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Abstract. Cross sectional tomographic systems based on cylindrically focused transducers are widely used in opto-
acoustic (photoacoustic) imaging due to important advantages they provide such as high-cross sectional resolution,
real-time imaging capacity, and high-throughput performance. Tomographic images in such systems are commonly
obtained by means of two-dimensional (2-D) reconstruction procedures assuming point-like detectors, and volu-
metric (whole-body) imaging is performed by superimposing the cross sectional images for different positions along
the scanning direction. Such reconstruction strategy generally leads to in-plane and out-of-plane artifacts as well as
significant quantification errors. Herein, we introduce two equivalent full three-dimensional (3-D) models capable
of accounting for the shape of cylindrically focused transducers. The performance of these models in 3-D recon-
structions considering several scanning positions is analyzed in this work. Improvements of the results rendered
with the introduced reconstruction procedure as compared with the 2-D-based approach are described and dis-
cussed for simulations and experiments with phantoms and biological tissues. © 2013 Society of Photo-Optical Instrumentation

Engineers (SPIE) [DOI: 10.1117/1.JBO.18.7.076014]
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1 Introduction
The geometrical and operational characteristics of ultrasonic
detectors play a key role in the reconstruction strategy and con-
sequent image quality obtained in optoacoustic (photoacoustic)
imaging. Specifically, the size of the active surface (aperture)
and the frequency response of the detector(s) employed deter-
mine the achievable sensitivity and resolution of the optoacous-
tic system.1 Commonly used piezoelectric transducers can be
classified into three main groups, namely: flat, spherically
focused, and cylindrically focused transducers. Each shape priv-
ileges certain detection geometries and thus determines the pos-
sible fields of application of the optoacoustic imaging system.

Spherically focused transducers, i.e., detectors with a con-
cave-shaped surface, are used in acoustic resolution optoacous-
tic microscopy2–5 to selectively collect time-domain signals
providing depth-profiles of the optical absorption at each meas-
uring position. While three-dimensional (3-D) images can be
formed by stacking the signals acquired by raster-scanning
the transducer, more sophisticated reconstruction procedures
accounting for the shape of the detector can render a better
image quality.6–8

Flat detectors on the other hand are used for volumetric
tomographic implementations, where optoacoustic signals at
multiple distinct positions surrounding the to-be-imaged object
are collected.9–11

Although the frequency-dependent angular acceptance of flat
detectors is much higher than in focused transducers, they are

still directive due to diffraction, especially for the relatively large
sizes required to provide an acceptable signal-to-noise ratio
(SNR). Thereby, more advanced reconstruction algorithms
have been suggested to take into account the shape of the trans-
ducer in the reconstructions, yielding significantly better results
than standard reconstruction procedures assuming point
detectors.12,13

High-resolution volumetric optoacoustic imaging is, how-
ever, limited by the large acquisition time needed to collect a
sufficient number of signals, even if transducer arrays are
employed. In order to overcome this limitation, cross sectional
optoacoustic tomographic systems have been suggested, which
make use of cylindrically focused transducers to selectively
collect signals originated in the imaging plane.14–18 By simulta-
neously acquiring signals with a cylindrically focused array of
transducers, real-time imaging performance has been show-
cased.19,20 Furthermore, the high-throughput capacity of such
cross sectional imaging systems, combined with the functional
and molecular imaging capabilities of the optoacoustic technol-
ogy, provide new biological insights in small animal research,
with promising applications continuously emerging.21–23

Finally, volumetric imaging can also be achieved by translating
the ultrasonic array in the elevational direction.24 However,
although cylindrically focused transducers partially reject sig-
nals originating outside the imaging plane, the reconstructed
images obtained by assuming a two-dimensional (2-D) geom-
etry are generally strongly affected by out-of-plane artifacts.
Also, the shape of the transducer influences the in-plane reso-
lution and the quantification performance of the imaging sys-
tem. Then, the development of a reconstruction procedure toAddress all correspondence to: Daniel Queirós, Institute for Biological and
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minimize the reconstruction inaccuracies due to the cylindrical
shape of the detector becomes an important issue to address in
widely used cross sectional optoacoustic imaging systems.

