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Abstract. Clinical diagnoses of bone health and fracture risk typically rely on measurements of bone density or
structure, but the strength of a bone is also dependent on its chemical composition. Raman spectroscopy has been
used extensively in ex vivo studies to measure the chemical composition of bone. Recently, spatially offset Raman
spectroscopy (SORS) has been utilized to measure bone transcutaneously. Although the results are promising, fur-
ther advancements are necessary to make noninvasive, in vivo measurements of bone with SORS that are of suffi-
cient quality to generate accurate predictions of fracture risk. In order to separate the signals from bone and soft
tissue that contribute to a transcutaneous measurement, we developed an overconstrained extraction algorithm that
is based on fitting with spectral libraries. This approach allows for accurate spectral unmixing despite the fact that
similar chemical components (e.g., type I collagen) are present in both bone and soft tissue. The algorithm was
utilized to transcutaneously detect biochemical differences in the tibiae of wild-type mice between 1 and 7 months
of age and between the tibiae of wild-type mice and a mouse model of osteogenesis imperfecta. These results
represent the first diagnostically sensitive, transcutaneous measurements of bone using SORS. © The Authors.
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1 Introduction
Although the strength of a bone is dependent on its chemical
composition,1 technologies that are used to monitor fracture
risk primarily measure bone density or structure. For example,
bone mineral density (BMD), which is typically measured with
dual-energy x-ray absorptiometry, is used clinically as an indi-
rect indicator of bone fragility. Despite its ubiquity, BMD pro-
vides limited information about chemical composition, and its
discriminatory capacity to identify peri- and early postmeno-
pausal women at high risk of fracture is low.2

Vibrational spectroscopy has been used extensively in ex vivo
studies to measure the chemical composition of both the mineral
and organic matrix components of bone.3,4 Specifically, Raman
spectroscopy has revealed chemical perturbations to cortical
bone in animal studies of aging,5 lead exposure,6 osteogenesis
imperfecta,7 early-onset osteoarthritis,8 rheumatoid arthritis,9

and glucocorticoid-induced osteoporosis10,11 and in a study of
women with postmenopausal osteoporosis.12 Many studies have
also revealed correlations between Raman spectroscopy-based
measures of chemical composition and the biomechanical prop-
erties of bone.5,13,14 In fact, preliminary studies from our group
indicate that Raman spectra can generate predictions of biome-
chanical strength and toughness that are more accurate than
those produced by the clinically used parameter of BMD.6,9,10

These results on exposed-bone samples have inspired attempts
to perform bone spectroscopy transcutaneously.15–24 Tissue phan-
toms with controlled optical and chemical properties have also
been developed to model transcutaneous measurements.25–27

The majority of these studies have used spatially offset Raman
spectroscopy (SORS)28–37 in conjunction with scaled subtrac-
tions18 or self-modeling curve resolution algorithms, such as
band target entropy minimization (BTEM),38,39 to separate the
interfering spectrum of soft tissue from the spectrum of the under-
lying bone. In essence, these approaches consist of using multiple
source–detector combinations to interrogate volumes with differ-
ent ratios of bone and soft tissue and then exploiting the diversity
in the spectral data to elucidate the bone signature. A number of
transcutaneous studies employing these methods have reported
plausible estimates of underlying bone spectra, with high corre-
lations to reference measurements on exposed bones.20–23 It has
not yet been shown, however, that such methods are accurate
enough to resolve the subtle spectral differences associated
with disease and increased fracture risk.

In this publication, a new spectral extraction method is pre-
sented and compared to BTEM. The new method is overcon-
strained to fit a set of transcutaneous measurements of bone
with varying amounts of only two spectra (one of bone and one
of soft tissue), each of which is built from a unique and sepa-
rately acquired spectral library. Via two-layer simulations, we
demonstrate that the new method is robust when similar chemi-
cal components (e.g., type I collagen) are present in both layers,
while the assumptions underlying BTEMmake it fundamentally
unstable. We also show experimentally that applying the over-
constrained, library-based fitting method to data acquired
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transcutaneously from murine tibiae produces accurate esti-
mates of spectra acquired directly from the underlying bone.
Analysis shows that these estimates are sensitive to age- and
disease-related chemical differences.

2 Background

2.1 Biochemistry of Bone and Overlying Soft Tissues

Bone is a composite of inorganic mineral and organic matrix
components. The inorganic component is made up of calcium
and phosphate and is often characterized as a carbonated, poorly
crystalline hydroxyapatite. The organic matrix of bone is com-
posed of approximately 90% type I collagen by dry weight.40

The biomechanical properties of bone and its susceptibility to
fracture in both health and diseases is affected by changes to
these components and is not limited to BMD. Bone can be clas-
sified into two types, cortical bone and trabecular bone, on the
basis of porosity and microstructure. The long bones, such as the
tibia, have an outer shell of dense cortical bone with the proxi-
mal and distal ends, in the regions known as the epiphyses and
metaphyses, reinforced internally by a more porous, mesh-like
trabecular bone.

