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Abstract

Significance: Artificial skin (AS) is widely used in dermatology, pharmacology, and toxicology,
and has great potential in transplant medicine, burn wound care, and chronic wound treatment.
There is a great demand for high-quality AS product and a non-invasive detection method is
highly desirable.

Aim: To quantify the constructure parameters (i.e., thickness and surface roughness) of AS sam-
ples in the culture cycle and explore the growth regularities using optical coherent tomography
(OCT).

Approach:An adaptive interface detection algorithm is developed to recognize surface points in
each A-scan, offering a rapid method to calculate parameters without constructing OCT B-scan
pictures and further achieving realizing real-time quantification of AS thickness and surface
roughness. Experiments on standard roughness plates and H&E-staining microscopy were per-
formed as a verification.

Results: As applied on the whole cycle of AS culture, our method’s results show that during the
air–liquid culture, the surface roughness of the skin first decreases and then exhibits an increase,
which implies coincidence with the degree of keratinization under a microscope. And normal
and typical abnormal samples can be differentiated by thickness and roughness parameters dur-
ing the culture cycle.

Conclusions: The adaptive interface detection algorithm is suitable for high-sensitivity, fast
detection, and quantification of the interface with layered characteristic tissues, and can be used
for non-destructive detection of the growth regularity of AS sample thickness and roughness
during the culture cycle.

© The Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported License.
Distribution or reproduction of this work in whole or in part requires full attribution of the original pub-
lication, including its DOI. [DOI: 10.1117/1.JBO.26.9.095001]

Keywords: optical coherence tomography; artificial skin; roughness model; adaptive interface
detection.

Paper 210115R received Apr. 22, 2021; accepted for publication Aug. 10, 2021; published
online Sep. 1, 2021.

1 Introduction

Engineering of artificial tissue and organs is a realm of significant activity in biotechnological
and biomedical research.1–3 Among all the organs in the human body, the skin is the largest and
serves as a protective barrier against several environment hazards. When the skin is wounded by
trauma, injury, or skin disease, this may lead to the loss of protective functions and can cause
even worse problems. As an equivalent or replacement for human skin, artificial skin (AS) has
the ability to serve as the fast treatment for such injury.4 In addition, AS is of great importance for
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cosmetics research and testing. In recent years, with the accelerated innovation of anti-aging skin
care products and the development of more effective skin products, it is estimated that by 2021,
the global anti-aging cosmetics market value will reach 331.4 billion US dollars.5 The cosmetics
industry requires a large amount of experimental research, but stricter laws have been enforced
against animal experiments [e.g., the implementation of European Directive 2003/15/EC2(1)].6

As a result, AS is becoming a promising substitute for animal skin in such experiments.
Moreover, AS is widely used in dermatology, pharmacology, and toxicology and has great
potential in transplant medicine, burn wound care, and chronic wound treatment.1,3,7–9 To meet
the demand of all the application fields, it is vital to achieve a large amount of high-quality AS
preparation.

At present, among different AS preparation methods, air–liquid culture is the most popular,
in which keratinocytes are inoculated on the collagen matrix layer and diffused into multiple
layers to build the AS.10 During the culture cycle, the cells begin to proliferate and form a layer
of stratum corneum. However, due to the natural fluctuations in the growth of cell organisms and
the dependence of biological cells factors such as the age of the donor, cell density, and cell
viability, a monitoring method is necessary to measure the quality and condition of the
AS.2,3,7 The quality and performance of AS can be determined by structural parameters.
One factor that causes failure in AS preparation is exudation of the culture medium; this causes
a distinct, curved surface under optical coherent tomography (OCT), which can be recognized by
the thickness distribution analysis of the AS sample. Thickness reflects the growth state of AS
during preparation, and the average thickness is usually a criterion for quality. Skin roughness is
another important structural parameter in medical diagnosis and evidence reports on cosmetics,
used to provide reliable feedback on skin structure and growth.5,11,12 Therefore, the question of
how to evaluate the structural parameters in the AS growth cycle, non-invasively and effectively,
is of great significance. Considering the large number of AS samples to be measured in mass
production condition and to avoid the influence of measuring operation on the culture process,
real-time measurement is highly favored.