In this work, we investigate the benefits of using a 3-D
model-based reconstruction procedure accounting for the shape
of the transducer in tomographic optoacoustic systems based on
cylindrically focused transducers. First, the effects of the geo-
metrical features of the detectors on the resolution and quanti-
fication performance of 2-D model-based reconstructions
assuming point detectors are examined. Then, the 3-D model-
based methodology is introduced and its reconstruction perfor-
mance is assessed. Specifically, a 3-D forward model based on
an accurate discretization of the Poisson-type integral25 is modi-
fied to incorporate the spatial impulse response (SIR) due to the
geometrical characteristics of cylindrically focused transducers.
Two approaches are suggested. The first one is based on con-
volving the pressure field at the measuring locations with the
spatially dependent SIR of the transducer, as described in
Ref. 26 for the 2-D case. The second one consists of discretizing
the transducer surface by a set of surface elements and super-
imposing the corresponding optoacoustic signals. The recon-
structed images obtained with 2-D model-based inversion are
then contrasted with the respective images obtained by using
the full 3-D model. Theoretical predictions are compared with
experimental results and the findings and conclusions are finally
discussed.

2 Theory
Under assumption of thermal and stress confinement in a uni-
form acoustic medium, the optoacoustic wave generation is
mathematically described by

∂2

∂t2
Pðx; tÞ − c2s∇2Pðx; tÞ ¼ c2sβ

Cp

∂
∂t
Hðx; tÞ; (1)

where Pðx; tÞ is the optoacoustic pressure, Hðx; tÞ is the heating
function, β is the isobaric volume expansion coefficient, cs is the
speed of sound, and Cp stands for specific heat.27 Spatial and
temporal separation of the heating function, i.e., Hðx; tÞ ¼
fðxÞ · IðtÞ, as well as approximation of the laser pulse by a
Dirac delta, i.e., IðtÞ ¼ I0 · δðtÞ, further simplifies Eq. (1) to
the Cauchy problem given by

∂2

∂t2
Pðx; tÞ − c2s∇2Pðx; tÞ ¼ 0; (2)

Pðx; 0Þ ¼ c2sβI0
Cp

fðxÞ; (3)

∂
∂t
Pðx; 0Þ ¼ 0: (4)

An explicit expression for the solution is given by the
Poisson type integral

Pðx; tÞ ¼ ∂
∂t

�
csβI0
4πCp

1

cst
∯

jx−x 0j¼cst
fðx 0ÞdSðx 0Þ

�

¼ csβI0
4πCp

∂
∂t

Z Z Z
δðjx − x 0j − cstÞ

jx − x 0j fðx 0Þdx 0: (5)

In some cases, the optoacoustic problem is effectively
reduced to 2-D by selectively collecting signals generated in
the imaging plane. In such case, the surface integral in Eq. (5)
is approximately expressed as a line integral multiplied by the
height of the imaging slice, i.e., Eq. (5) (in arbitrary units) is
reduced to

Pðx; tÞ ≈ ∂
∂t

�
1

cst

I
jx−x 0 j¼cst

fðx 0Þdlðx 0Þ
�
: (6)

Model-based reconstruction in 2-D reduced systems consists
of a numerical discretization followed by an algebraic inversion
of Eq. (6), implemented herein with the interpolated model-
matrix inversion algorithm (IMMI).28 Discretization based on
approximating the line integral in Eq. (6) by equally spaced
points has been considered,29 which can also be used for 3-D
reconstructions by discretizing Eq. (5).25 In all cases, the pres-
sure at a given point and at a given instant is expressed as a linear
combination of the absorption in the pixels (2-D case) or voxels
(3-D case) of the reconstructed region of interest (ROI).
Thereby, the pressure vector P̃ corresponding to the pressure
at a set of positions and instants is given by

P̃ ¼ M · f̃; (7)

where ~f is the absorption vector corresponding to the optical
absorption per unit volume at the points of the ROI.M is termed
the model matrix, which establishes the relationship between
deposited optical energy and detected pressure waves (forward
problem). The reconstruction of the optical absorption from the
measured pressure at a set of points and instants (inverse prob-
lem) is then performed by numerically inverting Eq. (7). Due to
the sparsity of M, the inversion can be implemented with high
efficiency by using a least squares minimization algorithm
(LSQR), which calculates the solution f̃sol given by

f̃sol ¼ arg min
f̃

kP̃ −M · f̃k2: (8)

In some cases, the inversion procedure needs to be regular-
ized. For example, by employing standard Tikhonov regulariza-
tion, Eq. (8) is transformed to

f̃sol ¼ argmin
f̃

kP̃ −M · f̃k2 þ λ2kf̃k2: (9)

Image reconstruction with the model matrix M assumes that
the collected signals correspond to the pressure at a given point
position (point detector assumption). This hypothesis is not
always valid as the acoustic pressure is spatially averaged on
the active area of realistic ultrasonic transducers which have
a certain extension. In this way, the signal detected by a trans-
ducer having a detection surface S can be expressed as