The primary soft tissues that contribute interfering signals to
transcutaneous Raman measurements include dermal tissue, adi-
pose tissue, and muscle. Transcutaneous Raman spectroscopy is
particularly challenging since type I collagen is abundant both in
the organic matrix of bone and in soft tissue (e.g., dermal tissue
is composed of approximately 80% type I collagen by dry
weight40). Although it exhibits a unique pattern of covalent
cross-linking in bone,41 type I collagen is genetically identical
in all tissues,42 so determining the amount to assign to each tis-
sue region is difficult. Representative Raman spectra of murine
bone and soft tissue are displayed in Fig. 1.

2.2 Spatially Offset Raman Spectroscopy and Band
Target Entropy Minimization

In SORS, Raman scattered light is collected from surface loca-
tions that are spatially offset from the illumination location. The
spectral contribution from the subsurface layers relative to the
contribution from the superficial layer increases with the mag-
nitude of the offset. In the case of transcutaneous Raman spec-
troscopy of bone, spectra have typically been acquired at
multiple spatial offsets. The variation between spectra is then
analyzed, often with BTEM, to estimate the spectrum of the
underlying bone.

BTEM is an example of a self-modeling curve resolution
algorithm; i.e., it uses a set of mixture spectra (in the present
case, from SORS data sets) to estimate the spectrum of a single
pure component. The spectral estimate is constructed from the
principal components of the mixture spectra based on the min-
imization of an objective function. In the case of transcutaneous
measurements of bone, the dominant PO3−

4 ν1 peak (the largest
peak in Fig. 1) is targeted, and the BTEM process dictates how
the principal components are coadded to render a spectrum
exhibiting that peak and others. Despite the success of BTEM
in other applications, we show in this publication that the
assumptions made by the algorithm are insufficient to produce
accurate estimates of bone spectra due to the fact that spectrally
similar chemical components (e.g., type I collagen) are present
in both bone and soft tissue.

3 Simultaneous, Overconstrained, Library-Based
Decomposition

In order to provide improved estimates of bone spectra extracted
from transcutaneous measurements, we developed an overcon-
strained method that fits transcutaneously acquired data with
spectral libraries. In this study, the method was used to model
transcutaneous Raman data with two spectra, one built from a
bone library and the other built from a soft-tissue library. In gen-
eral notation, the simultaneous, overconstrained, library-based
decomposition of m spectra that span the same space as n spec-
tral components measured over l pixels is

M ¼ SWþ E; (1)

where M is an l ×m matrix of measured spectra (e.g., SORS
data), S is an l × nmatrix of the underlying spectral components
(e.g., bone and soft tissue), W is an n ×m matrix of the relative
weights of each spectral component, and E is an l ×m error
matrix of spectral features not fit by the model (in this section,
boldface uppercase characters represent matrices, boldface
lowercase characters represent column vectors, and lowercase
italic characters represent scalars). For ease of reference, we
refer to this fitting method (simultaneous, overconstrained,
library-based decomposition) as SOLD for the remainder of
this article.

As noted earlier, utilizing transcutaneously acquired Raman
data, BTEM has been used to estimate the underlying spectrum
of bone (a single column of S) by asserting that the spectrum has
a peak near 960 cm−1 (the PO3−

4 ν1 peak). In the SOLD model,
the a priori information is more extensive: the assertions are that
the number of spectral components, n, is known and that the
regions of spectral space from which the columns of S can
be built are each bounded by a separately acquired library of
spectra. The k’th spectral column of S is related to its parent
library via
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Fig. 1 (a) Representative Raman spectrum of bone. Major Raman bands
are labeled along with their peak positions (in parentheses) in Raman
shift. Bands associated with mineral content are labeled in dark blue
and bands associated with the organic matrix are labeled in light blue.
Note that CH2 is present both in the organic matrix of bone as well as in
adipose tissue found in the medullary cavity. (b) Representative Raman
spectrum of soft tissue. Notice the large degree of spectral overlap with
the bands associated with organic bone matrix.
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sk ¼ Lfkgcfkg; (2)

where Lfkg is the library used to model the k’th spectral com-
ponent and cfkg is a vector of fit coefficients that, along with the
coefficients of W, are tuned to minimize the sum of squared
errors, E. In order to prevent overfitting, cfkg and W are
required to be non-negative and the model is overconstrained
by requiring that the number of measured spectra, m, be greater
than the number of underlying spectral components, n.