Currently, many methods have been reported to measure real skin or AS structure parameters,
such as confocal microscopy, PRIMOS, fluorescence microscopy, OCT, and second-harmonic
microscopy.13–16 Among them, OCT is a promising technique that can realize non-invasive, real-
time three-dimensional (3D) imaging in the order of micrometers in biological tissues, and can
detect structural information of samples.17–21 Askaruly et al.5 performed skin boundary recog-
nition on OCT images and calculated skin roughness based on the definition of the ISO 25178-
part 2 standard. By comparing with the results of PRIMOS skin measurement equipment, it can
be considered that the 3D volume and depth imaging capabilities of OCT can reduce image
artifacts, demonstrating the potential of OCT for providing reliable and quantitative skin surface
roughness. However, the above-mentioned research did not offer a quantitative assessment of the
skin roughness. Schmitt et al.8 sampled the upper surface of the AS at large intervals using OCT
to characterize macroscopic surface tears, defect morphology, and microscopic cell keratiniza-
tion of the skin. Owing to the limitation of sampling accuracy in the interval sampling, the 2D
data can only reflect local features, thus failing to quantify skin roughness. Schmit et al.1 used
OCT to monitor the growth cycle of AS, and OCT tomograms were taken after each production
step of the skin equivalents and compared with the histological images, but lacked the quanti-
fication of structural parameters. Gambichler et al.22 calculated the epidermal thickness of the
skin through the characteristic peaks of the OCT intensity signal of the skin epidermis, which
provided a theoretical basis for quantifying the upper and lower surfaces of the skin based on the
OCT intensity signal. However, the overall thickness is represented by the thickness of the A-
scan at several better positions, which has high subjectivity and uncertainty. Kepp et al.23 used
the convolutional neural network to segment different layers of mouse skin and measured the
thickness of each single skin layer. However, such machine learning-based methods need a large
training set for 3D images, which requires a lot of calculation time, and the quantification is still
needed after the segmentation.

As mentioned above, many studies have reported the use of OCT to evaluate the thickness or
roughness of skin, but fast quantification without human interference is still not achieved. One
major obstacle is the noisy signal of OCT, which often causes speckles at the surface, making
conventional algorithms such as the binarization method fails to find the true interface. In this
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study, we optimized our previously proposed method for detecting the thickness of 3D-printed
skin24 and developed a fully automatic adaptive interface detection algorithm to find the AS
surface, overcoming the noise problem. As interface points (i.e., upper and lower surface points)
in each A-scan are obtained from signal analysis, parameters can be calculated even without
construction of B-scan and 3D pictures, which reduces the operation time and improves the
quantification efficiency. Structural parameters such as thickness and roughness were quantified
through the AS surface contour calculation. Because the proposed method is real-time, non-inva-
sive, and free of human interference, it is a promising method for AS quality monitoring under
mass production conditions.

2 Method

2.1 Materials and Methods

We adopted the Skinovo AS model (Hangzhou Regenovo Biotechnology, Ltd.), in which ker-
atinocytes are used as seed cells and printed on the transwells (Corning lnc., 3413) for air–liquid
culture. AS samples were formed through the process of proliferation and differentiation, and
air–liquid cultured in a serum-free medium for maturation. A standard culture cycle has 13 days
and the cellular differentiation usually begins on day 5;24 therefore, days 1, 5, 9, and 13 were
selected for testing to obtain roughness at different culture stages. Data of the AS sample were
collected through OCT, and then the surface parameters were obtained using the proposed
algorithm. To describe the overall structure of the AS, OCT data with a size of 9 mm ×
9 mm × 3.59 mm (1000 pixels × 1000 pixels × 1024 pixels) in the whole AS sample were col-
lected. In this experiment, five AS samples were continuously monitored as batch 1 to observe
the change in surface morphology with the culture time, and another two batches (i.e., batches 2
and 3) with five samples each were arranged for analysis between batches. Batch 4 with four AS
samples was used for H&E staining microscopy test, and batch 5 with four AS samples was a
collection of abnormal skin samples.

We used a self-developed spectrum-domain OCT system based on a Michelson interferom-
eter configuration.24 The system uses a broadband light source with a central wavelength of
1310 nm and a full width at half maximum of 248 nm. In the actual measurement, the system
has an axial resolution of 3.5 μm, a lateral resolution of 13 μm, and an imaging depth of
3.59 mm in air. The refractive index of the entire AS was 1.38, yielding an axial resolution
of 2.53 μm in AS. The A-scan rate is 48 kHz. In our OCT setup, the optical path difference
and focus position relative to the AS sample were fixed in all experiments.