Pdetðxc; tÞ ¼
ZZ

S
Pðx 0; tÞdx 0; (10)

where xc is the center of the transducer. Then, a new model
matrix must be calculated from Eq. (10) to take into account
the effects of the finite size of the transducers. In this work, we
analyzed two different approaches to model the shape of the
transducer. The first approach approximates the surface of the
transducer by a set of surface elements with central positions
xS ∈ S and size ΔxS. Thereby, Eq. (10) is approximated by
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Pdetðxc; tÞ ≈
X
xS∈S

PðxS; tÞ · ΔxS: (11)

The pressure PðxS; tÞ for a set of instants and for a given sur-
face element can be expressed by Eq. (7). Thereby, by combin-
ing Eqs. (7) and (11) a model matrix Msum incorporating the
effects of the finite size of the transducer is given by

Msum ¼
X
xS∈S

MxS · ΔxS; (12)

so that the signal acquired by the transducer for a set of instants
and transducer locations can be expressed as

P̃sum ¼ Msum · f̃: (13)

If the size of the surface elements is the same, the termΔxS in
Eqs. (11) and (12) can be dropped for simplicity. The accuracy
of this procedure depends on the number of elements ΔxS used
to approximate the detector shape. Therefore, it can be slow or
even impracticable for large detectors. On the other hand, it pro-
vides flexibility as any detector shape can be modeled by a set of
surface elements.

The second approach considered in this paper is based on
calculating the spatial impulse response (SIR) of the trans-
ducer.26 The analytical solution of the wave equation for a

spatial and temporal Dirac-delta source term, i.e., substituting
the right-hand side of Eq. (1) by δðx 0ÞδðtÞ, in free space is
given by

Pδðx; x 0; tÞ ¼ δðjx − x 0j − cstÞ
4πjx − x 0j : (14)

The integration of Eq. (14) along the active area corresponds
to the spatially dependent impulse response of the transducer
due to its shape. The SIR of a finite length line transducer,
denoted by hðx; x 0; tÞ, can be calculated analytically.26 Here, t
is time, x location of the center of the line (detector), and x 0

position of a point source. Then, the cylindrically focused detec-
tor can be approximated by n lines (centered at x1; : : : ; xn) and
its impulse response hdetðxc; x 0; tÞ can be estimated as

hdetðxc; x 0; tÞ ≈
Xn
i¼1

hðxi; x 0; tÞ; (15)

where hðxi; x 0; tÞ is the impulse response of each of the lines
[Fig. 1(k)] and xc is the center of the focused detector.
Analogous to the approach in linear system theory the SIR
of the entire transducer is temporally convolved with the system
response.26 The detected signal collected by the transducer is
then given by [see also Eq. (5)]

Pdetðxc; tÞ ≈
csβI0
4πCp

∂
∂t

Z Z Z
hdetðxc; x 0; tÞfðx 0Þdx 0 ¼ csβI0

4πCp

Z Z Z �
hdetðxc; x 0; tÞ � ∂

∂t
δðtÞ

�
fðx 0Þdx 0

¼ csβI0
4πCp

Z Z Z �
jxc − x 0jhdet

�
xc; x 0; tþ

jx − x 0j
cs

�
� ∂
∂t
δðjxc − x 0j − cstÞ

jxc − x 0j
�
fðx 0Þdx 0:

(16)

Again combining Eqs. (7) and (16), a numerically efficient
convolution of the SIR hdet with the model-matrix M leads to a
new matrix Mdet (which is equivalent to Msum). This yields a
new system for inversion

P̃det ¼ Mdet · f̃: (17)

This latest approach based on convolution may be more suit-
able for cylindrically focused detector surfaces with a relatively

large width as the number of lines needed to approximate the
transducer surface is much lower than the number of points
required in the first approach.

3 Simulations
Numerical simulations were employed to examine the accuracy
of both models described above. An optical absorption distribu-
tion fðx; y; zÞ was assumed by a 3-D truncated paraboloid with
radius r0, i.e.,

fðx; y; zÞ ¼
�
1 − ðx−x0Þ2þðy−y0Þ2þðz−z0Þ2

r2
0

; ðx − x0Þ2 þ ðy − y0Þ2 þ ðz − z0Þ2 < r20
0; ðx − x0Þ2 þ ðy − y0Þ2 þ ðz − z0Þ2 ≥ r20

: (18)

For this absorption pattern, the laser-induced pressure wave
detected at a point in space can be calculated analytically (see
Appendix A). Then, the surface of a finite-size detector was dis-
cretized uniformly and very densely with >2000 equidistant
points, and the analytical signals corresponding to each point
were summed by Eq. (11) to determine the response of the entire
detector area. Henceforth, we refer to the signals calculated in
this manner as the analytical signals.