In this publication, each transcutaneous measurement of
bone submitted to SOLD consisted of m ¼ 3 spectra acquired
at different source–detector separations. The SOLD model was
overconstrained by fitting this data with n ¼ 2 spectral compo-
nents, one for bone and the other for the overlying soft tissue,
which allowed for accurate spectral unmixing despite the fact
that similar chemical components (e.g., type I collagen) are
present in both bone and soft tissue. We elected to set the bounds
on the estimated bone and soft-tissue spectra empirically, by
acquiring a library of measurements of each tissue type and
building our spectral estimates out of non-negative amounts
of those spectra only. Other approaches, such as models with
tunable spectral peak heights and shifts, could be substituted
for the experimentally acquired libraries of spectra. Finally, it
should be noted that the SOLD approach is robust against
sample-to-sample variability in tissue thickness and optical
properties (e.g., scattering and absorption) since the weighting
coefficients, W, were not fixed a priori, but rather only
required to be non-negative. The MATLAB® (version 7.8, The
MathWorks™, Natick, MA) code used to fit transcutaneous data
sets with SOLD can be obtained by contacting the correspond-
ing author (A.J.B.).

4 Materials and Methods

4.1 Instrumentation and Spectral Processing

All soft-tissue, exposed-bone, and transcutaneous-bone spectra
were acquired on a locally constructed Raman spectroscopy
system that utilized an 830-nm semiconductor laser (Model
PI-ECL-830-500-FS, Process Instruments Inc., Salt Lake City,

UT) to deliver approximately 150 mWof power to the sample as
shown in Fig. 2(a). The laser light was filtered with a bandpass
filter (Chroma Technology Corp., Bellows Falls, Vermont) and
the illumination numerical aperture was 0.34.

In order to collect the Raman scattered light, lenses L3 and
L4 imaged the sample plane onto the face of an optical fiber
bundle. The fiber bundle contained 61 multimode optical fibers
with 100∕120 μm core/cladding diameters arranged in a circular
array at the collection end as shown in Fig. 2(b). The circular
array consisted of a center fiber surrounded by four annuli of
fibers. For the transcutaneous measurements, the set of spectra
acquired by all of the fibers was submitted to BTEM in accor-
dance with the methods used in previous publications. For the
transcutaneous measurements submitted to SOLD, the data were
binned together yielding three total spectra per acquisition
(one from the center fiber and first annulus, one from the next
annulus, and one from the last two annuli). For the exposed-
bone and soft-tissue measurements, the spectra from all of the
fibers were averaged yielding a single spectrum per acquisition.

Each fiber in the fiber bundle viewed a spot of diameter
100 μm at the sample surface. For the transcutaneous measure-
ments, the illumination spot (1∕e2 full-width ¼ 230 μm) over-
lapped with the image of the center fiber of the collection fiber
bundle, introducing a range of spatial offsets between the illu-
mination spot and the images of the collection fibers. Although
the power delivered by our instrument is greater than the maxi-
mum permissible exposure set by the American National
Standards Institute,43 no thermal damage was observed. In
addition, no adverse consequences were reported in other near-
infrared Raman spectroscopy studies of a variety of tissues
(including skin) that used power levels greater than ours.44

For the exposed-bone and soft-tissue measurements, the illumi-
nation spot was defocused (1∕e2 full-width ¼ 1000 μm), by
adjusting the position of the delivery end of the multimode
fiber (MMF in Fig. 2), to overlap with the image of the entire
collection fiber bundle. The Appendix contains additional infor-
mation about the instrument and data processing routines.

After processing, the transcutaneously acquired spectra (and
simulated spectra described below) were submitted separately to

Fig. 2 (a) Raman spectroscopy system for transcutaneous and exposed-bone measurements. Light gray corresponds to the laser illumination path and
dark gray corresponds to the Raman scattering collection path. Abbreviations: ST, shutter; L, lens; MMF, multimode fiber; BP, bandpass filter; BS,
dichroic beam-splitter; MTS, motorized translation stage; NF, notch filter; FB, fiber bundle; SPEC, spectrograph; HG, holographic grating; CCD,
charge-coupled device. (b) Image of the fiber bundle geometry. For the transcutaneous measurements submitted to SOLD, the data were binned
together yielding three total spectra per acquisition (one from the center fiber and first annulus, one from the next annulus, and one from the last
two annuli) as indicated by the semi-transparent green circle and rings. The circular array of collection fibers is rearranged into a line for delivery
to the imaging spectrograph so that the Raman scattered light collected by each fiber can be separately recorded.
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the SOLD and BTEM algorithms to estimate the spectrum of the
underlying bone. The smallest subset of principal components
that explained at least 70% of the total variance in each trans-
cutaneous data set was submitted to BTEM, the PO3−

4 ν1 peak
near 960 cm−1 was targeted, and the spectral estimate was
formed by minimizing the objective function suggested by Ong
et al.39 The Nelder-Mead downhill simplex method45 was used
to minimize the BTEM objective function.

4.2 Simulated Data

Prior to analyzing experimental, transcutaneously acquired data,
a simulated data set was constructed to compare the perfor-
mances of SOLD and BTEM. The parameters described in this
section were chosen to generate data sets that resemble transcu-
taneous spectra acquired from murine tibiae.