2.2 Adaptive Interface Detection Algorithm

Accurate positioning of the surface is key to quantifying the structural parameters of the AS.
Figure 1 shows a typical B-scan image of AS under OCT and two A-scan signals at different
positions. The air–AS interface causes a peak in the signal, which helps to locate the surface.
However, owing to the influence of environmental noise and biological structure, there will be
false peaks or burrs in the OCT signal in the A-scan. In some cases, multiple signal peaks can be
detected in the interface attachment, causing the conventional peak detection method to fail, and
thus requiring human interference. To achieve high efficiency by avoiding manual operations or
judgement, an adaptive algorithm is developed. The algorithm controls the detection time of the
upper and lower interfaces of the entire 3DAS sample within 45 s, which provides the possibility
for real-time monitoring. The computer uses i5-5200U CPU, M250 graphics card, and R2019a
version of MATLAB.

The proposed algorithm is fulfilled in MATLAB, which takes the signal data cube captured
by OCT as the input and the structural parameters (i.e., thickness and roughness values) as the
output. The automatic processing steps of the automatic algorithm are as follows.

1. ROI box determination and background removal. Because the relative height of the focal
point of OCT is fixed, which can easily be guaranteed by integrating an OCT system with
a certain AS preparation pipeline, the height region of interest (ROI) is realized by
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intercepting a calibrated range in the A-scan signal that contains the AS. The width of the
ROI is predetermined by the diameter of the AS samples. Signals outside the ROI were
removed to exclude unwanted noise, as shown in Fig. 1(a). The four margins of the ROI
box are marked as RBu, RBb, RBl, and RBr, respectively.

2. A-scan data preparation. For the 3DAS sample, the ROI is a cylinder with a certain center
and radius. A-scan signals within the ROI are extracted to form a data matrix for further
processing. In our AS parameter monitoring setup, the ROI has a radius of 2.5 mm on the
AS surface.

3. Coarse recognition of AS interface. The peak with the highest intensity signal value of
each A-scan is obtained using the maximum function. This position is marked as an index.
The position of a second peak with the highest intensity signal for the rest part is searched

Fig. 1 Flowchart of the adaptive interface detection algorithm. (a) Calculation of the lateral boun-
dary value, i.e., RBl − RBr of AS based on the drop of the peak of the skin boundary, where
the effective longitudinal range of the sample RBu − RBb is set according to the cross-sectional
view. (b) H&E-stained image of AS structure, and it shows good consistency with the thickness
value obtained by the algorithm. (c) Positioning of the upper and lower surfaces of each A-scan of
AS. (d) Repositioning of the upper and lower surface points of the skin sample according to the
local maximum points in the range (local zoomed). (e) Accurate positioning of top and bottom
surface points. (f) Extraction of the upper and lower AS surface points. (g) Calculation of rough-
ness and thickness based on the AS surface points, where different colors represent different
heights.
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in the same way, and the pixel pitch of these peaks is used to determine whether it is less
than the predetermined threshold T1. The loop breaks and the positions of these peaks are
determined (i.e., Pu and Pb) if it is satisfied. Otherwise, the above process will be con-
tinued, as shown in Fig. 1(c). Because the minimum thickness of the AS is approximately
25 μm on day 1, the T1 value is 10 pixels and is used to eliminate the effect of noise and
ensure that all peaks are accurately identified. For the same reason, the T1 value is 15 pix-
els on day 9 and 20 pixels on day 13.

4. Fine recognition of AS interface. The upper surface of the skin sample was re-identified in
this step. Due to the high degree of cell keratinization in the middle and late stages of
culture, a multilayered keratinous structure will be formed gradually, and the A-scan
signal of the stratum corneum will have multiple spikes and small fluctuations in the
condition, and the base membrane will also interfere with the detection of the lower sur-
face. Therefore, the signal searching range on the upper surface is refined to [RBu,
ðPu þ PbÞ∕2], and the signal searching range on the lower surface is refined to
[ðPu þ PbÞ∕2, RBb]. All the maximum points in the signal range are recorded, numbered,
and marked as peakðiÞ. If the difference between the intensity value of the maximum point
peakðiÞ and the intensity value of Pu or Pb is greater than the threshold T2, then the
MATLAB program will continue to compare it with the next maximum point until they
are all compared. Otherwise, if the difference is less than the fluctuation error threshold
T2, the point above the physical position is chosen as the true surface of the AS, and the
position is marked as the new Pu or. Pb As shown in Fig. 1(d), the frequency statistics of
the ratio between the intensity signal of the actual surface peak Pu or Pb and the coarse
result identified by the algorithm show that the peak resulting from the multi-samples is
mostly within 20%; therefore, 20% of the Pu or Pb signal is set as T2.

