metrical shape matrix (rd) may cause more inaccuracy in the
homogeneous parameter estimation due to inappropriate free
space photon propagation compensation.

Fig. 11 Reconstruction image of a tissue-mimicking phantom with an embedded inhomogeneity [Fig. 2(a)] when the calibration is performed (a) with
experimentally detected homogeneous data (using method 1), (b) with estimated homogeneous data (using method 2) (c) The contrast through the
cross-sectional line through the center of inhomogeneity. (d) The variation in MSE with iterations.

Fig. 12 (a) Reconstruction image of fat inserted inside the pork phantom when the calibration is performed with (a) experimentally detected homo-
geneous data (using method 1) and (b) estimated homogeneous data (method 2). (c) Cross-sectional line through the inhomogeneity. (d) The variation
of MSE with iterations.
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Experiments are carried out with two embedded inhomo-
geneities made of India ink and 10% intralipid. The recon-
structed results using measured homogeneous and estimated
homogeneous data are shown in Fig. 13(a) and Fig. 13(b),
respectively.

Apart from that, we used another 60-mm-diameter phantom
[Fig. 7(a)] (background μa ¼ 0.002 mm−1, μ 0

s ¼ 1.21 mm−1),
where there were two embedded inhomogeneities of different
absorption coefficients. The experimental homogeneous data
for this phantom is not available because the inhomogeneities
were already inserted during phantom fabrication. We used
the proposed method to estimate the homogeneous flux density
for calibrating the heterogeneous measurements. The phantom
image and reconstructed images are shown in Fig. 7(a) and 7(b).
The cross-sectional line plot through the inhomogeneities is
shown in Fig. 7(c). The results show that the homogeneous

data estimation and image reconstruction is possible even
without measured homogeneous data. This result validates the
estimation algorithms.

The diffusion coefficient fκðrÞ ¼ 1∕3½μaðrÞ þ μ 0
sðrÞ�g distri-

bution of the human hand has been reconstructed to demonstrate
the ability of the proposed algorithm. The experimental homo-
geneous data from the hand phantom [Fig. 14(b)] is not avail-
able. Even when the measured homogeneous data is not
available, we used the proposed “method 2” to estimate the
homogeneous flux density for calibrating the heterogeneous
measurements. The MR image and DOT reconstructed images
are shown in Fig. 14(a) and 14(c), respectively. The locations of
the bone in the hand are presented through the κðrÞ distribution.
It shows that light cannot diffuse through the bone. The recon-
structed image shows that there is more diffusion of light
between the bones, where there are less dense tissue and more
hollow spaces. The results with the pork tissue phantom and
human hand image show that the homogeneous data estimation
and absolute image reconstruction is possible in clinic, even
when measured homogeneous data is available.

6 Conclusions
We have shown theoretically [Eqs. (3)–(8)] and experimentally
that the proposed simple models estimate the absolute flux
density (Φ) from detected total flux (Umeasured). The estimated
flux density with the proposed methods matches very closely
with the simulated flux density. The reconstructed results for
both the regular tissue-mimicking phantom and pork phantom
are well resolved and localized when heterogeneous data is
calibrated with experimentally measured homogeneous data.
When the experimental homogeneous data are not available,
the proposed statistical averaging method estimates the exper-
imental homogeneous data from measured heterogeneous data
and the MSE is found to be less than 0.005. The lower the effec-
tive perturbation is, the better the estimation is. The estimated
homogeneous data match very closely to both theoretical and
the experimental homogeneous data for a regular-shaped phan-
tom [Fig. 2(a)]. Reconstructed results of a regular cylindrical
phantom show similar results [Fig. 2(a)], when calibrated
with and without prior knowledge of the experimental detected
homogeneous data. However, the reconstructed result of the
pork phantom matches closely when it is calibrated with esti-
mated homogeneous data. Because of irregular shape of pork
phantom, the distance between phantom surface and detector
varies from 1 to 5 mm. The estimation of homogeneous data
from heterogeneous data is carried out by projecting the photon
flux from an irregular shape to a regular constant circular radius.
Φ varies nonlinearly with distance (r) and with optical param-
eters. The more irregular the phantom, the more discrepancy
occurs in the calibrated flux density. The estimation of homo-
geneous data will be more accurate if the phantom is regular.
The estimation of the homogeneous flux density in the proposed
method will be more accurate if the irregularity of the phantom
is less. With 1 to 5 mm rd variation, we got reasonably good
reconstruction results for the pork tissue phantom and the
cross-section of the human hand image.
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Fig. 13 A phantom with two embedded inhomogeneities. The recon-
structed results when the calibration is performed with (a) experimen-
tally detected homogeneous data (using method 1) and (b) estimated
homogeneous data (using method 2).

Fig. 14 (a) Cross-sectional MR image of a hand shows the bone loca-
tions. (b) Photograph of the hand-scanning DOT imaging system.
(c) Reconstructed diffusion coefficient (κðrÞ), when flux density is esti-
mated using method (2). The diffusion through the bones is almost zero
and shows the location of the bones.
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