4.2.1 Generation of spectral libraries (L) used
to fit simulated data

Spectra of some of the tissue types and chemicals present in
bone and soft tissue were acquired as a part of this study. The
average spectra of dermal tissue, adipose tissue, and muscle tis-
sue acquired from multiple sites on four different mice are dis-
played in Fig. 3. Pure ceramic hydroxyapatite (Clarkson
Chromatography Products Inc., South Williamsport, PA) was
used to represent bone mineral, and dermal tissue was used
as a surrogate for the organic matrix of bone since the chemical
compositions of these components are similar (approximately
80 and 90% type I collagen, by dry weight, for dermal tissue
and organic bone matrix, respectively40). The spectral libraries
used to generate and fit the simulated data sets were chosen to

create an idealized comparison between SOLD and BTEM.
More comprehensive libraries were constructed to fit experi-
mental data as described in Sec. 4.3.

4.2.2 Generation of simulated spectral components (S)

To generate a simulated spectrum of bone, a linear combination
of the hydroxyapatite spectrum [Fig. 3(a)] and the organic bone
matrix spectrum [Fig. 3(b)] was formed, where the ratio of the
coefficient multiplied by the hydroxyapatite spectrum to the
coefficient multiplied by the organic bone matrix spectrum
was varied over a factor of 3. Similarly, a linear combination
of the spectra of dermal tissue, adipose tissue, and muscle tissue
[Fig. 3(c), 3(d), and 3(e), respectively] formed each simulated
spectrum of soft tissue, where the coefficients multiplied by
each spectrum were varied over a factor of 10. Finally, the simu-
lated bone and soft-tissue spectra were normalized to their mean
absolute deviations (similar to a calculation of the root mean
squared spectral intensity).

4.2.3 Generation of simulated transcutaneous
spectra (M) measured at a single location

The process of simulating the transcutaneous spectra from a
single-site measurement is summarized in Fig. 4. The ensemble
of SORS spectra was constructed by forming linear combina-
tions of a single pair of bone and soft-tissue spectra [components
of a single S matrix; Fig. 4(a) and 4(b), respectively]. For each
source–detector pairing, the bone spectrum was multiplied by a
coefficient between 0 and 2∕3 and added to the soft-tissue spec-
trum. This linear combination was normalized to its mean abso-
lute deviation and added to a spectrum of zero-mean, Gaussian
noise [Fig. 4(c)] to form a single transcutaneous spectrum
[Fig. 4(d)]. This process was repeated to generate 30 transcuta-
neous spectra [Fig. 4(e), 4(f), and 4(g)] with varying contribu-
tions of the same single pair of bone and soft-tissue spectra.
Transcutaneous spectra without added noise were also
generated.

4.2.4 BTEM- and SOLD-produced estimates of simulated
bone spectrum (one column of S)

The set of 30 transcutaneous spectra was submitted to BTEM to
estimate the underlying spectrum of bone. To simulate SORS
measurements acquired at three different spatial offsets
(corresponding to the three regions depicted in Fig. 2), the
30 transcutaneous spectra were sorted according to the contri-
bution of the underlying bone lineshape. The spectra were
then grouped based on their rank order [Fig. 4(e), 4(f), and 4(g)]
and each set of spectra was summed yielding three composite
spectra [Fig. 4(h), 4(i), and 4(j)] that were submitted to SOLD.

The entire procedure described in Sec. 4.2 to generate and
process simulated data is depicted as a flow chart in Fig. 5.
This procedure was repeated 100 times (with different pairs
of underlying bone and soft-tissue spectra and with or without
added noise) to simulate transcutaneous data acquired from dif-
ferent samples.

4.3 Experimental Data

4.3.1 Acquisition of transcutaneous spectra (M)

A variety of mice were used in this study, including two-
month-old B6C3Fe a∕a-Col1a2oim∕J mice ðoim∕oimÞ and their
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Fig. 3 Raman spectra of some of the tissue types and chemical
components of bone (blue) and soft tissue (red). Two of the primary
components of bone are (a) hydroxyapatite and (b) organic bone matrix.
The soft tissues overlying bone include (c) dermal tissue, (d) adipose
tissue, and (e) muscle tissue.
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wild-type (WT) littermates (four per group). The oim∕oim
mouse is a model of type III osteogenesis imperfecta, which
is a genetic, musculoskeletal disorder characterized by muta-
tions in type I collagen. Mice that are homozygous for the
oim mutation are deficient in proα2ðIÞ collagen, which also
affects the level of mineralization and ultimately results in a
weaker bone.46 In addition to the oim∕oim mice and WT
controls, seven C57BL/6J WT mice (between 1 and 7 months
of age) and six transgenic mice that constitutively overexpress a
human tumor necrosis factor-α transgene11,47–49 (between 5
and 14 months of age; C57BL/6J background) were studied;
the variations due to age and disease caused a greater
spread in the biochemical properties of the bones. The mice
that overexpress human tumor necrosis factor-α develop
chronic inflammation and arthritis with secondary osteoporosis,

while C57BL/6J mice are a commonly used inbred mouse
strain.