5. Structural parameter quantification. As shown in Fig. 1(e), the vertical pixel positions of
the upper and lower surfaces of the AS samples are extracted and saved to extract the AS
interface. As detailed in Sec. 2.3, the thickness and roughness are quantified based on the
AS interface.

2.3 AS Parameter Quantification

The thickness is obtained by the difference between Pu and. Pb The actual thickness between the
peaks is calculated according to the refractive index:

EQ-TARGET;temp:intralink-;e001;116;345Th ¼ δ

γ
× N: (1)

In the above equation, δ and γ represent the pixel resolution and the refractive index of the skin,
respectively, and N is the number of pixels between the peaks in the intensity signal of the
A-scan.

Roughness is another important feature that can reflect the irregular shape of the skin surface.
For AS, keratinization of the cells will cause changes in the keratinous structure, which can vary
the value or pattern of surface roughness. In this study, after the surface point cloud is obtained
by the adaptive algorithm, the skin surface structural morphology changes are analyzed by cal-
ibrating the skin surface points. Owing to the possibility of sample tilting or natural skin growth
during the AS culture period resulting in an uneven skin surface, this study used binary cubic
surface fitting to flatten the skin surface before calculating the roughness.

For a well-cultured AS sample, the upper layer is the corneum formed in the culture cycle and
is of vital importance to the protection ability of AS. The roughness evaluation of AS is a direct
evaluation of the corneum. Thus, we chose two aspects of roughness, namely the magnitude of
roughness and the distribution pattern of surface height.

The International Organization for Standardization provides us with several criteria that char-
acterize the degree of roughness, from which the average roughness is adopted in this study to
express the magnitude of AS roughness.5 Equation (2) defines the definition of the average
roughness Ra:
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EQ-TARGET;temp:intralink-;e002;116;735Ra ¼
1

PN
×

Xðxn−xcÞ2þðyn−ycÞ2<r2

n

jZn − Zj; (2)

where ðxc; ycÞ is the center position ROI of the skin, r is the radius of ROI, ðxn; yn; ZnÞ is the
coordinate of the n’th sampled point, Z is the average surface height in the ROI, and PN is the
number of sampling points in ROI, respectively.

In addition to Ra, another criterion, Rsk, quantifies the bias distribution of the surface height.
And to obtain Rsk, the root-mean-square roughness, Rq, needs to be calculated first. The expres-
sions for Rq and Rsk are defined in Eqs. (3) and (4), respectively:

EQ-TARGET;temp:intralink-;e003;116;618Rq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

PN
×

Xðxn−xcÞ2þðyn−ycÞ2<r2

n

jZn − Zj2
vuut ; (3)

EQ-TARGET;temp:intralink-;e004;116;549Rsk ¼
1

R3
q
×

1

PN
×

Xðxn−xcÞ2þðyn−ycÞ2<r2

n

ðZn − ZÞ3; (4)

where PN, xc, yc, x, y, (xn, yn, Zn), and r have the same meaning as in Eq. (2). Rsk reflects the
symmetry property of the surface roughness. When the value of Rsk is closer to 0, the height
distribution of the sample surface is more symmetrical. The peak roughness is closer to the
average surface of roughness.

3 Verification Experiment

To demonstrate the accuracy and feasibility of our roughness evaluation method, four roughness
plates were tested, and the results were compared with the algorithm5 and the standard values of
the model. Four roughness plates (vertical milling roughness model from Weifang Huaguang
Measuring Tool Co., Ltd.) that meet the Chinese National Standard were used. Their Ra values
are 1, 1.6, 3.2, and 5.8 μm, respectively.

In the verification experiment, the focus of the OCT acquisition was positioned on the
surface of the roughness model, and then nine patches of 5 mm × 5 mm × 2.59 mm

(556 pixels × 556 pixels × 1024 pixels) 3D OCT data were collected, and then the proposed
algorithm was applied to obtain its arithmetic mean roughness.