A cylindrically focused transducer with a circular shape was
considered for the simulations (see Fig. 1). The diameter of the
circle is 1.3 cm and its focal length is 2.54 cm. The analytical
signals were compared to the ones predicted by the two models
introduced in the previous section. For this purpose, the pressure

vector was calculated from the matrices Mdet and Msum using
Eq. (7). Mdet was calculated by approximating the surface of
the transducer with 21 lines. No significant changes are pro-
duced in Mdet for a high number of lines. Msum was calculated
by considering 350 equally spaced points on the transducer sur-
face, so that the distance between the points for calculatingMsum

is approximately the same as the distance between the lines for
calculating Mdet. The discrete ROI considered consists of 101 ×
101 × 21 voxels, equivalent to 2 × 2 × 0.4 cm3, resulting in a
uniform resolution of 200 μm.

Two different optical absorption distributions containing four
absorbers with radii r0 ¼ 200 μm and r0 ¼ 1 mm were consid-
ered [Fig. 1(a) and 1(d)]. The signals predicted by the two
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models show good agreement with the analytical ones ensuring
that the models are accurate [Fig. 1(b) and 1(e)]. The signals
shown in Fig. 1 correspond to a transducer positioned at
ðxjyjzÞ ¼ ð2.54 cmj0 cmj0 cmÞ. For all the other positions on
the detector ring, analytical signals and signals predicted by the
models matched equally. As absorbers with different sizes emit
pressure waves at different frequencies, it is important that the

whole frequency spectrum of broadband signals is accurately
calculated. The Fourier transform of the signals [Fig. 1(c) and
1(f)] showcases a good accuracy of the two models throughout
the frequency spectrum. There is, however, a discrepancy
between the analytical signals and the signals predicted by the
models for absorbers in the order of the pixel size, which is
mainly due to discretization errors produced by approximating

Fig. 1 Comparison of pressure signals emitted by four absorbers of different size. (a and d) Middle plane of the region of interest (ROI) with four
parabolic absorbers of radius 200 μm and 1 mm placed along the x-axis. (b and e) Signals predicted by the model matrices Mdet (red continuous)
and Msum (green dotted) together with the analytical signals (black dotted) for a transducer positioned at ðxjyjzÞ ¼ ð2.54 cmj0 cmj0 cmÞ. (c and f)
Fourier transform of the signals in (b) and (e), respectively. (g) Cross section of a mouse. (h and i) The signals predicted by the two matrices and their
Fourier transform. (j and k) Approximation of the active surface of the transducer by a set of points and lines. A picture of the actual transducer is shown
in (l).
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the actual absorption distribution with the discrete ROI.
Furthermore, to showcase the equivalent behavior of the two
models, a stack of cross sectional images of a mouse [Fig. 1(g)]
was considered and the signals predicted by the two matrices
were compared. Also here, the signals are almost identical either
in time [Fig. 1(h)] or in frequency [Fig. 1(i)] domain. As the two
models show the same behavior, the model-matrix Mdet was
considered in the rest of simulations and experiments due to
the lower computational time for wide detectors. Building a
model matrix for the entire detection geometry assuming
point detectors took about 130 s. Therefore, building the entire
matrix Msum (which is the sum of 350 such point detector mod-
els) took over 12 h and required 12.8 GB of memory for storage.
Computation of the model–matrix Mdet comprised three steps.
The SIR hdet and one 3-D model-matrix assuming point
transducers had to be calculated and finally convolved. These
steps in total took roughly 8 h. Memory requirements for storage
of Mdet were the same as for Msum.

In a second step, the analytical signals were calculated for a
tomographic geometry (Fig. 2). For this, we consider a cylindri-
cally focused transducer scanned along a circumference sur-
rounding the object with an 2.25 deg step (160 projections)
and then, additionally scanned linearly along 0.6 cm in the
longitudinal direction (31 steps), so that 4960 transducer posi-
tions are taken. In this way, we intend to compare the results
obtained by reducing the reconstruction problem to 2-D with
those obtained by a 3-D reconstruction with modeling the
shape of the transducer. In order to show the effects in absorbers
of different sizes, we considered the same two absorption dis-
tributions depicted in Fig. 1 corresponding to absorbers with
radii r0 ¼ 200 μm and r0 ¼ 1 mm.