The mice were euthanized by inhalation of carbon dioxide,
fur was removed from the right hindlimb with a depilatory agent
(hair remover cream, Nair®, Church & Dwight Co., Inc.,
Princeton, NJ), and transcutaneous Raman spectra were
acquired from all 21 intact mice. The samples were hydrated
for the duration of each measurement in order to prevent
laser-induced thermal damage of the tissue and spectra were
acquired from the medial side of the mid-diaphysis region
over an area of approximately 5 mm2 ð5 mm × 1 mmÞ. For
each mouse, five transcutaneous measurements were acquired
spaced 1 mm apart along the shaft axis of the tibia with an inte-
gration time of 5 min per location. The average thickness of soft
tissue overlying the measurement sites was approximately
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Fig. 4 Example of simulated data set used to compare the performances of SOLD and BTEM. The (a) bone and (b) soft-tissue spectra were generated
from the spectra in Fig. 3. A spectrum of zero-mean, Gaussian noise (c) was added to a linear combination of the bone and soft-tissue spectra to form a
single transcutaneous spectrum (d). This process was repeated to generate 30 transcutaneous spectra [(e), (f), and (g)] with varying contributions of the
bone and soft-tissue spectra. These 30 spectra represent a transcutaneous data set acquired from a single measurement site. The set of 30 spectra was
submitted to BTEM to estimate the underlying spectrum of bone. In addition, each set of 10 spectra grouped together in (e), in (f), and in (g) was
summed, yielding three spectra [(h), (i), and (j)] that were submitted to SOLD. The entire process summarized in this figure was repeated 100
times (with different pairs of underlying bone and soft-tissue spectra) to simulate transcutaneous data acquired from different samples. The gray
bars highlight the PO3−

4 ν1 peak, which is present in the spectrum of bone. The amplitude of this peak qualitatively represents the contribution
of bone to each transcutaneous spectrum.

Fig. 5 Flow chart depicting the procedure used to generate and process simulated data with BTEM and SOLD. This procedure was repeated 100 times
(with different pairs of underlying bone and soft-tissue spectra) to simulate transcutaneous data acquired from different samples.
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1 mm. This study protocol was approved by the Committee on
Animal Resources at the University of Rochester.

4.3.2 Measurement of underlying bone spectrum
(one column of S) and generation of spectral
libraries (L) used to fit experimental, transcutaneous
data

Following acquisition of each set of transcutaneous measure-
ments, the soft tissue was removed and gold-standard, colocal-
ized measurements were acquired from the exposed bone for
comparison. Similar to the transcutaneous measurements, spec-
tra were acquired from five locations spaced 1 mm apart along
the shaft axis of the tibia with an integration time of 5 min per
location. A total of 160 spectra of excised soft tissue, including
spectra of specific tissue types (Fig. 3) as well as spectra of bulk
tissue, were also acquired from the 21 mice. In analyzing the
transcutaneous data from each mouse, only data from the
other mice were included in the spectral libraries (i.e., leave-
one-sample-out analysis).

5 Results

5.1 Simulated Data

Figure 6 presents the BTEM and SOLD spectral estimates of
bone extracted from the single-site, simulated data set shown
in Fig. 4. All spectra have been normalized to the height of
the PO3−

4 ν1 peak near 960 cm−1. Each algorithm was run
twice, once upon the simulated data set without added noise
[Fig. 6(a) and 6(b)] and once upon the simulated data set
with added noise [Fig. 6(c) and 6(d)]. In both cases, SOLD pro-
vided a superior estimate of the true underlying bone spectrum
[Fig. 6(e)] as evidenced by the accurate reconstruction of the
organic bone matrix peaks (e.g., the starred CH2 wag peak
near 1450 cm−1). The correlation coefficients between the true
and SOLD-estimated bone spectra were both greater than 0.999,

while the correlation coefficients between the true and BTEM-
estimated bone spectra were 0.985 and 0.968 for the transcuta-
neous data sets without and with added noise, respectively. All
of the spectral correlation coefficients reported in this publica-
tion were calculated over the 775 to 1500 cm−1 spectral range,
which was chosen to match a previous study.23 Qualitatively
similar results were observed for correlations calculated over
a larger spectral range that included the amide I peak near
1665 cm−1.

As described previously, the procedure used to generate a
simulated, transcutaneous data set was repeated 100 times with
a variety of simulated bone and soft-tissue spectra and the trans-
cutaneous data were submitted separately to BTEM and SOLD.
The mineral/matrix ratios of all 100 estimated spectra and the
corresponding true underlying bone spectra are compared in
Fig. 7. The mineral/matrix ratio of each bone spectrum was cal-
culated as the ratio of the fit coefficients produced by least-
squares fitting with the pure spectra of hydroxyapatite and
organic bone matrix [Fig. 3(a) and 3(b), respectively].