The surface roughness was calculated according to the definition in Sec. 2.3, and the results
are illustrated in Figs. 2(a)–2(d). The verification curve of the roughness algorithm is shown in
the Fig. 2(e), and all the data are listed in Table 1.

Figures 2(a)–2(d) show the surface contour maps of the roughness plate when Ra is 1, 1.6,
3.2, and 5.8 μm. In these figures, the average surface height is defined as zero. Figure 2(e) shows
the comparison between the proposed algorithm and the image-based method.5 The horizontal
and the vertical axes denote the true value and the measured value, respectively, and the dashed
blue line has the slope of 1, which is the no-error condition. It can be noted that the slope of the
verication curve of the proposed algorithm is 5.2 times greater than the image-based method,
showing a much higher sensitivity in roughness measuring. The image-based method’s low sen-
sitivity leads to the failure to effectively distinguish the roughness value in the range between
Ra ¼ 1 and 1.6 μm, and this curve shows greater deviation for high Ra conditions. For our
proposed adaptive method, which is based on the intensity signal, the maximum deviation from
true value is 0.64 μm. Since this maximum deviation occurs at the highest Ra condition, relative
error is only about 11%. Even through the deviation, the value of the algorithm obtained by the
adaptive interface detection algorithm shows a positive, linear relation with the nominal value of
the roughness model, and the variance of the tested value for each sample plate remains small.
Thus, the results imply the capability of the proposed method to differentiate AS of different Ra
levels on a micrometer scale.
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4 Artificial Skin Quantification

The structural parameters of the three batches of AS samples were monitored during the air–
liquid culture cycle. The AS samples were tested on days 1, 5, 9, and 13. Statistical analysis
based on roughness measurement was performed to study the surface morphology change with
the culture time. A batch of typical failure samples were specially customized, and their thick-
ness and roughness parameters were analyzed.

4.1 Quantitative Analysis of Thickness and Roughness of Normal Skin
Growth Cycle

Figures 3(a)–3(d) show the distribution of the thickness of the same AS on days 1, 5, 9, and 13
obtained by the structure parameter monitoring method in Sec. 2. From days 1 to 5, the dis-
tribution range of the overall skin thickness is reduced, the thickness growth rate is larger, and
the structure tends to be flat. From day 5 to 13, the thickness of the AS samples grew slowly, the
surface gradually became rougher, and the overall thickness growth rate increased on day 13.
The statistical average thickness of the five AS samples in batch 1 are obtained, and the results
are shown in Fig. 3(e). The Th values of different samples maintain a high degree of similarity,
and the thickness increases with the air–liquid culture time. The sample has a larger increase on
the days 5 and 13.

The distribution of the surface height during the culture cycle is a method of roughness evalu-
ation, as shown in Figs. 4(a)–4(d). On day 1, hilly conditions on the surface existed, which
contributed to the high value of Ra. This hilly surface shape was mainly due to the cell bumps

Table 1 Roughness verification results.

Arithmetic mean roughness

Model number

1 2 3 4

Nominal value (μm) 1.0 1.6 3.2 5.8

Algorithm result (μm) 1.35 ± 0.02 1.92 ± 0.07 3.14 ±0.03 5.16 ±0.10

Image-based method5 (μm) 1.05 ± 0.01 1.03 ± 0.02 1.22 ± 0.03 1.78 ± 0.23

Fig. 2 Roughness model contour map and roughness verification curve. (a) Ra ¼ 1.0 μm,
(b) Ra ¼ 1.6 μm, (c) Ra ¼ 3.2 μm, (d) Ra ¼ 5.8 μm, and (e) verification curves of our algorithm
and the Askaruly’s Method.5
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that were unevenly distributed in the inoculation. Compared with day 1, the size of each peak or
valley in the contour map becomes smaller and more evenly distributed with culture time. During
the culture process from days 1 to 5, the AS surface tended to get flat. In the subsequent air–
liquid culture process from days 9 to 13, the scattered and dot-like protruding areas on the skin
surface were gradually connected into blocks, and the fluctuations on the skin surface show
obvious regional characteristics.

Fig. 4 Surface contour maps, frequency histogram, box plot, and Ra curve of AS at different cul-
ture times. (a)–(d) The surface contour maps during the culture period; (e)–(h) the frequency histo-
grams during the culture period; (i) the box plots of a single sample; and (j) theRa curves of five AS
samples during the culture period.