The inversion was performed using two alternative methods.
First, a 2-D model matrix representing the 160 detector positions
in one plane was calculated. Thereby, each plane was recon-
structed separately with this matrix. The inversion was done
by means of the LSQR algorithm, resulting in a stack of 2-D
reconstructions representing the volumetric ROI. Here, no
Tikhonov regularization was employed as the LSQR algorithm
converges for full-view acquisition in the 2-D case, i.e., the opti-
mal regularization parameter for Tikhonov regularization
[Eq. (9)] is λ ¼ 0. Second, the full 3-D model matrix incorpo-
rating the SIR of the transducer was calculated. The inversion in
this case was done with the LSQR algorithm and standard
Tikhonov regularization.

Four point absorbers with radius r0 ¼ 200 μm [Fig. 3(a) and
3(d)] and radius r0 ¼ 1 mm [Fig. 3(g) and 3(j)] were placed in
the middle plane, starting from the center going outward. The
reconstruction achieved by inverting a 2-D model for each plane
shows the expected smearing in the imaging plane of the absorb-
ers located away from the center of the image (in-plane artifacts)
[Fig. 3(b) and 3(h)]. This is due to the assumed point transducers
in the model which do not correspond to the actual signals col-
lected by the transducer. Also, the reconstructed absorption val-
ues are severely reduced for peripheral absorbers, resulting in
significant quantification errors. Smearing over almost the entire
ROI is observed in the z-direction, corresponding to strong out-
of-plane artifacts [Fig. 3(e) and 3(k)].

On the other hand, the reconstructions retrieved with the full
3-D model including the SIR of the detector significantly reduce
the smearing in the out-of-plane [Fig. 3(f) and 3(l)] and in-plane
directions [Fig. 3(c) and 3(i)]. Resolution in all spatial dimen-
sions was improved with the 3-D model incorporating the SIR of
the transducer.

Also, it is shown [Fig. 3(m) and 3(p)] that the error in the
reconstructed absorption value is size dependent. Figure 3(m)
and 3(p) shows the horizontal profiles of the four absorbers
along the x-axis in the middle plane. If 2-D reconstruction is
used, the values of the ratio between the retrieved amplitudes
for the outer and the inner absorbers are ∼10% for the small
absorbers and 40% for the big absorbers, respectively. When the
full 3-D model is used, these values are 40% and 75%, respec-
tively, which indicates that the quantitative errors are consider-
ably reduced with the latest approach.

It is important to notice that the overall improvement of the
reconstruction was also influenced by the length of the scan in
the z-direction. Longer scans led to a better conditioned model
matrix and thereby inversion problem so that better quality
reconstructions were generally obtained (see Appendix B).

4 Experimental Results
The procedure suggested in this work was also tested in experi-
ments with agar phantoms containing microparticles and an
ex vivo spleen of a mouse. The cylindrical phantoms with a
diameter of 2 cm were prepared using a gel made from distilled
water, containing Agar (Sigma-Aldrich, St. Louis, MO, USA)
for jellification (1.3% w∕w) and an Intralipid 20% emulsion
(Sigma-Aldrich) for light diffusion and more uniform illumina-
tion (6% v∕v), resulting in a gel presenting a reduced scattering
coefficient of μ 0

s ≈ 10 cm−1. First, polyethylene microparticles
with an approximate diameter of 200 μm (Cospheric BKPMS
180 to 210 μm) have been placed in one plane trying to resemble
the setup of the simulations as closely as possible [Figs. 3(a),
3(d) and 4(a), 4(d)]. Additionally, the spleen of a mouse has
been embedded in a second agar phantom.

The layout of the tomographic optoacoustic system
employed to image the phantom containing microparticles is
depicted in Fig. 5. The optoacoustic signals were measured by
a standard cylindrically focused piezoelectric immersion trans-
ducer (Panametrics V320-SU, Olympus NDT Inc., Waltham,
MA, USA) with the same dimensions as in the simulations,
i.e., a diameter of 1.3 cm and a focal length of 2.54 cm. The
central frequency of the transducer is 7.5 MHz with a bandwidth
of ∼70%. Optoacoustic pressure waves were excited with a tun-
able (680 to 950 nm) optical parametric oscillator laser (Phocus,
Opotek Inc., Carlsbad, CA, USA), delivering <10 ns duration
pulses with repetition frequency of 10 Hz. The laser was set at