5.2 Experimental Data

A representative, transcutaneously acquired data set and the cor-
responding SOLD fit are presented in Fig. 8. As described pre-
viously, the transcutaneously acquired spectra were binned
together yielding three total spectra per acquisition [Fig. 8(a),
green circles] prior to fitting with SOLD. Variation between
these spectra is due to differences in the relative sampling of
the bone and soft tissue, which is due to different spatial offsets
between the illumination spot and the image of each annulus of
collection fibers on the surface of the sample [Fig. 2(b)]. All
three transcutaneously acquired spectra are well fit by a single
bone and a single soft-tissue spectrum [Fig. 8(c) and 8(d),
respectively]; as a reminder, these two spectra are formed by
linear combinations of the appropriate spectral library (Lfkg).
Spectrum (c) in Fig. 8 is thus the SOLD estimate of the under-
lying bone spectrum for this particular sample and location on
the tibia.

Figure 9 presents the BTEM and SOLD estimates of the
underlying bone spectrum extracted from the data set displayed
in Fig. 8. All spectra have been normalized to the height of the
PO3−

4 ν1 peak near 960 cm−1. Again, SOLD provided a superior
estimate of the true underlying bone spectrum [Fig. 9(c)] as evi-
denced by the accurate reconstruction of the organic bone matrix
peaks (e.g., the starred CH2 wag peak near 1450 cm−1). The
correlation coefficient between the exposed-bone measurement
and the SOLD-estimated bone spectrum was 0.996, whereas the
correlation coefficient between the exposed-bone measurement
and the BTEM-estimated bone spectrum was 0.935.

The mean correlation coefficients between all of the SOLD-
estimated and BTEM-estimated bone spectra and the corre-
sponding gold-standard reference measurements on exposed
bone are compared in Table 1. The mean correlation coefficient
between the exposed-bone spectra acquired from all of the mice
described in Sec. 4.3.1 and the mean correlation coefficient
reported in a study by Schulmerich et al.23 are also tabulated.
The Fisher transformation,50 along with a Student’s t test, was
used to compare the correlations produced by each of the meth-
ods. SOLD produced spectra with the greatest correlations to the
corresponding reference measurements and the difference
between the mean correlation coefficient produced by SOLD
and the mean correlation coefficient produced by each other
method was statistically significant.
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Fig. 6 Comparison of BTEM and SOLD bone-spectrum estimation
methods operating on simulated data. (a) BTEM and (b) SOLD estimates
of exposed-bone spectrum from transcutaneous data set without noise.
(c) BTEM and (d) SOLD estimates from data set with added noise.
(e) True simulated bone spectrum for comparison. To guide compari-
son, the asterisk highlights the CH2 wag peak, which was more accu-
rately reconstructed with SOLD.
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The SOLD-estimated spectra were also used to predict the
mineral/matrix ratios of the corresponding bones. A leave-
one-out cross-validation approach utilizing partial least squares
regression (PLSR)51 was used to generate predictions based on
the full SOLD-estimated spectra. A scatter plot of these predic-
tions (referred to as PLSR-SOLD) versus the mineral/matrix
ratios calculated from the corresponding exposed-bone spectra
is displayed in Fig. 10. For the experimental, exposed-bone data
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Fig. 7 Scatter plots of estimated versus true mineral/matrix ratios. (a) BTEM and (b) SOLD estimates extracted from simulated transcutaneous data sets
without noise. (c) BTEM and (d) SOLD estimates extracted from data sets with added noise. The filled-in markers (highlighted by arrow annotations)
correspond to the mineral/matrix ratios of the spectra presented in Fig. 6.
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Fig. 8 Representative, transcutaneous spectra acquired at three differ-
ent source–detector separations (offset for clarity). The measured trans-
cutaneous spectra [(a), green circles] are well fit [(a), black lines] by a
single bone (c) and a single-soft tissue (d) spectrum as evidenced by the
small amplitudes of the three fit residuals (b).
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Fig. 9 Comparison of BTEM and SOLD bone-spectrum estimation
methods operating on experimental data. (a) BTEM and (b) SOLD esti-
mates of exposed-bone spectrum from representative transcutaneously
acquired data set presented in Fig. 8. (c) True exposed-bone spectrum
for comparison. To guide comparison, the asterisk highlights the CH2

wag peak, which was more accurately reconstructed with SOLD.
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sets, the mineral/matrix ratios were calculated as the ratio of
the height of the PO3−

4 ν1 peak near 960 cm−1 to the heights
of the peaks near 855 and 880 cm−1, which are due to vibrations
of the amino-acids proline and hydroxyproline, respectively.52

All mineral/matrix ratios were normalized to the mean min-
eral/matrix ratio of the two-month-old WT mice. The relation-
ship between the PLSR-SOLD-derived mineral/matrix ratios
and the ratios calculated from the exposed-bone spectra was
quantified by a chi-squared test. This test was used to compare
the variance of the errors in the PLSR-SOLD estimates (0.030)
with the variance of the exposed-bone mineral/matrix ratios
(0.176). A one-tailed test revealed that the error variance was
significantly less than the variance in the exposed-bone mea-
surements (p < 0.01), suggesting that SOLD, in conjunction
with PLSR, is capable of extracting useful estimates of
mineral/matrix ratios.