Fig. 3 Thickness distribution and thickness curve of AS at different culture times. (a) Day 1, (b) day
5, (c) day 9, and (d) day 13. (e) The Th curves of five AS samples during the culture period.
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To further analyze the distribution of the roughness of AS in different stages, the relative
surface height frequency histogram of the entire cultivation cycle of the same batch of AS sam-
ples is shown in Figs. 4(e)–4(h). In this figure, the average surface height is defined as zero. On
day 1 [Fig. 4(e)], the distribution of surface height was mainly in the range of −15 to 10 μm on
the average surface of the AS, and the distribution is relatively loose. On day 5 [Fig. 4(f)], the
relative height distribution was more concentrated, with a distribution mainly between −10 and
5 μm. From days 5 to 13 [Figs. 4(g) and 4(h)], the distribution range of the surface increases.
From the box plots in Fig. 4(i), it can be seen that the median, upper quartile, and upper limit of
roughness show a trend of first decreasing and then increasing in the course of cultivation time.

The statistical average roughness of the five AS samples in batch 1 are obtained, and the
results are shown in Fig. 4(j). In terms of roughness parameters, the sample had comparable
Ra values on day 1 when standard inoculation was performed. As time increased, the Ra curves
varied, which is mainly due to the difference in cell growth activity between samples. The values
of Ra at the end of the culture cycle show a relatively large difference, that is, varying from 1.9 to
3 μm. Despite this difference, all the Ra curves of the AS samples show first a drop and then an
increase during the process of air–liquid culture. The average Ra reached a minimum on day 5
and then gradually increased with the time of air–liquid culture. Rsk also showed a decrease from
days 1 to 5 and an increase from days 9 to 13 for all the AS samples.

The statistical table of changes in the structural-related parameters of different batches with
the air–liquid culture time is shown in Table 2. For the thickness parameter, all batches increased
with the increase in incubation time but at a different rate between different batches. For the
roughness parameter, the roughness difference between batches on day 1 can be explained
by the printing condition. Due to the difference in cell activity between batches, the values
of the roughness parameter also show notable differences on day 13. All the batches share the
same trend for Ra and Rsk.

To verify the feasibility of our method, we performed repeated measures of multi-factor
analysis of variance25 to statistically analyze the Ra and Th data in Table 2, as shown in the
Supplemental Material. Considering the difference in thickness at the starting point, the increase
rate of Th is adopted for analysis. Statistical analysis with time is performed, and we obtain F −
Th − rate (3, 10) = 77.019 (P ¼ 3.2677 × 10 − 7 < 0.05) and F − Rað3;36Þ ¼ 85.272

(P ¼ 2.0111 × 10 − 16 < 0.05). The results indicate that Th and Ra have significant statistical
differences with time, which show that the culture stage can distinguished by such parameter
monitoring. The results of statistical analysis between batches show that F − Th − rate (2, 12) =
0.913 (P ¼ 0.427 > 0.05) and F − Ra (2, 12) = 3.107 (P ¼ 0.082 > 0.05), which means the
value of Ra and the increase rate of Th show no significant statistical difference between batches.

Table 2 AS structure parameter changes of different batches.

Batch Roughness parameter

Culture time/day

1 5 9 13

1 Th (μm) 45.96 ± 3.96 71.21 ± 2.12 78.34 ± 2.17 99.75 ± 2.54

Ra (μm) 3.01 ± 0.04 1.50 ± 0.14 1.64 ± 0.19 2.33 ± 0.43

Rsk 2.92 ± 0.19 2.17 ± 0.22 2.49 ± 0.10 3.32 ± 0.33

2 Th (μm) 37.82 ± 5.21 45.54 ± 2.76 66.24 ± 3.44 80.46 ± 4.20

Ra (μm) 3.06 ± 0.38 1.65 ± 0.23 1.96 ± 0.22 2.62 ± 0.20

Rsk 2.79 ± 0.42 2.33 ± 0.16 2.64 ± 0.32 2.85 ± 0.30

3 Th (μm) 37.08 ± 1.74 47.62 ± 1.17 61.45 ± 1.12 75.65 ± 0.86

Ra (μm) 2.97 ± 0.13 1.82 ± 0.18 2.23 ± 0.38 2.31 ± 0.24

Rsk 2.68 ± 0.44 2.11 ± 0.16 2.14 ± 0.18 2.43 ± 0.12
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4.2 Comparison with H&E Staining