Fig. 2 Full-view tomographic geometry for the simulations and experi-
ments. The ROI is depicted by the red cuboid. The blue points represent
the positions of the centers of the cylindrically focused detectors. All the
transducer positions lie on the surface of a cylinder with radius 2.54 cm.
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Fig. 3 Simulation of four absorbers with radius r0 ¼ 200 μm (a and d) and radius r0 ¼ 1 mm (g and j) placed along the x-axis in the center of the ROI. (b
and h) The maximum intensity projection (MIP) along the z-axis of the stack of 2-D reconstructions and (e) and (k) its MIP along the y-axis. (c) and (i)
depict theMIP along the z-axis of the 3-D reconstruction taking the spatial impulse response (SIR) of the transducer into account and its MIP along the y-
axis (f and l). Absorption values (normalized) along the x-axis in the middle plane for four absorbers with radius r0 ¼ 200 μm (m) and r0 ¼ 1 mm (p).
Relative improvement of the absorption values in the z-direction is shown for the central absorber (n and q) and the outmost absorber (o and r).
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a wavelength of 760 nm (corresponding to the maximum laser
power) and the acquired signals at each projection were aver-
aged 10 times and bandpass filtered from 0.5 to 12 MHz.

The laser beam was guided with a fiber bundle into the water
tank and (due to spatial limitations) deflected with a mirror in
order to uniformly illuminate the phantom from the bottom. The
transducer was kept at a fixed position while the sample was
rotated and moved vertically by means of rotation and transla-
tion stages. The Q-switch output of the laser was used to trigger
the data acquisition card (Spectrum, M3i.4121) embedded in the
personal computer controlling the stages.

The transducer was positioned at a distance from the center
of rotation equal to its focal length, namely, 2.54 cm. In order to
cover the entire volumetric ROI, the phantom was scanned in 31
positions along the z-axis with a step of 200 μm covering a total
distance of 6 mm (Fig. 2). For each vertical position of the sam-
ple, 160 projections over 360 deg were recorded (angular step of
2.25 deg).

Much as in the simulations, the ROI was a volume with
dimensions of 2 × 2 × 0.4 cm3 discretized by 101 × 101 × 21

voxels resulting in a uniform resolution of 200 μm. It was cen-
tered inside the detector ring and the scanning range. The recon-
structions with the 2-D model matrix with no impulse response
and with the 3-D model matrix including the SIR of the trans-
ducer were computed on a workstation computer 2× Intel Xeon
DP X5650 (6 × 2.67 GHz) with 144 GB of random-access
memory (RAM). The LSQR algorithm was executed with
MATLAB (Mathworks, Natick, MA, USA). For inversion in
the 2-D case, the LSQR algorithm shows convergence, so no
Tikhonov regularization was employed (or equivalently,
Tikhonov regularization was used with λ ¼ 0). The 3-D
reconstruction was always performed by means of the LSQR
algorithm with standard Tikhonov regularization by optimizing
the value of λ to give the best possible image quality.

Figure 4 displays the reconstruction results. The stack of 2-D
reconstructions shows the effects showcased in the simulations.
The reconstructed microparticles are elongated in the azimuthal
direction with an increasing distance from the center of rotation.
The absorbers also become smeared throughout almost the
entire ROI in the elevational direction [Fig. 4(b) and 4(e)],
resulting in strong out-of-plane artifacts.

The 3-D reconstruction on the other hand shows the positive
effect of the incorporation of the impulse response. In-plane, the
absorbers are clearly visible showing four distinct peaks and its
shape is almost perfectly recovered. Out-of-plane, their exten-
sion is also reduced to make their localization much more
precise [Fig. 4(c) and 4(f)]. For the central and the outmost
absorber, the resolution improvement in the z-direction is
depicted in Fig. 4(h) and 4(i), respectively. Moreover, the overall
signal-to-noise level is higher in the 3-D reconstruction
[Fig. 4(g)]. Figure 4(k) depicts the middle plane of the stack
of 2-D reconstructions with a threshold between 0 and 0.1 in
order to make the noise floor more visible. Clearly, the same
plane obtained via the full 3-D reconstruction and the same
threshold shows visibly less noise [Fig. 4(l)]. As a measure
for the noise level, the standard deviation of the reconstructed
pixel values excluding the absorber region has been calculated
(y-values between ½−1;−0.5� and [0.5, 1]). For the 2-D model
reconstruction the value was 1.1655 whereas in the case of the
full 3-D model reconstruction the calculation yielded 0.5373
corroborating the assertion of a lower noise level in the 3-D
reconstruction.

The agar phantom containing the spleen of a mouse was
imaged with a high-throughput optoacoustic tomographic sys-
tem as described in detail in Ref. 19. In this case, the signals
were collected with a transducer array consisting of 64 cylindri-
cally focused elements covering 172 deg. The size of the ele-
ments was approximately 2 and 15 mm in the azimuthal and
elevational directions, respectively. Due to the small width of
the elements as compared to their height, the main effect in the
reconstructions was the out-of-plane spreading of the absorbers.
Thereby, the modeling of the transducer in this case was sim-
plified by discretizing it with 150 surface elements in the eleva-
tional direction and neglecting azimuthal extensions.