Analysis of the data from the 11 WT mice between 1 and
7 months of age revealed a statistically significant correlation
between age and mineral/matrix ratio (r ¼ 0.967, p < 0.01).
This correlation with age was preserved in the PLSR-SOLD-
produced mineral/matrix ratios (r ¼ 0.912, p < 0.01). Regarding
disease differences, the mineral/matrix ratios of the two-month-
old oim/oim mice and WT littermates are compared in Fig. 11.
Both the exposed-bone and PLSR-SOLD-derived ratios com-
pletely separate the two groups of mice.

6 Discussion
The results of this study demonstrate that diagnostically sensi-
tive estimates of the chemical composition of bone can be
extracted from transcutaneous measurements using a spectral
unmixing method that is overconstrained to fit the data with
varying amounts of only two spectra (one of bone and one
of soft tissue), each of which is built from a unique and sepa-
rately acquired spectral library. A number of other studies have
utilized BTEM to estimate bone spectra from transcutaneous
Raman measurements.17–23 As shown here, however, BTEM
is unable to accurately reconstruct spectra of individual layers
if spectrally similar chemical components (e.g., type I collagen)
are present in more than one layer. This limitation is due to the
algorithm not incorporating sufficient a priori information. In
particular, BTEM does not assert that the transcutaneously
acquired data are made up of a fixed number of spectral
components.

In the simulated data sets without noise, BTEM consistently
overestimated the mineral/matrix ratios of the underlying bone
spectra [Fig. 7(a)]. This behavior can be understood by consid-
ering the following simplified picture. Since the variation in
each simulated transcutaneous data set [e.g., Fig. 4(e), 4(f),
and 4(g) without noise] is due to a single bone and a single
soft-tissue spectrum [e.g., Fig. 4(a) and 4(b), respectively],
the first two principal components span the same space as
these spectra. The spectral estimate formed by BTEM (built
from these two components) can therefore be thought of as
the linear combination of bone and soft-tissue spectra that min-
imizes the objective function. Since bone and soft tissue have
significant levels of spectrally similar protein components (e.g.,
type I collagen), the bone and soft-tissue spectra can be com-
bined in a weighted subtraction to produce a mineral-dominated

Table 1 Mean correlation coefficients between estimated and/or
directly measured bone spectra. The SOLD and BTEM entries refer
to correlations between estimated bone spectra and their corresponding
reference measurements. The second BTEM entry lists the result
reported by Schulmerich et al.23 in the most recent and comprehensive
work that can be directly compared to our study. The mean correlation
among the spectra of exposed bones from different mice is also listed.
Notice that only SOLD produced a mean correlation coefficient greater
than this baseline. Statistically significant differences were tested for
with unpaired Student’s t tests operating on the Fisher-transformed cor-
relation coefficients. The correlation coefficients produced by each
method were compared with those produced by SOLD and in each
case the difference was statistically significant.

Method
Mean correlation

coefficient

SOLD (this study) 0.996

BTEM (this study) 0.935a

BTEM (Ref. 23) 0.96a

Between exposed bones from different mice 0.988a

ap < 0.01.
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Fig. 10 Scatter plot of the PLSR-SOLD-estimated mineral/matrix ratios
versus the ratios from the corresponding exposed-bone spectra. The
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spectrum. Since this reduces the intensity of nontargeted bands
without making any go negative, BTEM finds this linear com-
bination attractive and, as seen in Fig. 6(a), the nonmineral
peaks (e.g., the CH2 wag peak near 1450 cm−1) in the BTEM-
derived spectrum are indeed underestimated. This behavior is a
fundamental limitation that cannot be allayed by adjusting the
parameters of the algorithm.

When noise was added to the simulated data, the mineral/
matrix ratios of bone spectra estimated with BTEM were biased
in the opposite direction [Fig. 7(c)]. BTEM customarily penal-
izes negative spectral intensities, including those associated with
noise, which can lead to overestimates in spectral intensity of
nontargeted peaks [Fig. 6(c)]. Although this particular bias
could potentially be mitigated by tuning the objective function,
the magnitude of the bias is dependent on the magnitude of the
noise in the measured data and its principal components, and
applying a correction that is robust over a variety of measure-
ment settings is difficult.