To show the condition of the stratum corneum during the culture cycle, four AS samples of batch
4 were stained and cut for microscopy observation on days 1, 5, 9, and 13. Before cutting, the AS
was fixed with a 4% formaldehyde solution for 24 hours, and then the skin slices were made by
dehydration, embedding, and H&E staining. Under microscope, the corneum along with the rest
of AS can be distinguished by the difference in color and shape, as shown in Fig. 5. No obvious
corneum was observed on day 1, and on day 5, a thin layer of stratum corneum was observed.
From days 5 to 13, the degree of fluctuation of the stratum corneum increased, which is in agree-
ment with the increase of Th in this period. The undulating surface caused by the inoculation
operation on day 1 became less notable on day 5, which is in agreement with the decrease of Ra.
Thus, it is reasonable to draw a relationship between the Ra value and the stage of culture, espe-
cially associated with the corneum condition. Considering the relative height distribution in
Fig. 4(i), the histogram of relative height can also reflect the corneum condition, and the increase
in H&E slice thickness is consistent with the increase in thickness value.

4.3 Parameter Analysis of Typical Failure Conditions

Unexpected abnormal samples may occur, even though the culture environment and the process
are strictly controlled. To study the changes in the thickness and roughness of AS samples under
different failure conditions, we specially customized a batch of failed skin samples as batch 5,
including the most common abnormalities such as surface gully, exudate, and stratum corneum
peeling. Figure 6 shows the photographic images, 3D reconstruction pictures, thickness maps,
and roughness distribution maps of a normal sample and three typical abnormal samples on day
7 of culture.

Figures 6(a)–6(d) show the images of the normal sample, the surface gully sample, the exu-
date sample, and the stratum corneum exfoliation sample; Figs. 6(e)–6(h) show the surface maps
after the 3D data are reconstructed. Figures 6(i)–6(l) show the thickness distribution diagrams of
the samples; Figs. 6(m)–6(p) show the roughness distribution maps of the samples. It can be seen
from Fig. 6 that it is difficult to distinguish abnormal samples from normal samples by photo-
graphic images, and it is also difficult to observe particularly obvious differences from recon-
struction images, but the thickness and roughness data may reveal this information. Therefore,
after quantitative processing, the average thickness of the three abnormal samples are 49.4, 103,
and 55.9 μm while the average thickness of the normal sample is 46.7 μm. From the thickness
distribution diagram, the thickness distribution of the abnormal sample is uneven, and there are a
lot of raised and gully. The average roughness (Ra) of the three abnormal samples are 7.2, 8.66,
and 17.3 μm while the normal Ra is 2.3 μm. Therefore, the roughness of the abnormal samples

Fig. 5 Images of AS samples under a microscope after H&E staining. (a)–(d) H&E staining of AS
under the 10× microscope on days 1, 5, 9, and 13, respectively. The corneum part and the rest of
the AS can be distinguished by the difference in color. It shows qualitatively that the overall thick-
ness increased with time, with no sign of the corneum on day 1, and from days 5 to 13, the thick-
ness of the corneum layer continues to increase. From panels (a) and (b), it can be seen that the
unevenness caused by inoculation disappeared in the culture cycle.
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has a relatively large increase. The results show that the thickness and roughness data of normal
and abnormal samples are significantly different.

5 Discussion

This study uses OCT to evaluate AS structural parameters (i.e., thickness and roughness), where
an automatic peak detection algorithm is developed to accurately extract the skin surface through
the 3D data of each AS, after which thickness and roughness parameters are calculated.
Verification of thickness was achieved with microscopy images, and experiments on standard
roughness plates demonstrated the feasibility of the proposed method when under in low-rough-
ness conditions (1 μm < Ra < 5.8 μm). Considering the measured average Ra of AS in each
batch during the culture cycle (1.5 μm < Ra < 3.06 μm), the feasibility range of our proposed
method covers the roughness range of AS samples during the culture cycle.