A comparison of the results obtained with the 2-D model and
the 3-D simplified model is displayed in Fig. 6. An improvement
in the elevational resolution is obtained with the 3-D model as
shown in the maximum intensity projection (MIP) along the
y-direction [Fig. 6(c) and 6(d)]. The out-of-plane artifacts are
especially significant for the background absorption, which gen-
erates mainly low-frequency acoustic waves, and the focusing
capacity of the transducer is lower in this case. The reduction of
the out-of-plane artifacts corresponding to low-spatial frequen-
cies also improves the visual quality of the MIP along the
z-direction. The weak SNR observed in the 2-D reconstruction
[Fig. 6(a)] was improved in the 3-D reconstruction [Fig. 6(b)].
This could be observed even when Tikhonov regularization was
also employed for the 2-D reconstructions as the signal-to-noise
level did not change significantly for different values of the
regularization parameter λ.

5 Discussion
In this work, we adapted a model-based reconstruction algo-
rithm to account for the effects of cylindrically focused trans-
ducers in commonly used cross sectional tomographic
optoacoustic systems. Two different approaches based, respec-
tively, on approximating the active surface of the transducer by a
set of surface elements and by considering the SIR of a discre-
tization of the transducer by lines were presented and compared.
It was shown that the signals predicted by both models are
equivalent, so that application of any of them yields a 3-D
model matrix incorporating the effects of the transducer shape.
Then, optoacoustic reconstruction was performed by inverting
such a model matrix with the LSQR algorithm.

The reconstruction performance of the model-matrix Msum

depends strongly on the number of surface elements used to dis-
cretize the transducer surface. As the time required for calculat-
ing Msum is proportional to the number of elements used, it can
lead to very large computational times for wide transducers
being modeled with uniformly spaced surface elements. In con-
trast to that, a relatively small number of lines is needed to cal-
culate the model-matrix Mdet for flat detectors. Typically, <30
lines are sufficient to accurately model the optoacoustic wave
detection, whereas the number of elements needed to obtain
the equivalent Msum is in the order of several hundreds to thou-
sands. However, the model approximating the transducer area
by surface elements may be more convenient for narrow trans-
ducers where the effect of the detector breadth is negligible.
Beyond that, the discretization of the active area of the trans-
ducer with a set of surface elements provides more flexibility to
model an arbitrary curved surface.

It was shown in the simulations that the in-plane smearing
observed in 2-D reconstructions assuming point transducers
can be corrected when employing the complete 3-D model,
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even for absorbers located at a relatively large distance from the
center of the ROI. Likewise, out-of-plane smearing was also
reduced, although the out-of-plane resolution is limited by the
acquisition geometry, which is not optimal for 3-D imaging.
Generally, the smearing effect when using 2-D reconstruction
is frequency dependent. In-plane, the effect is lower for large
absorbers, since signals emitted by large objects have longer
wavelengths (low frequencies) and are, therefore, less distorted
by the SIR of the detector, which performs as a low-pass filter.
Out-of-plane, spreading of the absorbers is, however, stronger
for large absorbers as the wavelength-dependent focusing capac-
ity of the transducer is higher for short wavelengths (high
frequencies). Both effects could be significantly reduced,
improving the resolution in all spatial dimensions, by using the
3-D model including the SIR of the transducer. Fig. 5 Layout of the experimental setup.

Fig. 4 Positioning of four microspheres in the experiment; MIP along the z-axis (a) and along the y-axis (d). (b) and (e) The corresponding reconstruction
via inversion of the 2-D model-matrix system. (c) The reconstruction obtained via inversion of the 3-D model matrix with the SIR convolved and its MIP
along the y-axis (f). In (g), the absorption values of the four microspheres projected along the y-axis for both reconstructions are shown. The relative
improvement of the absorption values in the z-direction is shown for the central absorber (h) and the outmost absorber in (i). (j) The position of the four
absorbers in the middle plane with a threshold from 0 to 0.1. (k) The middle plane of the 2-D reconstruction with the same threshold. (l) The central
plane of the reconstruction obtained by the full 3-D model with the same threshold from 0 to 0.1.

Journal of Biomedical Optics 076014-8 July 2013 • Vol. 18(7)

Queirós et al.: Modeling the shape of cylindrically focused transducers in three-dimensional. . .