Many studies have reported correlations between spectral
estimates extracted from transcutaneous measurements with
BTEM and reference measurements on exposed bones.20–23

However, these studies did not provide context to the magni-
tudes of the correlations. For example, the mean spectral corre-
lation coefficient reported in a study by Schulmerich et al.23 was
0.96, a value that in general implies a useful degree of correla-
tion. In our study, however, the spectra acquired from different
bones were so similar that the mean spectral correlation coeffi-
cient among exposed bones from different mice was 0.988,
while the mean spectral correlation with the corresponding
BTEM estimates was 0.935. In other words, each spectrum
of exposed bone resembled the corresponding BTEM estimate
less than it resembled the spectra of other exposed bones. In
contrast, the mean correlation coefficient between the SOLD-
estimated spectra and the corresponding exposed-bone spectra
was 0.996, which was statistically significantly greater than the
mean spectral correlation coefficients associated with the other
methods.

There are many approaches that can be utilized to estimate
spectra of subsurface layers in multilayer samples, including,
for example, optical depth-sectioning with confocal micros-
copy. Unfortunately, confocal microscopy is not well suited to
measure bone transcutaneously since the penetration depth of
this technique is limited to the reduced mean free path of the
sample, which is typically a few hundred microns for skin
measured at visible and near-infrared wavelengths.53,54

Another broad method is to sample the layers at various
source–detector separations (e.g., SORS) and analyze the
variation among the spectra. Application of one or more
a priori constraints (e.g., targeting a peak as in BTEM or over-
constraining a fitting algorithm by using a fixed number of
spectral components as in SOLD) can drive the estimation
procedure. Blind decomposition methods,55,56 if properly con-
strained, could also potentially be used to estimate bone spec-
tra based on transcutaneous measurements. The results of this
study demonstrate that the mineral/matrix ratio of cortical
bone, which has frequently been used as a Raman-based indi-
cator of bone health and strength,4–14 can be measured trans-
cutaneously by processing SORS data sets with SOLD
(Figs. 10 and 11). Overconstraining the algorithm to fit multi-
ple transcutaneous measurements with two lineshapes (one for
bone and one for soft tissue) produced accurate estimates of
the underlying exposed-bone spectra despite the fact that

spectrally similar chemical components (e.g., type I collagen)
are present in both bone and soft tissue.

As the first diagnostically sensitive, transcutaneous measure-
ments of bone using SORS, our results support the feasibility of
monitoring bone diseases noninvasively and in vivo in mice.
Other studies have reported the transcutaneous acquisition of
bone signal beneath up to 5 mm of soft tissue16,17 and from
the distal phalanx of a human thumb.18 Although the measure-
ment sites may be limited depending on the thickness of the
overlying soft tissue, these studies, along with the results pre-
sented here, suggest that our approach could also provide a plat-
form to noninvasively measure bone biochemistry in human
patients.

Appendix: Additional Description of Raman
Instrument and Data Processing Routines
The optical fiber bundle depicted in Fig. 2 delivered the Raman
scattered light to a spectrograph (HolospecTM VPT System,
Kaiser Optical Systems Inc., Ann Arbor, MI), where it was dis-
persed onto a 1024 × 256 array back-illuminated deep-depletion
CCD camera, CCD1 (Model DU 420-BR-DD, Andor
Technology, Belfast, Northern Ireland), achieving a spectral res-
olution of approximately 6 cm−1. A dichroic beam splitter
(Chroma Technology Corp., Bellows Falls, Vermont) and a
holographic notch filter (Kaiser Optical Systems Inc., Ann
Arbor, MI) were used to reject the elastically scattered light
and pass only the Stokes-shifted light to the spectrograph.
Finally, because of the limited height of the CCD array, only
spectra from the 40 central fibers of the fiber bundle were
imaged onto CCD1. The position of each sample with respect
to the laser illumination spot was confirmed by a white-light
image of the sample plane acquired with a second CCD camera,
CCD2.

Raw spectral data were imported into MATLAB® and ana-
lyzed through a number of built-in and locally written scripts.
Spectral processing included cosmic ray removal, readout and
dark-current subtraction, correction for the frequency-dependent
response of the system, and correction for the imaging aberra-
tions of the spectrograph system.57 The spectrum of Raman scat-
tered light collected by each fiber was extracted from the full
image by fitting with the separately measured spectral response
of each fiber.58 Background fluorescence lineshapes were mod-
eled and removed by fitting with a seventh-order polynomial
and the spectra were smoothed with a Savitzky-Golay filter59

over a 6 cm−1 window, chosen to match the resolution of the
spectrograph. Portions of the spectra below 745 cm−1 were dis-
carded due to the presence of a strong uncorrelated fluorescence
contribution. Portions of the spectra above 1740 cm−1 were dis-
carded due to the absence of major Raman spectral features in
this region and the falloff in CCD sensitivity. Finally, the Raman
shift axis was calibrated with N-acetyl-para-aminophenol, better
known by the brand name TYLENOL® (McNEIL-PPC Inc.,
Fort Washington, PA), to correct for spectral instabilities in
the excitation source.
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