For the observation of AS during the culture cycle, the results show that the surface distri-
bution of the skin varies greatly in different air–liquid culture stages. At the beginning of the AS
air–liquid culture (day 1), when the cells were not been keratinized, the uneven surface of the AS
was caused by the distribution of cell clusters [Figs. 5(a) and 4(a)]. The skin presents irregular
protrusions, as shown in Fig. 4(e) and Table 2. More protrusions indicated that the structure was
loose, and the roughness of different positions varied greatly, resulting in larger Ra values, and
the asymmetry of the roughness frequency distribution results in a large Rsk value. From days 1
to 5 in air–liquid culture, the degree of cell keratinization remains low, and the skin structure was
smoother and firmer [Figs. 4(b) and 5(b)]. During this period, the value of Ra drops sharply, and
the skin structure is firmest. It shows that the AS mainly promotes formations of the basal layer
form days 1 to 5. The epidermal structure is closely connected, the skin surface is the flattest
[Fig. 4(f) and Table 2], and the frequency distribution is the most symmetrical, leading to the

Fig. 6 The images, thickness, and surface contour maps for one normal sample and three abnor-
mal samples. (a)–(d) The images of the normal sample, the abnormal-shaped sample, the sample
with exudation, and the sample with cuticle exfoliation, respectively. (e)–(h) The 3D simulation
diagrams of four samples. (i)–(l) The thickness maps for the four samples, and (m)–(p) the surface
contours for the four samples.
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minimum Rsk. As the air–liquid culture reached day 9, with the increase and differentiation of
keratinocytes, the stratum corneum clearly showed a layered structure, and the scattered pro-
trusions on the AS surface indicate that the degree of keratinization has increased [Figs. 4(c)
and 5(c)], with the structure of the skin gradually roughened. The amplitude of surface surface
fluctuations gradually increased, leading to a likewise gradual increase in Ra. As the proportion
of surface convexity in the roughness frequency distribution increased, the surface light was
scattered by point-like convexity. It has little effect on the overall smoothness of the skin surface
[Fig. 4(g) and Table 2], leading to only a slight increase in Rsk. When the air–liquid culture was
carried out on day 13, the thickness increased and the stratum corneum of the AS was more
differentiated. The scattered and dot-like protruding areas on the surface gradually show the
characteristics of local massive tight connections [Figs. 4(d) and 5(d)], the large increase in the
amplitude of the surface fluctuations leads to an increase in, Ra and the unevenness of the skin
surface becomes increasingly serious at this time [Fig. 4(h) and Table 2]. Even the most asym-
metric frequency distribution also leads to an increase in Rsk.

According to Table 2, skin samples in the same batch have the same trend, and the difference
between the parameter values is small. However, the skin samples between different batches
varied due to the differences in the printed cells. Batch 1 had a larger growth rate on days 5
and 13, whereas batch 2 and batch 3 showed a more uniform growth rate. The difference in
the Th and Ra values of separate batches indicates that there are differences in the degree
of AS keratinization between separate batches. Therefore, the adaptive interface extraction
algorithm can be used to non-destructively detect the growth regularity of AS during the culture
cycle.

By quantifying the thickness and roughness of the normal and abnormal samples on day 7
[Figs. 6(i)–6(p)], it is found that the thickness distribution of the abnormal samples is uneven,
indicating that there are thicker or thinner areas, and the roughness has been greatly improved. In
the case that the photographic images cannot distinguish the AS sample difference, adaptive
interface detection algorithm can correctly distinguish between normal and abnormal samples,
which implies that the algorithm in this paper can be used for quality inspection and control of
AS samples.

6 Conclusion

This paper proposed a real-time, non-invasive, and automated structural parameter analysis
method for AS. An adaptive interface detection algorithm was developed to perform the quan-
tification process without human interference in the signals from our OCT setup. The method
was first compared with H&E-staining microscopy and demonstrated on standard roughness
plates, and then AS quantification during the air–liquid culture cycle was performed. Through
continuous monitoring of the AS during the air–liquid culture cycle, the quantitative statistical
results show that while the thickness continues to increase, the roughness of the skin decreases
first and then increases. Structural parameter quantification of the AS indicates that the change in
skin surface roughness is related to the degree of cell keratinization and formation of the cor-
neum, which is further supported by the H&E-staining results. The adaptive interface detection
algorithm is also suitable for high-sensitivity, fast detection, and quantification of the interface
with layered characteristic tissues and can be used for non-destructive detection of the growth
regularity of AS sample thickness and roughness during the culture cycle.
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