Much like the smearing effect, degradation of the recon-
structed absorption values was also shown to be dependent on
the size of the absorbers and therefore, on the frequencies of the
emitted ultrasonic waves. Smaller absorbers emit ultrasonic
waves with higher frequencies and get corrupted more strongly
in the reconstruction. Such abatement leads to significant quan-
tification errors in the 2-D reconstructions assuming point trans-
ducers, which are substantially reduced when considering the
full 3-D model. The maximum achievable improvement, how-
ever, is also dependent on the scanning length in the z-direction,
as this influences the conditioning of the inversion (see
Appendix B). Also, as recently shown in Ref. 13, different regu-
larization techniques affect the 3-D reconstruction performance.

The improvement achieved with the full 3-D model shown
in the simulations was also confirmed experimentally with
microparticles. Spreading of the absorbers in azimuthal and ele-
vational directions could clearly be seen in the 2-D reconstruc-
tions. The 3-D reconstruction algorithm including the SIR of the
detector showed improvements in all spatial dimensions.
Moreover, the noise level in the images was generally reduced
with the 3-D model.

The positive results obtained in a biological specimen
(mouse spleen) demonstrate the applicability and convenience
of the method to reconstruct actual biological tissues. The blurry
images obtained by 2-D reconstruction could be significantly
enhanced by using the full 3-D model. As out-of-plane artifacts
and blurring are mainly due to background absorption, they cor-
respond to low-frequency optoacoustic waves. The focusing
capacity of the transducer, however, is weak in that frequency
range. Therefore, the full 3-D model enhanced significantly the

reconstruction quality. The simplification of the model neglect-
ing the azimuthal extension of the transducer also led to accel-
eration of the inversion due to the corresponding sparser matrix
obtained.

The main disadvantage of the method proposed is its
memory requirements, as all algebraic reconstruction methods,
also the IMMI algorithm employed here, become very time- and
memory-consuming with an increasing resolution. Extending it
to 3-D only aggravates the problem. Both models presented
herein, Mdet and Msum, needed each 12.8 GB of memory for
storage. Calculation time for building the matrices was ∼8 h

for Mdet and >12 h for Msum. Depending on the size of the con-
sidered detector surface the number of nonzero elements of the
model matrix increases significantly. For transducers typically
used in optoacoustics, a 10-fold increase in nonzero elements is
produced with respect to the model matrix for point detectors.
Then, storage of the model matrix is an important issue to
address in order for the method to be a viable tool in algebraic
image reconstruction. This can be partially alleviated by simpli-
fications of the model (as done herein for imaging the spleen).
However, larger matrices inevitably require the development of
other strategies such as computation of the action of the model
matrix in each step of the iterative reconstruction procedure or
matrix-compression schemes. These issues will be addressed in
future work.

Overall, the showcased good performance of the methods
anticipates its convenience in those cases where high-resolution
and quantitative optoacoustic tomographic imaging is wanted.
Typical artifacts in optoacoustic tomography resulting from
data collected by commonly used cylindrically focused

Fig. 6 Reconstruction of a mouse spleen. (a and c) Maximum intensity projections obtained via a 2-D model. (b and d) The corresponding recon-
structions from a 3-D model with the detector properties incorporated.
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ultrasonic transducers could be efficiently reduced, leading to a
consequent improvement in the spatial resolution of the imaging
system.

Appendix A
In this section, the analytical pressure wave emitted by a spheri-
cal absorber with parabolic absorption in 3-D space is calcu-
lated. For simplicity, the detector position is chosen to be the
origin and the center of the absorber is positioned on the

x-axis at x0 (Fig. 7). The pressure wave without constants
now is given by Eq. (5)
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Fig. 7 Position of a spherical absorber on the x-axis at x0 (red sphere)
and the pressure wave detected at the origin at time t (blue arc).
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Derivation with respect to t yields
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Appendix B
In order to corroborate the assertion that longer scans lead to
better conditioned inversion problems we calculated the condi-
tion number of the model matrices for different scan lengths. As
calculation of the condition number for the full 3-D case is
impracticable the analog 2-D case was considered. Here, a
curved transducer (corresponding to the cylindrically focused
3-D detector) is scanned along a line in the z-direction. The
2-D ROI covers an area of 2 × 0.4 cm2 [Fig. 8(a)] and thus
has the same extensions as in the 3-D case only with one dimen-
sion less. Figure 8(b) shows the evolution of the condition num-
ber for different scan lengths. It can be reinforced that longer
scans in the z-direction lead to better conditioned model matri-
ces and therefore, better conditioned inversion problems.
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